(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: Shuffle
public class Random {
static String[] args;
static int index = 0;

public static int random() {
String string = args[index];
index++;
return string.length();
}
}


public class Shuffle{

// adapted from [Walther, 94]
public static void main(String[] args) {
Random.args = args;
IntList l = IntList.createIntList();
IntList res = null;

while (l != null) {

res = new IntList(l.value, res);
l = l.next;
if (l != null) l = l.reverse();

}

}
}


class IntList {
int value;
IntList next;

public IntList(int value, IntList next) {
this.value = value;
this.next = next;
}


public static IntList createIntList() {

int i = Random.random();
int j;

IntList l = null;

while (i > 0) {
j = Random.random();
l = new IntList(j, l);
i--;
}

return l;
}

public IntList reverse() {

IntList res = null;
IntList l = this;

while (l != null) {
res = new IntList(l.value, res);
l = l.next;

}

return res;
}
}


(1) JBC2FIG (SOUND transformation)

Constructed FIGraph.

(2) Obligation:

FIGraph based on JBC Program:
Graph of 303 nodes with 2 SCCs.

(3) FIGtoITRSProof (SOUND transformation)

Transformed FIGraph to ITRS rules

(4) Complex Obligation (AND)

(5) Obligation:

ITRS problem:

The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean

The TRS R consists of the following rules:
Load2367(java.lang.Object(IntList(i185, java.lang.Object(IntList(o2144Field0, o2144Field1))))) → Load2801(java.lang.Object(IntList(o2144Field0, o2144Field1)), java.lang.Object(IntList(o2144Field0, o2144Field1)), NULL, java.lang.Object(IntList(o2144Field0, o2144Field1)))
JMP3331(java.lang.Object(IntList(o2363Field0, o2363Field1)), java.lang.Object(IntList(o2363Field0, o2363Field1)), java.lang.Object(IntList(i252, o2361)), o2414) → Load2801(java.lang.Object(IntList(o2363Field0, o2363Field1)), java.lang.Object(IntList(o2363Field0, o2363Field1)), java.lang.Object(IntList(i252, o2361)), o2414)
Load2801(java.lang.Object(IntList(o2363Field0, o2363Field1)), java.lang.Object(IntList(o2363Field0, o2363Field1)), o2361, java.lang.Object(IntList(i252, o2414))) → Load2801(java.lang.Object(IntList(o2363Field0, o2363Field1)), java.lang.Object(IntList(o2363Field0, o2363Field1)), java.lang.Object(IntList(i252, o2361)), o2414)
Load2801(java.lang.Object(IntList(i253, o2419)), java.lang.Object(IntList(i253, o2419)), o2361, java.lang.Object(IntList(i253, o2419))) → JMP3331(java.lang.Object(IntList(i253, o2419)), java.lang.Object(IntList(i253, o2419)), java.lang.Object(IntList(i253, o2361)), o2419)
Load2801(java.lang.Object(IntList(o2363Field0, o2363Field1)), java.lang.Object(IntList(o2363Field0, o2363Field1)), o2361, NULL) → Load2367(o2361)
Load2367(java.lang.Object(IntList(i185, NULL))) → Load2367(NULL)
The set Q consists of the following terms:
Load2367(java.lang.Object(IntList(x0, java.lang.Object(IntList(x1, x2)))))
JMP3331(java.lang.Object(IntList(x0, x1)), java.lang.Object(IntList(x0, x1)), java.lang.Object(IntList(x2, x3)), x4)
Load2801(java.lang.Object(IntList(x0, x1)), java.lang.Object(IntList(x0, x1)), x2, java.lang.Object(IntList(x3, x4)))
Load2801(java.lang.Object(IntList(x0, x1)), java.lang.Object(IntList(x0, x1)), x2, NULL)
Load2367(java.lang.Object(IntList(x0, NULL)))

(6) DuplicateArgsRemoverProof (EQUIVALENT transformation)

Some arguments are removed because they only appear as duplicates.
We removed arguments according to the following replacements:

Load2801(x1, x2, x3, x4) → Load2801(x2, x3, x4)
JMP3331(x1, x2, x3, x4) → JMP3331(x2, x3, x4)

(7) Obligation:

ITRS problem:

The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean

The TRS R consists of the following rules:
Load2367(java.lang.Object(IntList(i185, java.lang.Object(IntList(o2144Field0, o2144Field1))))) → Load2801(java.lang.Object(IntList(o2144Field0, o2144Field1)), NULL, java.lang.Object(IntList(o2144Field0, o2144Field1)))
JMP3331(java.lang.Object(IntList(o2363Field0, o2363Field1)), java.lang.Object(IntList(i252, o2361)), o2414) → Load2801(java.lang.Object(IntList(o2363Field0, o2363Field1)), java.lang.Object(IntList(i252, o2361)), o2414)
Load2801(java.lang.Object(IntList(o2363Field0, o2363Field1)), o2361, java.lang.Object(IntList(i252, o2414))) → Load2801(java.lang.Object(IntList(o2363Field0, o2363Field1)), java.lang.Object(IntList(i252, o2361)), o2414)
Load2801(java.lang.Object(IntList(i253, o2419)), o2361, java.lang.Object(IntList(i253, o2419))) → JMP3331(java.lang.Object(IntList(i253, o2419)), java.lang.Object(IntList(i253, o2361)), o2419)
Load2801(java.lang.Object(IntList(o2363Field0, o2363Field1)), o2361, NULL) → Load2367(o2361)
Load2367(java.lang.Object(IntList(i185, NULL))) → Load2367(NULL)
The set Q consists of the following terms:
Load2367(java.lang.Object(IntList(x0, java.lang.Object(IntList(x1, x2)))))
JMP3331(java.lang.Object(IntList(x0, x1)), java.lang.Object(IntList(x2, x3)), x4)
Load2801(java.lang.Object(IntList(x0, x1)), x2, java.lang.Object(IntList(x3, x4)))
Load2801(java.lang.Object(IntList(x0, x1)), x2, NULL)
Load2367(java.lang.Object(IntList(x0, NULL)))

(8) ITRStoQTRSProof (EQUIVALENT transformation)

Represented integers and predefined function symbols by Terms

(9) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

Load2367(java.lang.Object(IntList(i185, java.lang.Object(IntList(o2144Field0, o2144Field1))))) → Load2801(java.lang.Object(IntList(o2144Field0, o2144Field1)), NULL, java.lang.Object(IntList(o2144Field0, o2144Field1)))
JMP3331(java.lang.Object(IntList(o2363Field0, o2363Field1)), java.lang.Object(IntList(i252, o2361)), o2414) → Load2801(java.lang.Object(IntList(o2363Field0, o2363Field1)), java.lang.Object(IntList(i252, o2361)), o2414)
Load2801(java.lang.Object(IntList(o2363Field0, o2363Field1)), o2361, java.lang.Object(IntList(i252, o2414))) → Load2801(java.lang.Object(IntList(o2363Field0, o2363Field1)), java.lang.Object(IntList(i252, o2361)), o2414)
Load2801(java.lang.Object(IntList(i253, o2419)), o2361, java.lang.Object(IntList(i253, o2419))) → JMP3331(java.lang.Object(IntList(i253, o2419)), java.lang.Object(IntList(i253, o2361)), o2419)
Load2801(java.lang.Object(IntList(o2363Field0, o2363Field1)), o2361, NULL) → Load2367(o2361)
Load2367(java.lang.Object(IntList(i185, NULL))) → Load2367(NULL)

The set Q consists of the following terms:

Load2367(java.lang.Object(IntList(x0, java.lang.Object(IntList(x1, x2)))))
JMP3331(java.lang.Object(IntList(x0, x1)), java.lang.Object(IntList(x2, x3)), x4)
Load2801(java.lang.Object(IntList(x0, x1)), x2, java.lang.Object(IntList(x3, x4)))
Load2801(java.lang.Object(IntList(x0, x1)), x2, NULL)
Load2367(java.lang.Object(IntList(x0, NULL)))

(10) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LOAD2367(java.lang.Object(IntList(i185, java.lang.Object(IntList(o2144Field0, o2144Field1))))) → LOAD2801(java.lang.Object(IntList(o2144Field0, o2144Field1)), NULL, java.lang.Object(IntList(o2144Field0, o2144Field1)))
JMP33311(java.lang.Object(IntList(o2363Field0, o2363Field1)), java.lang.Object(IntList(i252, o2361)), o2414) → LOAD2801(java.lang.Object(IntList(o2363Field0, o2363Field1)), java.lang.Object(IntList(i252, o2361)), o2414)
LOAD2801(java.lang.Object(IntList(o2363Field0, o2363Field1)), o2361, java.lang.Object(IntList(i252, o2414))) → LOAD2801(java.lang.Object(IntList(o2363Field0, o2363Field1)), java.lang.Object(IntList(i252, o2361)), o2414)
LOAD2801(java.lang.Object(IntList(i253, o2419)), o2361, java.lang.Object(IntList(i253, o2419))) → JMP33311(java.lang.Object(IntList(i253, o2419)), java.lang.Object(IntList(i253, o2361)), o2419)
LOAD2801(java.lang.Object(IntList(o2363Field0, o2363Field1)), o2361, NULL) → LOAD2367(o2361)
LOAD2367(java.lang.Object(IntList(i185, NULL))) → LOAD2367(NULL)

The TRS R consists of the following rules:

Load2367(java.lang.Object(IntList(i185, java.lang.Object(IntList(o2144Field0, o2144Field1))))) → Load2801(java.lang.Object(IntList(o2144Field0, o2144Field1)), NULL, java.lang.Object(IntList(o2144Field0, o2144Field1)))
JMP3331(java.lang.Object(IntList(o2363Field0, o2363Field1)), java.lang.Object(IntList(i252, o2361)), o2414) → Load2801(java.lang.Object(IntList(o2363Field0, o2363Field1)), java.lang.Object(IntList(i252, o2361)), o2414)
Load2801(java.lang.Object(IntList(o2363Field0, o2363Field1)), o2361, java.lang.Object(IntList(i252, o2414))) → Load2801(java.lang.Object(IntList(o2363Field0, o2363Field1)), java.lang.Object(IntList(i252, o2361)), o2414)
Load2801(java.lang.Object(IntList(i253, o2419)), o2361, java.lang.Object(IntList(i253, o2419))) → JMP3331(java.lang.Object(IntList(i253, o2419)), java.lang.Object(IntList(i253, o2361)), o2419)
Load2801(java.lang.Object(IntList(o2363Field0, o2363Field1)), o2361, NULL) → Load2367(o2361)
Load2367(java.lang.Object(IntList(i185, NULL))) → Load2367(NULL)

The set Q consists of the following terms:

Load2367(java.lang.Object(IntList(x0, java.lang.Object(IntList(x1, x2)))))
JMP3331(java.lang.Object(IntList(x0, x1)), java.lang.Object(IntList(x2, x3)), x4)
Load2801(java.lang.Object(IntList(x0, x1)), x2, java.lang.Object(IntList(x3, x4)))
Load2801(java.lang.Object(IntList(x0, x1)), x2, NULL)
Load2367(java.lang.Object(IntList(x0, NULL)))

We have to consider all minimal (P,Q,R)-chains.

(12) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LOAD2801(java.lang.Object(IntList(o2363Field0, o2363Field1)), o2361, java.lang.Object(IntList(i252, o2414))) → LOAD2801(java.lang.Object(IntList(o2363Field0, o2363Field1)), java.lang.Object(IntList(i252, o2361)), o2414)
LOAD2801(java.lang.Object(IntList(i253, o2419)), o2361, java.lang.Object(IntList(i253, o2419))) → JMP33311(java.lang.Object(IntList(i253, o2419)), java.lang.Object(IntList(i253, o2361)), o2419)
JMP33311(java.lang.Object(IntList(o2363Field0, o2363Field1)), java.lang.Object(IntList(i252, o2361)), o2414) → LOAD2801(java.lang.Object(IntList(o2363Field0, o2363Field1)), java.lang.Object(IntList(i252, o2361)), o2414)
LOAD2801(java.lang.Object(IntList(o2363Field0, o2363Field1)), o2361, NULL) → LOAD2367(o2361)
LOAD2367(java.lang.Object(IntList(i185, java.lang.Object(IntList(o2144Field0, o2144Field1))))) → LOAD2801(java.lang.Object(IntList(o2144Field0, o2144Field1)), NULL, java.lang.Object(IntList(o2144Field0, o2144Field1)))

The TRS R consists of the following rules:

Load2367(java.lang.Object(IntList(i185, java.lang.Object(IntList(o2144Field0, o2144Field1))))) → Load2801(java.lang.Object(IntList(o2144Field0, o2144Field1)), NULL, java.lang.Object(IntList(o2144Field0, o2144Field1)))
JMP3331(java.lang.Object(IntList(o2363Field0, o2363Field1)), java.lang.Object(IntList(i252, o2361)), o2414) → Load2801(java.lang.Object(IntList(o2363Field0, o2363Field1)), java.lang.Object(IntList(i252, o2361)), o2414)
Load2801(java.lang.Object(IntList(o2363Field0, o2363Field1)), o2361, java.lang.Object(IntList(i252, o2414))) → Load2801(java.lang.Object(IntList(o2363Field0, o2363Field1)), java.lang.Object(IntList(i252, o2361)), o2414)
Load2801(java.lang.Object(IntList(i253, o2419)), o2361, java.lang.Object(IntList(i253, o2419))) → JMP3331(java.lang.Object(IntList(i253, o2419)), java.lang.Object(IntList(i253, o2361)), o2419)
Load2801(java.lang.Object(IntList(o2363Field0, o2363Field1)), o2361, NULL) → Load2367(o2361)
Load2367(java.lang.Object(IntList(i185, NULL))) → Load2367(NULL)

The set Q consists of the following terms:

Load2367(java.lang.Object(IntList(x0, java.lang.Object(IntList(x1, x2)))))
JMP3331(java.lang.Object(IntList(x0, x1)), java.lang.Object(IntList(x2, x3)), x4)
Load2801(java.lang.Object(IntList(x0, x1)), x2, java.lang.Object(IntList(x3, x4)))
Load2801(java.lang.Object(IntList(x0, x1)), x2, NULL)
Load2367(java.lang.Object(IntList(x0, NULL)))

We have to consider all minimal (P,Q,R)-chains.

(14) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LOAD2801(java.lang.Object(IntList(o2363Field0, o2363Field1)), o2361, java.lang.Object(IntList(i252, o2414))) → LOAD2801(java.lang.Object(IntList(o2363Field0, o2363Field1)), java.lang.Object(IntList(i252, o2361)), o2414)
LOAD2801(java.lang.Object(IntList(i253, o2419)), o2361, java.lang.Object(IntList(i253, o2419))) → JMP33311(java.lang.Object(IntList(i253, o2419)), java.lang.Object(IntList(i253, o2361)), o2419)
JMP33311(java.lang.Object(IntList(o2363Field0, o2363Field1)), java.lang.Object(IntList(i252, o2361)), o2414) → LOAD2801(java.lang.Object(IntList(o2363Field0, o2363Field1)), java.lang.Object(IntList(i252, o2361)), o2414)
LOAD2801(java.lang.Object(IntList(o2363Field0, o2363Field1)), o2361, NULL) → LOAD2367(o2361)
LOAD2367(java.lang.Object(IntList(i185, java.lang.Object(IntList(o2144Field0, o2144Field1))))) → LOAD2801(java.lang.Object(IntList(o2144Field0, o2144Field1)), NULL, java.lang.Object(IntList(o2144Field0, o2144Field1)))

R is empty.
The set Q consists of the following terms:

Load2367(java.lang.Object(IntList(x0, java.lang.Object(IntList(x1, x2)))))
JMP3331(java.lang.Object(IntList(x0, x1)), java.lang.Object(IntList(x2, x3)), x4)
Load2801(java.lang.Object(IntList(x0, x1)), x2, java.lang.Object(IntList(x3, x4)))
Load2801(java.lang.Object(IntList(x0, x1)), x2, NULL)
Load2367(java.lang.Object(IntList(x0, NULL)))

We have to consider all minimal (P,Q,R)-chains.

(16) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

Load2367(java.lang.Object(IntList(x0, java.lang.Object(IntList(x1, x2)))))
JMP3331(java.lang.Object(IntList(x0, x1)), java.lang.Object(IntList(x2, x3)), x4)
Load2801(java.lang.Object(IntList(x0, x1)), x2, java.lang.Object(IntList(x3, x4)))
Load2801(java.lang.Object(IntList(x0, x1)), x2, NULL)
Load2367(java.lang.Object(IntList(x0, NULL)))

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LOAD2801(java.lang.Object(IntList(o2363Field0, o2363Field1)), o2361, java.lang.Object(IntList(i252, o2414))) → LOAD2801(java.lang.Object(IntList(o2363Field0, o2363Field1)), java.lang.Object(IntList(i252, o2361)), o2414)
LOAD2801(java.lang.Object(IntList(i253, o2419)), o2361, java.lang.Object(IntList(i253, o2419))) → JMP33311(java.lang.Object(IntList(i253, o2419)), java.lang.Object(IntList(i253, o2361)), o2419)
JMP33311(java.lang.Object(IntList(o2363Field0, o2363Field1)), java.lang.Object(IntList(i252, o2361)), o2414) → LOAD2801(java.lang.Object(IntList(o2363Field0, o2363Field1)), java.lang.Object(IntList(i252, o2361)), o2414)
LOAD2801(java.lang.Object(IntList(o2363Field0, o2363Field1)), o2361, NULL) → LOAD2367(o2361)
LOAD2367(java.lang.Object(IntList(i185, java.lang.Object(IntList(o2144Field0, o2144Field1))))) → LOAD2801(java.lang.Object(IntList(o2144Field0, o2144Field1)), NULL, java.lang.Object(IntList(o2144Field0, o2144Field1)))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule JMP33311(java.lang.Object(IntList(o2363Field0, o2363Field1)), java.lang.Object(IntList(i252, o2361)), o2414) → LOAD2801(java.lang.Object(IntList(o2363Field0, o2363Field1)), java.lang.Object(IntList(i252, o2361)), o2414) we obtained the following new rules [LPAR04]:

JMP33311(java.lang.Object(IntList(z0, z1)), java.lang.Object(IntList(z0, z2)), z1) → LOAD2801(java.lang.Object(IntList(z0, z1)), java.lang.Object(IntList(z0, z2)), z1)

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LOAD2801(java.lang.Object(IntList(o2363Field0, o2363Field1)), o2361, java.lang.Object(IntList(i252, o2414))) → LOAD2801(java.lang.Object(IntList(o2363Field0, o2363Field1)), java.lang.Object(IntList(i252, o2361)), o2414)
LOAD2801(java.lang.Object(IntList(i253, o2419)), o2361, java.lang.Object(IntList(i253, o2419))) → JMP33311(java.lang.Object(IntList(i253, o2419)), java.lang.Object(IntList(i253, o2361)), o2419)
LOAD2801(java.lang.Object(IntList(o2363Field0, o2363Field1)), o2361, NULL) → LOAD2367(o2361)
LOAD2367(java.lang.Object(IntList(i185, java.lang.Object(IntList(o2144Field0, o2144Field1))))) → LOAD2801(java.lang.Object(IntList(o2144Field0, o2144Field1)), NULL, java.lang.Object(IntList(o2144Field0, o2144Field1)))
JMP33311(java.lang.Object(IntList(z0, z1)), java.lang.Object(IntList(z0, z2)), z1) → LOAD2801(java.lang.Object(IntList(z0, z1)), java.lang.Object(IntList(z0, z2)), z1)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


LOAD2367(java.lang.Object(IntList(i185, java.lang.Object(IntList(o2144Field0, o2144Field1))))) → LOAD2801(java.lang.Object(IntList(o2144Field0, o2144Field1)), NULL, java.lang.Object(IntList(o2144Field0, o2144Field1)))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(IntList(x1, x2)) = x2   
POL(JMP33311(x1, x2, x3)) = x2 + x3   
POL(LOAD2367(x1)) = x1   
POL(LOAD2801(x1, x2, x3)) = x2 + x3   
POL(NULL) = 0   
POL(java.lang.Object(x1)) = 1 + x1   

The following usable rules [FROCOS05] were oriented: none

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LOAD2801(java.lang.Object(IntList(o2363Field0, o2363Field1)), o2361, java.lang.Object(IntList(i252, o2414))) → LOAD2801(java.lang.Object(IntList(o2363Field0, o2363Field1)), java.lang.Object(IntList(i252, o2361)), o2414)
LOAD2801(java.lang.Object(IntList(i253, o2419)), o2361, java.lang.Object(IntList(i253, o2419))) → JMP33311(java.lang.Object(IntList(i253, o2419)), java.lang.Object(IntList(i253, o2361)), o2419)
LOAD2801(java.lang.Object(IntList(o2363Field0, o2363Field1)), o2361, NULL) → LOAD2367(o2361)
JMP33311(java.lang.Object(IntList(z0, z1)), java.lang.Object(IntList(z0, z2)), z1) → LOAD2801(java.lang.Object(IntList(z0, z1)), java.lang.Object(IntList(z0, z2)), z1)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(23) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LOAD2801(java.lang.Object(IntList(i253, o2419)), o2361, java.lang.Object(IntList(i253, o2419))) → JMP33311(java.lang.Object(IntList(i253, o2419)), java.lang.Object(IntList(i253, o2361)), o2419)
JMP33311(java.lang.Object(IntList(z0, z1)), java.lang.Object(IntList(z0, z2)), z1) → LOAD2801(java.lang.Object(IntList(z0, z1)), java.lang.Object(IntList(z0, z2)), z1)
LOAD2801(java.lang.Object(IntList(o2363Field0, o2363Field1)), o2361, java.lang.Object(IntList(i252, o2414))) → LOAD2801(java.lang.Object(IntList(o2363Field0, o2363Field1)), java.lang.Object(IntList(i252, o2361)), o2414)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • JMP33311(java.lang.Object(IntList(z0, z1)), java.lang.Object(IntList(z0, z2)), z1) → LOAD2801(java.lang.Object(IntList(z0, z1)), java.lang.Object(IntList(z0, z2)), z1)
    The graph contains the following edges 1 >= 1, 2 >= 2, 1 > 3, 3 >= 3

  • LOAD2801(java.lang.Object(IntList(o2363Field0, o2363Field1)), o2361, java.lang.Object(IntList(i252, o2414))) → LOAD2801(java.lang.Object(IntList(o2363Field0, o2363Field1)), java.lang.Object(IntList(i252, o2361)), o2414)
    The graph contains the following edges 1 >= 1, 3 > 3

  • LOAD2801(java.lang.Object(IntList(i253, o2419)), o2361, java.lang.Object(IntList(i253, o2419))) → JMP33311(java.lang.Object(IntList(i253, o2419)), java.lang.Object(IntList(i253, o2361)), o2419)
    The graph contains the following edges 1 >= 1, 3 >= 1, 1 > 3, 3 > 3

(25) TRUE

(26) Obligation:

ITRS problem:

The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean

The TRS R consists of the following rules:
Load1479(java.lang.Object(ARRAY(i2, a1508data)), i54, i56) → Load1479ARR1(java.lang.Object(ARRAY(i2, a1508data)), i54, i56, java.lang.Object(java.lang.String(i78)))
Load1479ARR1(java.lang.Object(ARRAY(i2, a1508data)), i54, i56, java.lang.Object(java.lang.String(i78))) → Cond_Load1479ARR1(i54 > 0 && i54 < i2 && i56 > 0 && i54 + 1 > 0, java.lang.Object(ARRAY(i2, a1508data)), i54, i56, java.lang.Object(java.lang.String(i78)))
Cond_Load1479ARR1(TRUE, java.lang.Object(ARRAY(i2, a1508data)), i54, i56, java.lang.Object(java.lang.String(i78))) → Load1479(java.lang.Object(ARRAY(i2, a1508data)), i54 + 1, i56 + -1)
The set Q consists of the following terms:
Load1479(java.lang.Object(ARRAY(x0, x1)), x2, x3)
Load1479ARR1(java.lang.Object(ARRAY(x0, x1)), x2, x3, java.lang.Object(java.lang.String(x4)))
Cond_Load1479ARR1(TRUE, java.lang.Object(ARRAY(x0, x1)), x2, x3, java.lang.Object(java.lang.String(x4)))

(27) ITRSFilterProcessorProof (SOUND transformation)

We filter according the heuristic IdpCand1ShapeHeuristic
We removed arguments according to the following replacements:

Load1479ARR1(x1, x2, x3, x4) → Load1479ARR1(x1, x2, x3)
java.lang.String(x1) → java.lang.String
Cond_Load1479ARR1(x1, x2, x3, x4, x5) → Cond_Load1479ARR1(x1, x2, x3, x4)

(28) Obligation:

ITRS problem:

The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean

The TRS R consists of the following rules:
Load1479(java.lang.Object(ARRAY(i2, a1508data)), i54, i56) → Load1479ARR1(java.lang.Object(ARRAY(i2, a1508data)), i54, i56)
Load1479ARR1(java.lang.Object(ARRAY(i2, a1508data)), i54, i56) → Cond_Load1479ARR1(i54 > 0 && i54 < i2 && i56 > 0 && i54 + 1 > 0, java.lang.Object(ARRAY(i2, a1508data)), i54, i56)
Cond_Load1479ARR1(TRUE, java.lang.Object(ARRAY(i2, a1508data)), i54, i56) → Load1479(java.lang.Object(ARRAY(i2, a1508data)), i54 + 1, i56 + -1)
The set Q consists of the following terms:
Load1479(java.lang.Object(ARRAY(x0, x1)), x2, x3)
Load1479ARR1(java.lang.Object(ARRAY(x0, x1)), x2, x3)
Cond_Load1479ARR1(TRUE, java.lang.Object(ARRAY(x0, x1)), x2, x3)

(29) ITRStoIDPProof (EQUIVALENT transformation)

Added dependency pairs

(30) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


The ITRS R consists of the following rules:
Load1479(java.lang.Object(ARRAY(i2, a1508data)), i54, i56) → Load1479ARR1(java.lang.Object(ARRAY(i2, a1508data)), i54, i56)
Load1479ARR1(java.lang.Object(ARRAY(i2, a1508data)), i54, i56) → Cond_Load1479ARR1(i54 > 0 && i54 < i2 && i56 > 0 && i54 + 1 > 0, java.lang.Object(ARRAY(i2, a1508data)), i54, i56)
Cond_Load1479ARR1(TRUE, java.lang.Object(ARRAY(i2, a1508data)), i54, i56) → Load1479(java.lang.Object(ARRAY(i2, a1508data)), i54 + 1, i56 + -1)

The integer pair graph contains the following rules and edges:
(0): LOAD1479(java.lang.Object(ARRAY(i2[0], a1508data[0])), i54[0], i56[0]) → LOAD1479ARR1(java.lang.Object(ARRAY(i2[0], a1508data[0])), i54[0], i56[0])
(1): LOAD1479ARR1(java.lang.Object(ARRAY(i2[1], a1508data[1])), i54[1], i56[1]) → COND_LOAD1479ARR1(i54[1] > 0 && i54[1] < i2[1] && i56[1] > 0 && i54[1] + 1 > 0, java.lang.Object(ARRAY(i2[1], a1508data[1])), i54[1], i56[1])
(2): COND_LOAD1479ARR1(TRUE, java.lang.Object(ARRAY(i2[2], a1508data[2])), i54[2], i56[2]) → LOAD1479(java.lang.Object(ARRAY(i2[2], a1508data[2])), i54[2] + 1, i56[2] + -1)

(0) -> (1), if ((java.lang.Object(ARRAY(i2[0], a1508data[0])) →* java.lang.Object(ARRAY(i2[1], a1508data[1])))∧(i56[0]* i56[1])∧(i54[0]* i54[1]))


(1) -> (2), if ((i54[1] > 0 && i54[1] < i2[1] && i56[1] > 0 && i54[1] + 1 > 0* TRUE)∧(i56[1]* i56[2])∧(java.lang.Object(ARRAY(i2[1], a1508data[1])) →* java.lang.Object(ARRAY(i2[2], a1508data[2])))∧(i54[1]* i54[2]))


(2) -> (0), if ((i56[2] + -1* i56[0])∧(java.lang.Object(ARRAY(i2[2], a1508data[2])) →* java.lang.Object(ARRAY(i2[0], a1508data[0])))∧(i54[2] + 1* i54[0]))



The set Q consists of the following terms:
Load1479(java.lang.Object(ARRAY(x0, x1)), x2, x3)
Load1479ARR1(java.lang.Object(ARRAY(x0, x1)), x2, x3)
Cond_Load1479ARR1(TRUE, java.lang.Object(ARRAY(x0, x1)), x2, x3)

(31) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(32) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): LOAD1479(java.lang.Object(ARRAY(i2[0], a1508data[0])), i54[0], i56[0]) → LOAD1479ARR1(java.lang.Object(ARRAY(i2[0], a1508data[0])), i54[0], i56[0])
(1): LOAD1479ARR1(java.lang.Object(ARRAY(i2[1], a1508data[1])), i54[1], i56[1]) → COND_LOAD1479ARR1(i54[1] > 0 && i54[1] < i2[1] && i56[1] > 0 && i54[1] + 1 > 0, java.lang.Object(ARRAY(i2[1], a1508data[1])), i54[1], i56[1])
(2): COND_LOAD1479ARR1(TRUE, java.lang.Object(ARRAY(i2[2], a1508data[2])), i54[2], i56[2]) → LOAD1479(java.lang.Object(ARRAY(i2[2], a1508data[2])), i54[2] + 1, i56[2] + -1)

(0) -> (1), if ((java.lang.Object(ARRAY(i2[0], a1508data[0])) →* java.lang.Object(ARRAY(i2[1], a1508data[1])))∧(i56[0]* i56[1])∧(i54[0]* i54[1]))


(1) -> (2), if ((i54[1] > 0 && i54[1] < i2[1] && i56[1] > 0 && i54[1] + 1 > 0* TRUE)∧(i56[1]* i56[2])∧(java.lang.Object(ARRAY(i2[1], a1508data[1])) →* java.lang.Object(ARRAY(i2[2], a1508data[2])))∧(i54[1]* i54[2]))


(2) -> (0), if ((i56[2] + -1* i56[0])∧(java.lang.Object(ARRAY(i2[2], a1508data[2])) →* java.lang.Object(ARRAY(i2[0], a1508data[0])))∧(i54[2] + 1* i54[0]))



The set Q consists of the following terms:
Load1479(java.lang.Object(ARRAY(x0, x1)), x2, x3)
Load1479ARR1(java.lang.Object(ARRAY(x0, x1)), x2, x3)
Cond_Load1479ARR1(TRUE, java.lang.Object(ARRAY(x0, x1)), x2, x3)

(33) ItpfGraphProof (EQUIVALENT transformation)

Applied rule ItpfICap [ICap]

(34) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): LOAD1479(java.lang.Object(ARRAY(i2[0], a1508data[0])), i54[0], i56[0]) → LOAD1479ARR1(java.lang.Object(ARRAY(i2[0], a1508data[0])), i54[0], i56[0])
(1): LOAD1479ARR1(java.lang.Object(ARRAY(i2[1], a1508data[1])), i54[1], i56[1]) → COND_LOAD1479ARR1(i54[1] > 0 && i54[1] < i2[1] && i56[1] > 0 && i54[1] + 1 > 0, java.lang.Object(ARRAY(i2[1], a1508data[1])), i54[1], i56[1])
(2): COND_LOAD1479ARR1(TRUE, java.lang.Object(ARRAY(i2[2], a1508data[2])), i54[2], i56[2]) → LOAD1479(java.lang.Object(ARRAY(i2[2], a1508data[2])), i54[2] + 1, i56[2] + -1)

(0) -> (1), if (((i2[0]* i2[1])∧(a1508data[0]* a1508data[1]))∧(i56[0]* i56[1])∧(i54[0]* i54[1]))


(1) -> (2), if ((i54[1] > 0 && i54[1] < i2[1] && i56[1] > 0 && i54[1] + 1 > 0* TRUE)∧(i56[1]* i56[2])∧((i2[1]* i2[2])∧(a1508data[1]* a1508data[2]))∧(i54[1]* i54[2]))


(2) -> (0), if ((i56[2] + -1* i56[0])∧((i2[2]* i2[0])∧(a1508data[2]* a1508data[0]))∧(i54[2] + 1* i54[0]))



The set Q consists of the following terms:
Load1479(java.lang.Object(ARRAY(x0, x1)), x2, x3)
Load1479ARR1(java.lang.Object(ARRAY(x0, x1)), x2, x3)
Cond_Load1479ARR1(TRUE, java.lang.Object(ARRAY(x0, x1)), x2, x3)

(35) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair LOAD1479(java.lang.Object(ARRAY(i2, a1508data)), i54, i56) → LOAD1479ARR1(java.lang.Object(ARRAY(i2, a1508data)), i54, i56) the following chains were created:
  • We consider the chain LOAD1479(java.lang.Object(ARRAY(i2[0], a1508data[0])), i54[0], i56[0]) → LOAD1479ARR1(java.lang.Object(ARRAY(i2[0], a1508data[0])), i54[0], i56[0]), LOAD1479ARR1(java.lang.Object(ARRAY(i2[1], a1508data[1])), i54[1], i56[1]) → COND_LOAD1479ARR1(&&(&&(&&(>(i54[1], 0), <(i54[1], i2[1])), >(i56[1], 0)), >(+(i54[1], 1), 0)), java.lang.Object(ARRAY(i2[1], a1508data[1])), i54[1], i56[1]) which results in the following constraint:

    (1)    (i2[0]=i2[1]a1508data[0]=a1508data[1]i56[0]=i56[1]i54[0]=i54[1]LOAD1479(java.lang.Object(ARRAY(i2[0], a1508data[0])), i54[0], i56[0])≥NonInfC∧LOAD1479(java.lang.Object(ARRAY(i2[0], a1508data[0])), i54[0], i56[0])≥LOAD1479ARR1(java.lang.Object(ARRAY(i2[0], a1508data[0])), i54[0], i56[0])∧(UIncreasing(LOAD1479ARR1(java.lang.Object(ARRAY(i2[0], a1508data[0])), i54[0], i56[0])), ≥))



    We simplified constraint (1) using rule (IV) which results in the following new constraint:

    (2)    (LOAD1479(java.lang.Object(ARRAY(i2[0], a1508data[0])), i54[0], i56[0])≥NonInfC∧LOAD1479(java.lang.Object(ARRAY(i2[0], a1508data[0])), i54[0], i56[0])≥LOAD1479ARR1(java.lang.Object(ARRAY(i2[0], a1508data[0])), i54[0], i56[0])∧(UIncreasing(LOAD1479ARR1(java.lang.Object(ARRAY(i2[0], a1508data[0])), i54[0], i56[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    ((UIncreasing(LOAD1479ARR1(java.lang.Object(ARRAY(i2[0], a1508data[0])), i54[0], i56[0])), ≥)∧[(-1)bso_16] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    ((UIncreasing(LOAD1479ARR1(java.lang.Object(ARRAY(i2[0], a1508data[0])), i54[0], i56[0])), ≥)∧[(-1)bso_16] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    ((UIncreasing(LOAD1479ARR1(java.lang.Object(ARRAY(i2[0], a1508data[0])), i54[0], i56[0])), ≥)∧[(-1)bso_16] ≥ 0)



    We simplified constraint (5) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (6)    ((UIncreasing(LOAD1479ARR1(java.lang.Object(ARRAY(i2[0], a1508data[0])), i54[0], i56[0])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_16] ≥ 0)







For Pair LOAD1479ARR1(java.lang.Object(ARRAY(i2, a1508data)), i54, i56) → COND_LOAD1479ARR1(&&(&&(&&(>(i54, 0), <(i54, i2)), >(i56, 0)), >(+(i54, 1), 0)), java.lang.Object(ARRAY(i2, a1508data)), i54, i56) the following chains were created:
  • We consider the chain LOAD1479ARR1(java.lang.Object(ARRAY(i2[1], a1508data[1])), i54[1], i56[1]) → COND_LOAD1479ARR1(&&(&&(&&(>(i54[1], 0), <(i54[1], i2[1])), >(i56[1], 0)), >(+(i54[1], 1), 0)), java.lang.Object(ARRAY(i2[1], a1508data[1])), i54[1], i56[1]), COND_LOAD1479ARR1(TRUE, java.lang.Object(ARRAY(i2[2], a1508data[2])), i54[2], i56[2]) → LOAD1479(java.lang.Object(ARRAY(i2[2], a1508data[2])), +(i54[2], 1), +(i56[2], -1)) which results in the following constraint:

    (7)    (&&(&&(&&(>(i54[1], 0), <(i54[1], i2[1])), >(i56[1], 0)), >(+(i54[1], 1), 0))=TRUEi56[1]=i56[2]i2[1]=i2[2]a1508data[1]=a1508data[2]i54[1]=i54[2]LOAD1479ARR1(java.lang.Object(ARRAY(i2[1], a1508data[1])), i54[1], i56[1])≥NonInfC∧LOAD1479ARR1(java.lang.Object(ARRAY(i2[1], a1508data[1])), i54[1], i56[1])≥COND_LOAD1479ARR1(&&(&&(&&(>(i54[1], 0), <(i54[1], i2[1])), >(i56[1], 0)), >(+(i54[1], 1), 0)), java.lang.Object(ARRAY(i2[1], a1508data[1])), i54[1], i56[1])∧(UIncreasing(COND_LOAD1479ARR1(&&(&&(&&(>(i54[1], 0), <(i54[1], i2[1])), >(i56[1], 0)), >(+(i54[1], 1), 0)), java.lang.Object(ARRAY(i2[1], a1508data[1])), i54[1], i56[1])), ≥))



    We simplified constraint (7) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (8)    (>(+(i54[1], 1), 0)=TRUE>(i56[1], 0)=TRUE>(i54[1], 0)=TRUE<(i54[1], i2[1])=TRUELOAD1479ARR1(java.lang.Object(ARRAY(i2[1], a1508data[1])), i54[1], i56[1])≥NonInfC∧LOAD1479ARR1(java.lang.Object(ARRAY(i2[1], a1508data[1])), i54[1], i56[1])≥COND_LOAD1479ARR1(&&(&&(&&(>(i54[1], 0), <(i54[1], i2[1])), >(i56[1], 0)), >(+(i54[1], 1), 0)), java.lang.Object(ARRAY(i2[1], a1508data[1])), i54[1], i56[1])∧(UIncreasing(COND_LOAD1479ARR1(&&(&&(&&(>(i54[1], 0), <(i54[1], i2[1])), >(i56[1], 0)), >(+(i54[1], 1), 0)), java.lang.Object(ARRAY(i2[1], a1508data[1])), i54[1], i56[1])), ≥))



    We simplified constraint (8) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (9)    (i54[1] ≥ 0∧i56[1] + [-1] ≥ 0∧i54[1] + [-1] ≥ 0∧i2[1] + [-1] + [-1]i54[1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1479ARR1(&&(&&(&&(>(i54[1], 0), <(i54[1], i2[1])), >(i56[1], 0)), >(+(i54[1], 1), 0)), java.lang.Object(ARRAY(i2[1], a1508data[1])), i54[1], i56[1])), ≥)∧[(2)bni_17 + (-1)Bound*bni_17] + [bni_17]i56[1] + [(-1)bni_17]i54[1] + [bni_17]i2[1] ≥ 0∧[(-1)bso_18] ≥ 0)



    We simplified constraint (9) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (10)    (i54[1] ≥ 0∧i56[1] + [-1] ≥ 0∧i54[1] + [-1] ≥ 0∧i2[1] + [-1] + [-1]i54[1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1479ARR1(&&(&&(&&(>(i54[1], 0), <(i54[1], i2[1])), >(i56[1], 0)), >(+(i54[1], 1), 0)), java.lang.Object(ARRAY(i2[1], a1508data[1])), i54[1], i56[1])), ≥)∧[(2)bni_17 + (-1)Bound*bni_17] + [bni_17]i56[1] + [(-1)bni_17]i54[1] + [bni_17]i2[1] ≥ 0∧[(-1)bso_18] ≥ 0)



    We simplified constraint (10) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (11)    (i54[1] ≥ 0∧i56[1] + [-1] ≥ 0∧i54[1] + [-1] ≥ 0∧i2[1] + [-1] + [-1]i54[1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1479ARR1(&&(&&(&&(>(i54[1], 0), <(i54[1], i2[1])), >(i56[1], 0)), >(+(i54[1], 1), 0)), java.lang.Object(ARRAY(i2[1], a1508data[1])), i54[1], i56[1])), ≥)∧[(2)bni_17 + (-1)Bound*bni_17] + [bni_17]i56[1] + [(-1)bni_17]i54[1] + [bni_17]i2[1] ≥ 0∧[(-1)bso_18] ≥ 0)



    We simplified constraint (11) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (12)    (i54[1] ≥ 0∧i56[1] + [-1] ≥ 0∧i54[1] + [-1] ≥ 0∧i2[1] + [-1] + [-1]i54[1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1479ARR1(&&(&&(&&(>(i54[1], 0), <(i54[1], i2[1])), >(i56[1], 0)), >(+(i54[1], 1), 0)), java.lang.Object(ARRAY(i2[1], a1508data[1])), i54[1], i56[1])), ≥)∧0 = 0∧[(2)bni_17 + (-1)Bound*bni_17] + [bni_17]i56[1] + [(-1)bni_17]i54[1] + [bni_17]i2[1] ≥ 0∧0 = 0∧[(-1)bso_18] ≥ 0)



    We simplified constraint (12) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (13)    ([1] + i54[1] ≥ 0∧i56[1] + [-1] ≥ 0∧i54[1] ≥ 0∧i2[1] + [-2] + [-1]i54[1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1479ARR1(&&(&&(&&(>(i54[1], 0), <(i54[1], i2[1])), >(i56[1], 0)), >(+(i54[1], 1), 0)), java.lang.Object(ARRAY(i2[1], a1508data[1])), i54[1], i56[1])), ≥)∧0 = 0∧[bni_17 + (-1)Bound*bni_17] + [bni_17]i56[1] + [(-1)bni_17]i54[1] + [bni_17]i2[1] ≥ 0∧0 = 0∧[(-1)bso_18] ≥ 0)



    We simplified constraint (13) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (14)    ([1] + i54[1] ≥ 0∧i56[1] ≥ 0∧i54[1] ≥ 0∧i2[1] + [-2] + [-1]i54[1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1479ARR1(&&(&&(&&(>(i54[1], 0), <(i54[1], i2[1])), >(i56[1], 0)), >(+(i54[1], 1), 0)), java.lang.Object(ARRAY(i2[1], a1508data[1])), i54[1], i56[1])), ≥)∧0 = 0∧[(2)bni_17 + (-1)Bound*bni_17] + [bni_17]i56[1] + [(-1)bni_17]i54[1] + [bni_17]i2[1] ≥ 0∧0 = 0∧[(-1)bso_18] ≥ 0)



    We simplified constraint (14) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (15)    ([1] + i54[1] ≥ 0∧i56[1] ≥ 0∧i54[1] ≥ 0∧i2[1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1479ARR1(&&(&&(&&(>(i54[1], 0), <(i54[1], i2[1])), >(i56[1], 0)), >(+(i54[1], 1), 0)), java.lang.Object(ARRAY(i2[1], a1508data[1])), i54[1], i56[1])), ≥)∧0 = 0∧[(4)bni_17 + (-1)Bound*bni_17] + [bni_17]i56[1] + [bni_17]i2[1] ≥ 0∧0 = 0∧[(-1)bso_18] ≥ 0)







For Pair COND_LOAD1479ARR1(TRUE, java.lang.Object(ARRAY(i2, a1508data)), i54, i56) → LOAD1479(java.lang.Object(ARRAY(i2, a1508data)), +(i54, 1), +(i56, -1)) the following chains were created:
  • We consider the chain COND_LOAD1479ARR1(TRUE, java.lang.Object(ARRAY(i2[2], a1508data[2])), i54[2], i56[2]) → LOAD1479(java.lang.Object(ARRAY(i2[2], a1508data[2])), +(i54[2], 1), +(i56[2], -1)) which results in the following constraint:

    (16)    (COND_LOAD1479ARR1(TRUE, java.lang.Object(ARRAY(i2[2], a1508data[2])), i54[2], i56[2])≥NonInfC∧COND_LOAD1479ARR1(TRUE, java.lang.Object(ARRAY(i2[2], a1508data[2])), i54[2], i56[2])≥LOAD1479(java.lang.Object(ARRAY(i2[2], a1508data[2])), +(i54[2], 1), +(i56[2], -1))∧(UIncreasing(LOAD1479(java.lang.Object(ARRAY(i2[2], a1508data[2])), +(i54[2], 1), +(i56[2], -1))), ≥))



    We simplified constraint (16) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (17)    ((UIncreasing(LOAD1479(java.lang.Object(ARRAY(i2[2], a1508data[2])), +(i54[2], 1), +(i56[2], -1))), ≥)∧[2 + (-1)bso_20] ≥ 0)



    We simplified constraint (17) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (18)    ((UIncreasing(LOAD1479(java.lang.Object(ARRAY(i2[2], a1508data[2])), +(i54[2], 1), +(i56[2], -1))), ≥)∧[2 + (-1)bso_20] ≥ 0)



    We simplified constraint (18) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (19)    ((UIncreasing(LOAD1479(java.lang.Object(ARRAY(i2[2], a1508data[2])), +(i54[2], 1), +(i56[2], -1))), ≥)∧[2 + (-1)bso_20] ≥ 0)



    We simplified constraint (19) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (20)    ((UIncreasing(LOAD1479(java.lang.Object(ARRAY(i2[2], a1508data[2])), +(i54[2], 1), +(i56[2], -1))), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧[2 + (-1)bso_20] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • LOAD1479(java.lang.Object(ARRAY(i2, a1508data)), i54, i56) → LOAD1479ARR1(java.lang.Object(ARRAY(i2, a1508data)), i54, i56)
    • ((UIncreasing(LOAD1479ARR1(java.lang.Object(ARRAY(i2[0], a1508data[0])), i54[0], i56[0])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_16] ≥ 0)

  • LOAD1479ARR1(java.lang.Object(ARRAY(i2, a1508data)), i54, i56) → COND_LOAD1479ARR1(&&(&&(&&(>(i54, 0), <(i54, i2)), >(i56, 0)), >(+(i54, 1), 0)), java.lang.Object(ARRAY(i2, a1508data)), i54, i56)
    • ([1] + i54[1] ≥ 0∧i56[1] ≥ 0∧i54[1] ≥ 0∧i2[1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1479ARR1(&&(&&(&&(>(i54[1], 0), <(i54[1], i2[1])), >(i56[1], 0)), >(+(i54[1], 1), 0)), java.lang.Object(ARRAY(i2[1], a1508data[1])), i54[1], i56[1])), ≥)∧0 = 0∧[(4)bni_17 + (-1)Bound*bni_17] + [bni_17]i56[1] + [bni_17]i2[1] ≥ 0∧0 = 0∧[(-1)bso_18] ≥ 0)

  • COND_LOAD1479ARR1(TRUE, java.lang.Object(ARRAY(i2, a1508data)), i54, i56) → LOAD1479(java.lang.Object(ARRAY(i2, a1508data)), +(i54, 1), +(i56, -1))
    • ((UIncreasing(LOAD1479(java.lang.Object(ARRAY(i2[2], a1508data[2])), +(i54[2], 1), +(i56[2], -1))), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧[2 + (-1)bso_20] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(LOAD1479(x1, x2, x3)) = [1] + x3 + [-1]x2 + [-1]x1   
POL(java.lang.Object(x1)) = x1   
POL(ARRAY(x1, x2)) = [-1] + [-1]x1   
POL(LOAD1479ARR1(x1, x2, x3)) = [1] + x3 + [-1]x2 + [-1]x1   
POL(COND_LOAD1479ARR1(x1, x2, x3, x4)) = [1] + x4 + [-1]x3 + [-1]x2   
POL(&&(x1, x2)) = [-1]   
POL(>(x1, x2)) = [-1]   
POL(0) = 0   
POL(<(x1, x2)) = [-1]   
POL(+(x1, x2)) = x1 + x2   
POL(1) = [1]   
POL(-1) = [-1]   

The following pairs are in P>:

COND_LOAD1479ARR1(TRUE, java.lang.Object(ARRAY(i2[2], a1508data[2])), i54[2], i56[2]) → LOAD1479(java.lang.Object(ARRAY(i2[2], a1508data[2])), +(i54[2], 1), +(i56[2], -1))

The following pairs are in Pbound:

LOAD1479ARR1(java.lang.Object(ARRAY(i2[1], a1508data[1])), i54[1], i56[1]) → COND_LOAD1479ARR1(&&(&&(&&(>(i54[1], 0), <(i54[1], i2[1])), >(i56[1], 0)), >(+(i54[1], 1), 0)), java.lang.Object(ARRAY(i2[1], a1508data[1])), i54[1], i56[1])

The following pairs are in P:

LOAD1479(java.lang.Object(ARRAY(i2[0], a1508data[0])), i54[0], i56[0]) → LOAD1479ARR1(java.lang.Object(ARRAY(i2[0], a1508data[0])), i54[0], i56[0])
LOAD1479ARR1(java.lang.Object(ARRAY(i2[1], a1508data[1])), i54[1], i56[1]) → COND_LOAD1479ARR1(&&(&&(&&(>(i54[1], 0), <(i54[1], i2[1])), >(i56[1], 0)), >(+(i54[1], 1), 0)), java.lang.Object(ARRAY(i2[1], a1508data[1])), i54[1], i56[1])

There are no usable rules.

(36) Complex Obligation (AND)

(37) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): LOAD1479(java.lang.Object(ARRAY(i2[0], a1508data[0])), i54[0], i56[0]) → LOAD1479ARR1(java.lang.Object(ARRAY(i2[0], a1508data[0])), i54[0], i56[0])
(1): LOAD1479ARR1(java.lang.Object(ARRAY(i2[1], a1508data[1])), i54[1], i56[1]) → COND_LOAD1479ARR1(i54[1] > 0 && i54[1] < i2[1] && i56[1] > 0 && i54[1] + 1 > 0, java.lang.Object(ARRAY(i2[1], a1508data[1])), i54[1], i56[1])

(0) -> (1), if (((i2[0]* i2[1])∧(a1508data[0]* a1508data[1]))∧(i56[0]* i56[1])∧(i54[0]* i54[1]))



The set Q consists of the following terms:
Load1479(java.lang.Object(ARRAY(x0, x1)), x2, x3)
Load1479ARR1(java.lang.Object(ARRAY(x0, x1)), x2, x3)
Cond_Load1479ARR1(TRUE, java.lang.Object(ARRAY(x0, x1)), x2, x3)

(38) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(39) TRUE

(40) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): LOAD1479(java.lang.Object(ARRAY(i2[0], a1508data[0])), i54[0], i56[0]) → LOAD1479ARR1(java.lang.Object(ARRAY(i2[0], a1508data[0])), i54[0], i56[0])
(2): COND_LOAD1479ARR1(TRUE, java.lang.Object(ARRAY(i2[2], a1508data[2])), i54[2], i56[2]) → LOAD1479(java.lang.Object(ARRAY(i2[2], a1508data[2])), i54[2] + 1, i56[2] + -1)

(2) -> (0), if ((i56[2] + -1* i56[0])∧((i2[2]* i2[0])∧(a1508data[2]* a1508data[0]))∧(i54[2] + 1* i54[0]))



The set Q consists of the following terms:
Load1479(java.lang.Object(ARRAY(x0, x1)), x2, x3)
Load1479ARR1(java.lang.Object(ARRAY(x0, x1)), x2, x3)
Cond_Load1479ARR1(TRUE, java.lang.Object(ARRAY(x0, x1)), x2, x3)

(41) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(42) TRUE