0 JBC
↳1 JBC2FIG (⇐)
↳2 FIGraph
↳3 FIGtoITRSProof (⇐)
↳4 AND
↳5 ITRS
↳6 ITRStoQTRSProof (⇔)
↳7 QTRS
↳8 QTRSRRRProof (⇔)
↳9 QTRS
↳10 RisEmptyProof (⇔)
↳11 TRUE
↳12 ITRS
↳13 ITRStoIDPProof (⇔)
↳14 IDP
↳15 UsableRulesProof (⇔)
↳16 IDP
↳17 IDPNonInfProof (⇐)
↳18 IDP
↳19 IDependencyGraphProof (⇔)
↳20 TRUE
public class ObjectList {
Object value;
ObjectList next;
public ObjectList(Object value, ObjectList next) {
this.value = value;
this.next = next;
}
public static ObjectList createList() {
ObjectList result = null;
int length = Random.random();
while (length > 0) {
result = new ObjectList(new Object(), result);
length--;
}
return result;
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
/**
* Allegedly based on an interview question at Microsoft.
*/
public class RunningPointers {
public static boolean isCyclic(ObjectList l) {
if (l == null) {
return false;
}
ObjectList l1, l2;
l1 = l;
l2 = l.next;
while (l2 != null && l1 != l2) {
l2 = l2.next;
if (l2 == null) {
return false;
}
else if (l2 == l1) {
return true;
}
else {
l2 = l2.next;
}
l1 = l1.next;
}
return l2 != null;
}
public static void main(String[] args) {
Random.args = args;
ObjectList list = ObjectList.createList();
isCyclic(list);
}
}
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Load2975(java.lang.Object(ObjectList(o2219)), java.lang.Object(ObjectList(o2219)), java.lang.Object(ObjectList(java.lang.Object(ObjectList(o2899))))) → JMP3744(java.lang.Object(ObjectList(o2219)), o2219, o2899)
JMP3744(java.lang.Object(ObjectList(o2219)), o3107, o2899) → Load2975(java.lang.Object(ObjectList(o2219)), o3107, o2899)
Load2975(java.lang.Object(ObjectList(o2219)), java.lang.Object(ObjectList(o3107)), java.lang.Object(ObjectList(java.lang.Object(ObjectList(o2899))))) → Load2975(java.lang.Object(ObjectList(o2219)), o3107, o2899)
JMP3744(java.lang.Object(ObjectList(x0)), x1, x2)
Load2975(java.lang.Object(ObjectList(x0)), java.lang.Object(ObjectList(x1)), java.lang.Object(ObjectList(java.lang.Object(ObjectList(x2)))))
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(JMP3744(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(Load2975(x1, x2, x3)) = x1 + x2 + x3
POL(ObjectList(x1)) = 1 + x1
POL(java.lang.Object(x1)) = x1
Load2975(java.lang.Object(ObjectList(o2219)), java.lang.Object(ObjectList(o2219)), java.lang.Object(ObjectList(java.lang.Object(ObjectList(o2899))))) → JMP3744(java.lang.Object(ObjectList(o2219)), o2219, o2899)
JMP3744(java.lang.Object(ObjectList(o2219)), o3107, o2899) → Load2975(java.lang.Object(ObjectList(o2219)), o3107, o2899)
Load2975(java.lang.Object(ObjectList(o2219)), java.lang.Object(ObjectList(o3107)), java.lang.Object(ObjectList(java.lang.Object(ObjectList(o2899))))) → Load2975(java.lang.Object(ObjectList(o2219)), o3107, o2899)
JMP3744(java.lang.Object(ObjectList(x0)), x1, x2)
Load2975(java.lang.Object(ObjectList(x0)), java.lang.Object(ObjectList(x1)), java.lang.Object(ObjectList(java.lang.Object(ObjectList(x2)))))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(0) -> (1), if ((i34[0] →* i34[1])∧(i34[0] > 0 →* TRUE))
(1) -> (0), if ((i34[1] + -1 →* i34[0]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(0) -> (1), if ((i34[0] →* i34[1])∧(i34[0] > 0 →* TRUE))
(1) -> (0), if ((i34[1] + -1 →* i34[0]))
(1) (i34[0]=i34[1]∧>(i34[0], 0)=TRUE ⇒ LOAD876(i34[0])≥NonInfC∧LOAD876(i34[0])≥COND_LOAD876(>(i34[0], 0), i34[0])∧(UIncreasing(COND_LOAD876(>(i34[0], 0), i34[0])), ≥))
(2) (>(i34[0], 0)=TRUE ⇒ LOAD876(i34[0])≥NonInfC∧LOAD876(i34[0])≥COND_LOAD876(>(i34[0], 0), i34[0])∧(UIncreasing(COND_LOAD876(>(i34[0], 0), i34[0])), ≥))
(3) (i34[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD876(>(i34[0], 0), i34[0])), ≥)∧[(-1)Bound*bni_9] + [(2)bni_9]i34[0] ≥ 0∧[1 + (-1)bso_10] ≥ 0)
(4) (i34[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD876(>(i34[0], 0), i34[0])), ≥)∧[(-1)Bound*bni_9] + [(2)bni_9]i34[0] ≥ 0∧[1 + (-1)bso_10] ≥ 0)
(5) (i34[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD876(>(i34[0], 0), i34[0])), ≥)∧[(-1)Bound*bni_9] + [(2)bni_9]i34[0] ≥ 0∧[1 + (-1)bso_10] ≥ 0)
(6) (i34[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD876(>(i34[0], 0), i34[0])), ≥)∧[(-1)Bound*bni_9 + (2)bni_9] + [(2)bni_9]i34[0] ≥ 0∧[1 + (-1)bso_10] ≥ 0)
(7) (i34[0]=i34[1]∧>(i34[0], 0)=TRUE∧+(i34[1], -1)=i34[0]1 ⇒ COND_LOAD876(TRUE, i34[1])≥NonInfC∧COND_LOAD876(TRUE, i34[1])≥LOAD876(+(i34[1], -1))∧(UIncreasing(LOAD876(+(i34[1], -1))), ≥))
(8) (>(i34[0], 0)=TRUE ⇒ COND_LOAD876(TRUE, i34[0])≥NonInfC∧COND_LOAD876(TRUE, i34[0])≥LOAD876(+(i34[0], -1))∧(UIncreasing(LOAD876(+(i34[1], -1))), ≥))
(9) (i34[0] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD876(+(i34[1], -1))), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [(2)bni_11]i34[0] ≥ 0∧[1 + (-1)bso_12] ≥ 0)
(10) (i34[0] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD876(+(i34[1], -1))), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [(2)bni_11]i34[0] ≥ 0∧[1 + (-1)bso_12] ≥ 0)
(11) (i34[0] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD876(+(i34[1], -1))), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [(2)bni_11]i34[0] ≥ 0∧[1 + (-1)bso_12] ≥ 0)
(12) (i34[0] ≥ 0 ⇒ (UIncreasing(LOAD876(+(i34[1], -1))), ≥)∧[bni_11 + (-1)Bound*bni_11] + [(2)bni_11]i34[0] ≥ 0∧[1 + (-1)bso_12] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(LOAD876(x1)) = [2]x1
POL(COND_LOAD876(x1, x2)) = [-1] + [2]x2
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
LOAD876(i34[0]) → COND_LOAD876(>(i34[0], 0), i34[0])
COND_LOAD876(TRUE, i34[1]) → LOAD876(+(i34[1], -1))
LOAD876(i34[0]) → COND_LOAD876(>(i34[0], 0), i34[0])
COND_LOAD876(TRUE, i34[1]) → LOAD876(+(i34[1], -1))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |