0 JBC
↳1 JBC2FIG (⇐)
↳2 FIGraph
↳3 FIGtoITRSProof (⇐)
↳4 ITRS
↳5 ITRStoIDPProof (⇔)
↳6 IDP
↳7 UsableRulesProof (⇔)
↳8 IDP
↳9 IDPNonInfProof (⇐)
↳10 IDP
↳11 IDependencyGraphProof (⇔)
↳12 TRUE
public class PlusSwap{
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
int z;
int res = 0;
while (y > 0) {
z = x;
x = y-1;
y = z;
res++;
}
res = res + x;
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i237[0] > 0 && i220[0] + 1 > 0 →* TRUE)∧(i218[0] →* i218[1])∧(i220[0] →* i220[1])∧(i237[0] →* i237[1]))
(1) -> (0), if ((i220[1] + 1 →* i220[0])∧(i237[1] - 1 →* i218[0])∧(i218[1] →* i237[0]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i237[0] > 0 && i220[0] + 1 > 0 →* TRUE)∧(i218[0] →* i218[1])∧(i220[0] →* i220[1])∧(i237[0] →* i237[1]))
(1) -> (0), if ((i220[1] + 1 →* i220[0])∧(i237[1] - 1 →* i218[0])∧(i218[1] →* i237[0]))
(1) (&&(>(i237[0], 0), >(+(i220[0], 1), 0))=TRUE∧i218[0]=i218[1]∧i220[0]=i220[1]∧i237[0]=i237[1] ⇒ LOAD1127(i218[0], i237[0], i220[0])≥NonInfC∧LOAD1127(i218[0], i237[0], i220[0])≥COND_LOAD1127(&&(>(i237[0], 0), >(+(i220[0], 1), 0)), i218[0], i237[0], i220[0])∧(UIncreasing(COND_LOAD1127(&&(>(i237[0], 0), >(+(i220[0], 1), 0)), i218[0], i237[0], i220[0])), ≥))
(2) (>(i237[0], 0)=TRUE∧>(+(i220[0], 1), 0)=TRUE ⇒ LOAD1127(i218[0], i237[0], i220[0])≥NonInfC∧LOAD1127(i218[0], i237[0], i220[0])≥COND_LOAD1127(&&(>(i237[0], 0), >(+(i220[0], 1), 0)), i218[0], i237[0], i220[0])∧(UIncreasing(COND_LOAD1127(&&(>(i237[0], 0), >(+(i220[0], 1), 0)), i218[0], i237[0], i220[0])), ≥))
(3) (i237[0] + [-1] ≥ 0∧i220[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1127(&&(>(i237[0], 0), >(+(i220[0], 1), 0)), i218[0], i237[0], i220[0])), ≥)∧[(-1)bni_14 + (-1)Bound*bni_14] + [bni_14]i220[0] + [(2)bni_14]i237[0] + [(2)bni_14]i218[0] ≥ 0∧[(-1)bso_15] ≥ 0)
(4) (i237[0] + [-1] ≥ 0∧i220[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1127(&&(>(i237[0], 0), >(+(i220[0], 1), 0)), i218[0], i237[0], i220[0])), ≥)∧[(-1)bni_14 + (-1)Bound*bni_14] + [bni_14]i220[0] + [(2)bni_14]i237[0] + [(2)bni_14]i218[0] ≥ 0∧[(-1)bso_15] ≥ 0)
(5) (i237[0] + [-1] ≥ 0∧i220[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1127(&&(>(i237[0], 0), >(+(i220[0], 1), 0)), i218[0], i237[0], i220[0])), ≥)∧[(-1)bni_14 + (-1)Bound*bni_14] + [bni_14]i220[0] + [(2)bni_14]i237[0] + [(2)bni_14]i218[0] ≥ 0∧[(-1)bso_15] ≥ 0)
(6) (i237[0] + [-1] ≥ 0∧i220[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1127(&&(>(i237[0], 0), >(+(i220[0], 1), 0)), i218[0], i237[0], i220[0])), ≥)∧[(2)bni_14] = 0∧[(-1)bni_14 + (-1)Bound*bni_14] + [bni_14]i220[0] + [(2)bni_14]i237[0] ≥ 0∧0 = 0∧[(-1)bso_15] ≥ 0)
(7) (i237[0] ≥ 0∧i220[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1127(&&(>(i237[0], 0), >(+(i220[0], 1), 0)), i218[0], i237[0], i220[0])), ≥)∧[(2)bni_14] = 0∧[bni_14 + (-1)Bound*bni_14] + [bni_14]i220[0] + [(2)bni_14]i237[0] ≥ 0∧0 = 0∧[(-1)bso_15] ≥ 0)
(8) (&&(>(i237[0], 0), >(+(i220[0], 1), 0))=TRUE∧i218[0]=i218[1]∧i220[0]=i220[1]∧i237[0]=i237[1]∧+(i220[1], 1)=i220[0]1∧-(i237[1], 1)=i218[0]1∧i218[1]=i237[0]1∧&&(>(i237[0]1, 0), >(+(i220[0]1, 1), 0))=TRUE∧i218[0]1=i218[1]1∧i220[0]1=i220[1]1∧i237[0]1=i237[1]1∧+(i220[1]1, 1)=i220[0]2∧-(i237[1]1, 1)=i218[0]2∧i218[1]1=i237[0]2∧&&(>(i237[0]2, 0), >(+(i220[0]2, 1), 0))=TRUE∧i218[0]2=i218[1]2∧i220[0]2=i220[1]2∧i237[0]2=i237[1]2 ⇒ COND_LOAD1127(TRUE, i218[1]1, i237[1]1, i220[1]1)≥NonInfC∧COND_LOAD1127(TRUE, i218[1]1, i237[1]1, i220[1]1)≥LOAD1127(-(i237[1]1, 1), i218[1]1, +(i220[1]1, 1))∧(UIncreasing(LOAD1127(-(i237[1]1, 1), i218[1]1, +(i220[1]1, 1))), ≥))
(9) (>(i237[0], 0)=TRUE∧>(+(i220[0], 1), 0)=TRUE∧>(i237[0]1, 0)=TRUE∧>(+(+(i220[0], 1), 1), 0)=TRUE∧>(-(i237[0], 1), 0)=TRUE∧>(+(+(+(i220[0], 1), 1), 1), 0)=TRUE ⇒ COND_LOAD1127(TRUE, -(i237[0], 1), i237[0]1, +(i220[0], 1))≥NonInfC∧COND_LOAD1127(TRUE, -(i237[0], 1), i237[0]1, +(i220[0], 1))≥LOAD1127(-(i237[0]1, 1), -(i237[0], 1), +(+(i220[0], 1), 1))∧(UIncreasing(LOAD1127(-(i237[1]1, 1), i218[1]1, +(i220[1]1, 1))), ≥))
(10) (i237[0] + [-1] ≥ 0∧i220[0] ≥ 0∧i237[0]1 + [-1] ≥ 0∧i220[0] + [1] ≥ 0∧i237[0] + [-2] ≥ 0∧i220[0] + [2] ≥ 0 ⇒ (UIncreasing(LOAD1127(-(i237[1]1, 1), i218[1]1, +(i220[1]1, 1))), ≥)∧[(-2)bni_16 + (-1)Bound*bni_16] + [bni_16]i220[0] + [(2)bni_16]i237[0]1 + [(2)bni_16]i237[0] ≥ 0∧[1 + (-1)bso_17] ≥ 0)
(11) (i237[0] + [-1] ≥ 0∧i220[0] ≥ 0∧i237[0]1 + [-1] ≥ 0∧i220[0] + [1] ≥ 0∧i237[0] + [-2] ≥ 0∧i220[0] + [2] ≥ 0 ⇒ (UIncreasing(LOAD1127(-(i237[1]1, 1), i218[1]1, +(i220[1]1, 1))), ≥)∧[(-2)bni_16 + (-1)Bound*bni_16] + [bni_16]i220[0] + [(2)bni_16]i237[0]1 + [(2)bni_16]i237[0] ≥ 0∧[1 + (-1)bso_17] ≥ 0)
(12) (i237[0] + [-1] ≥ 0∧i220[0] ≥ 0∧i237[0]1 + [-1] ≥ 0∧i220[0] + [1] ≥ 0∧i237[0] + [-2] ≥ 0∧i220[0] + [2] ≥ 0 ⇒ (UIncreasing(LOAD1127(-(i237[1]1, 1), i218[1]1, +(i220[1]1, 1))), ≥)∧[(-2)bni_16 + (-1)Bound*bni_16] + [bni_16]i220[0] + [(2)bni_16]i237[0]1 + [(2)bni_16]i237[0] ≥ 0∧[1 + (-1)bso_17] ≥ 0)
(13) (i237[0] ≥ 0∧i220[0] ≥ 0∧i237[0]1 + [-1] ≥ 0∧i220[0] + [1] ≥ 0∧[-1] + i237[0] ≥ 0∧i220[0] + [2] ≥ 0 ⇒ (UIncreasing(LOAD1127(-(i237[1]1, 1), i218[1]1, +(i220[1]1, 1))), ≥)∧[(-1)Bound*bni_16] + [bni_16]i220[0] + [(2)bni_16]i237[0]1 + [(2)bni_16]i237[0] ≥ 0∧[1 + (-1)bso_17] ≥ 0)
(14) ([1] + i237[0] ≥ 0∧i220[0] ≥ 0∧i237[0]1 + [-1] ≥ 0∧i220[0] + [1] ≥ 0∧i237[0] ≥ 0∧i220[0] + [2] ≥ 0 ⇒ (UIncreasing(LOAD1127(-(i237[1]1, 1), i218[1]1, +(i220[1]1, 1))), ≥)∧[(2)bni_16 + (-1)Bound*bni_16] + [bni_16]i220[0] + [(2)bni_16]i237[0]1 + [(2)bni_16]i237[0] ≥ 0∧[1 + (-1)bso_17] ≥ 0)
(15) ([1] + i237[0] ≥ 0∧i220[0] ≥ 0∧i237[0]1 ≥ 0∧i220[0] + [1] ≥ 0∧i237[0] ≥ 0∧i220[0] + [2] ≥ 0 ⇒ (UIncreasing(LOAD1127(-(i237[1]1, 1), i218[1]1, +(i220[1]1, 1))), ≥)∧[(-1)Bound*bni_16 + (4)bni_16] + [bni_16]i220[0] + [(2)bni_16]i237[0]1 + [(2)bni_16]i237[0] ≥ 0∧[1 + (-1)bso_17] ≥ 0)
(16) ([1] + i237[0] ≥ 0∧i220[0] ≥ 0∧i237[0]1 ≥ 0∧i220[0] + [1] ≥ 0∧i237[0] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(LOAD1127(-(i237[1]1, 1), i218[1]1, +(i220[1]1, 1))), ≥)∧[(-1)Bound*bni_16 + (4)bni_16] + [bni_16]i220[0] + [(2)bni_16]i237[0]1 + [(2)bni_16]i237[0] ≥ 0∧[1 + (-1)bso_17] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(LOAD1127(x1, x2, x3)) = [-1] + x3 + [2]x2 + [2]x1
POL(COND_LOAD1127(x1, x2, x3, x4)) = [-1] + x4 + [2]x3 + [2]x2 + [-1]x1
POL(&&(x1, x2)) = 0
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(+(x1, x2)) = x1 + x2
POL(1) = [1]
POL(-(x1, x2)) = x1 + [-1]x2
COND_LOAD1127(TRUE, i218[1], i237[1], i220[1]) → LOAD1127(-(i237[1], 1), i218[1], +(i220[1], 1))
COND_LOAD1127(TRUE, i218[1], i237[1], i220[1]) → LOAD1127(-(i237[1], 1), i218[1], +(i220[1], 1))
LOAD1127(i218[0], i237[0], i220[0]) → COND_LOAD1127(&&(>(i237[0], 0), >(+(i220[0], 1), 0)), i218[0], i237[0], i220[0])
&&(TRUE, TRUE)1 ↔ TRUE1
&&(TRUE, FALSE)1 ↔ FALSE1
&&(FALSE, TRUE)1 ↔ FALSE1
&&(FALSE, FALSE)1 ↔ FALSE1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer