(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: PlusSwap
public class PlusSwap{
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
int z;
int res = 0;

while (y > 0) {

z = x;
x = y-1;
y = z;
res++;

}

res = res + x;
}
}


public class Random {
static String[] args;
static int index = 0;

public static int random() {
String string = args[index];
index++;
return string.length();
}
}


(1) JBC2FIG (SOUND transformation)

Constructed FIGraph.

(2) Obligation:

FIGraph based on JBC Program:
Graph of 198 nodes with 1 SCC.

(3) FIGtoITRSProof (SOUND transformation)

Transformed FIGraph to ITRS rules

(4) Obligation:

ITRS problem:

The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean

The TRS R consists of the following rules:
Load1127(i218, i237, i220) → Cond_Load1127(i237 > 0 && i220 + 1 > 0, i218, i237, i220)
Cond_Load1127(TRUE, i218, i237, i220) → Load1127(i237 - 1, i218, i220 + 1)
The set Q consists of the following terms:
Load1127(x0, x1, x2)
Cond_Load1127(TRUE, x0, x1, x2)

(5) ITRStoIDPProof (EQUIVALENT transformation)

Added dependency pairs

(6) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


The ITRS R consists of the following rules:
Load1127(i218, i237, i220) → Cond_Load1127(i237 > 0 && i220 + 1 > 0, i218, i237, i220)
Cond_Load1127(TRUE, i218, i237, i220) → Load1127(i237 - 1, i218, i220 + 1)

The integer pair graph contains the following rules and edges:
(0): LOAD1127(i218[0], i237[0], i220[0]) → COND_LOAD1127(i237[0] > 0 && i220[0] + 1 > 0, i218[0], i237[0], i220[0])
(1): COND_LOAD1127(TRUE, i218[1], i237[1], i220[1]) → LOAD1127(i237[1] - 1, i218[1], i220[1] + 1)

(0) -> (1), if ((i237[0] > 0 && i220[0] + 1 > 0* TRUE)∧(i218[0]* i218[1])∧(i220[0]* i220[1])∧(i237[0]* i237[1]))


(1) -> (0), if ((i220[1] + 1* i220[0])∧(i237[1] - 1* i218[0])∧(i218[1]* i237[0]))



The set Q consists of the following terms:
Load1127(x0, x1, x2)
Cond_Load1127(TRUE, x0, x1, x2)

(7) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(8) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): LOAD1127(i218[0], i237[0], i220[0]) → COND_LOAD1127(i237[0] > 0 && i220[0] + 1 > 0, i218[0], i237[0], i220[0])
(1): COND_LOAD1127(TRUE, i218[1], i237[1], i220[1]) → LOAD1127(i237[1] - 1, i218[1], i220[1] + 1)

(0) -> (1), if ((i237[0] > 0 && i220[0] + 1 > 0* TRUE)∧(i218[0]* i218[1])∧(i220[0]* i220[1])∧(i237[0]* i237[1]))


(1) -> (0), if ((i220[1] + 1* i220[0])∧(i237[1] - 1* i218[0])∧(i218[1]* i237[0]))



The set Q consists of the following terms:
Load1127(x0, x1, x2)
Cond_Load1127(TRUE, x0, x1, x2)

(9) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair LOAD1127(i218, i237, i220) → COND_LOAD1127(&&(>(i237, 0), >(+(i220, 1), 0)), i218, i237, i220) the following chains were created:
  • We consider the chain LOAD1127(i218[0], i237[0], i220[0]) → COND_LOAD1127(&&(>(i237[0], 0), >(+(i220[0], 1), 0)), i218[0], i237[0], i220[0]), COND_LOAD1127(TRUE, i218[1], i237[1], i220[1]) → LOAD1127(-(i237[1], 1), i218[1], +(i220[1], 1)) which results in the following constraint:

    (1)    (&&(>(i237[0], 0), >(+(i220[0], 1), 0))=TRUEi218[0]=i218[1]i220[0]=i220[1]i237[0]=i237[1]LOAD1127(i218[0], i237[0], i220[0])≥NonInfC∧LOAD1127(i218[0], i237[0], i220[0])≥COND_LOAD1127(&&(>(i237[0], 0), >(+(i220[0], 1), 0)), i218[0], i237[0], i220[0])∧(UIncreasing(COND_LOAD1127(&&(>(i237[0], 0), >(+(i220[0], 1), 0)), i218[0], i237[0], i220[0])), ≥))



    We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (>(i237[0], 0)=TRUE>(+(i220[0], 1), 0)=TRUELOAD1127(i218[0], i237[0], i220[0])≥NonInfC∧LOAD1127(i218[0], i237[0], i220[0])≥COND_LOAD1127(&&(>(i237[0], 0), >(+(i220[0], 1), 0)), i218[0], i237[0], i220[0])∧(UIncreasing(COND_LOAD1127(&&(>(i237[0], 0), >(+(i220[0], 1), 0)), i218[0], i237[0], i220[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (i237[0] + [-1] ≥ 0∧i220[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1127(&&(>(i237[0], 0), >(+(i220[0], 1), 0)), i218[0], i237[0], i220[0])), ≥)∧[(-1)bni_14 + (-1)Bound*bni_14] + [bni_14]i220[0] + [(2)bni_14]i237[0] + [(2)bni_14]i218[0] ≥ 0∧[(-1)bso_15] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (i237[0] + [-1] ≥ 0∧i220[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1127(&&(>(i237[0], 0), >(+(i220[0], 1), 0)), i218[0], i237[0], i220[0])), ≥)∧[(-1)bni_14 + (-1)Bound*bni_14] + [bni_14]i220[0] + [(2)bni_14]i237[0] + [(2)bni_14]i218[0] ≥ 0∧[(-1)bso_15] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (i237[0] + [-1] ≥ 0∧i220[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1127(&&(>(i237[0], 0), >(+(i220[0], 1), 0)), i218[0], i237[0], i220[0])), ≥)∧[(-1)bni_14 + (-1)Bound*bni_14] + [bni_14]i220[0] + [(2)bni_14]i237[0] + [(2)bni_14]i218[0] ≥ 0∧[(-1)bso_15] ≥ 0)



    We simplified constraint (5) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (6)    (i237[0] + [-1] ≥ 0∧i220[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1127(&&(>(i237[0], 0), >(+(i220[0], 1), 0)), i218[0], i237[0], i220[0])), ≥)∧[(2)bni_14] = 0∧[(-1)bni_14 + (-1)Bound*bni_14] + [bni_14]i220[0] + [(2)bni_14]i237[0] ≥ 0∧0 = 0∧[(-1)bso_15] ≥ 0)



    We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (7)    (i237[0] ≥ 0∧i220[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1127(&&(>(i237[0], 0), >(+(i220[0], 1), 0)), i218[0], i237[0], i220[0])), ≥)∧[(2)bni_14] = 0∧[bni_14 + (-1)Bound*bni_14] + [bni_14]i220[0] + [(2)bni_14]i237[0] ≥ 0∧0 = 0∧[(-1)bso_15] ≥ 0)







For Pair COND_LOAD1127(TRUE, i218, i237, i220) → LOAD1127(-(i237, 1), i218, +(i220, 1)) the following chains were created:
  • We consider the chain LOAD1127(i218[0], i237[0], i220[0]) → COND_LOAD1127(&&(>(i237[0], 0), >(+(i220[0], 1), 0)), i218[0], i237[0], i220[0]), COND_LOAD1127(TRUE, i218[1], i237[1], i220[1]) → LOAD1127(-(i237[1], 1), i218[1], +(i220[1], 1)), LOAD1127(i218[0], i237[0], i220[0]) → COND_LOAD1127(&&(>(i237[0], 0), >(+(i220[0], 1), 0)), i218[0], i237[0], i220[0]), COND_LOAD1127(TRUE, i218[1], i237[1], i220[1]) → LOAD1127(-(i237[1], 1), i218[1], +(i220[1], 1)), LOAD1127(i218[0], i237[0], i220[0]) → COND_LOAD1127(&&(>(i237[0], 0), >(+(i220[0], 1), 0)), i218[0], i237[0], i220[0]), COND_LOAD1127(TRUE, i218[1], i237[1], i220[1]) → LOAD1127(-(i237[1], 1), i218[1], +(i220[1], 1)) which results in the following constraint:

    (8)    (&&(>(i237[0], 0), >(+(i220[0], 1), 0))=TRUEi218[0]=i218[1]i220[0]=i220[1]i237[0]=i237[1]+(i220[1], 1)=i220[0]1-(i237[1], 1)=i218[0]1i218[1]=i237[0]1&&(>(i237[0]1, 0), >(+(i220[0]1, 1), 0))=TRUEi218[0]1=i218[1]1i220[0]1=i220[1]1i237[0]1=i237[1]1+(i220[1]1, 1)=i220[0]2-(i237[1]1, 1)=i218[0]2i218[1]1=i237[0]2&&(>(i237[0]2, 0), >(+(i220[0]2, 1), 0))=TRUEi218[0]2=i218[1]2i220[0]2=i220[1]2i237[0]2=i237[1]2COND_LOAD1127(TRUE, i218[1]1, i237[1]1, i220[1]1)≥NonInfC∧COND_LOAD1127(TRUE, i218[1]1, i237[1]1, i220[1]1)≥LOAD1127(-(i237[1]1, 1), i218[1]1, +(i220[1]1, 1))∧(UIncreasing(LOAD1127(-(i237[1]1, 1), i218[1]1, +(i220[1]1, 1))), ≥))



    We simplified constraint (8) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (9)    (>(i237[0], 0)=TRUE>(+(i220[0], 1), 0)=TRUE>(i237[0]1, 0)=TRUE>(+(+(i220[0], 1), 1), 0)=TRUE>(-(i237[0], 1), 0)=TRUE>(+(+(+(i220[0], 1), 1), 1), 0)=TRUECOND_LOAD1127(TRUE, -(i237[0], 1), i237[0]1, +(i220[0], 1))≥NonInfC∧COND_LOAD1127(TRUE, -(i237[0], 1), i237[0]1, +(i220[0], 1))≥LOAD1127(-(i237[0]1, 1), -(i237[0], 1), +(+(i220[0], 1), 1))∧(UIncreasing(LOAD1127(-(i237[1]1, 1), i218[1]1, +(i220[1]1, 1))), ≥))



    We simplified constraint (9) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (10)    (i237[0] + [-1] ≥ 0∧i220[0] ≥ 0∧i237[0]1 + [-1] ≥ 0∧i220[0] + [1] ≥ 0∧i237[0] + [-2] ≥ 0∧i220[0] + [2] ≥ 0 ⇒ (UIncreasing(LOAD1127(-(i237[1]1, 1), i218[1]1, +(i220[1]1, 1))), ≥)∧[(-2)bni_16 + (-1)Bound*bni_16] + [bni_16]i220[0] + [(2)bni_16]i237[0]1 + [(2)bni_16]i237[0] ≥ 0∧[1 + (-1)bso_17] ≥ 0)



    We simplified constraint (10) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (11)    (i237[0] + [-1] ≥ 0∧i220[0] ≥ 0∧i237[0]1 + [-1] ≥ 0∧i220[0] + [1] ≥ 0∧i237[0] + [-2] ≥ 0∧i220[0] + [2] ≥ 0 ⇒ (UIncreasing(LOAD1127(-(i237[1]1, 1), i218[1]1, +(i220[1]1, 1))), ≥)∧[(-2)bni_16 + (-1)Bound*bni_16] + [bni_16]i220[0] + [(2)bni_16]i237[0]1 + [(2)bni_16]i237[0] ≥ 0∧[1 + (-1)bso_17] ≥ 0)



    We simplified constraint (11) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (12)    (i237[0] + [-1] ≥ 0∧i220[0] ≥ 0∧i237[0]1 + [-1] ≥ 0∧i220[0] + [1] ≥ 0∧i237[0] + [-2] ≥ 0∧i220[0] + [2] ≥ 0 ⇒ (UIncreasing(LOAD1127(-(i237[1]1, 1), i218[1]1, +(i220[1]1, 1))), ≥)∧[(-2)bni_16 + (-1)Bound*bni_16] + [bni_16]i220[0] + [(2)bni_16]i237[0]1 + [(2)bni_16]i237[0] ≥ 0∧[1 + (-1)bso_17] ≥ 0)



    We simplified constraint (12) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (13)    (i237[0] ≥ 0∧i220[0] ≥ 0∧i237[0]1 + [-1] ≥ 0∧i220[0] + [1] ≥ 0∧[-1] + i237[0] ≥ 0∧i220[0] + [2] ≥ 0 ⇒ (UIncreasing(LOAD1127(-(i237[1]1, 1), i218[1]1, +(i220[1]1, 1))), ≥)∧[(-1)Bound*bni_16] + [bni_16]i220[0] + [(2)bni_16]i237[0]1 + [(2)bni_16]i237[0] ≥ 0∧[1 + (-1)bso_17] ≥ 0)



    We simplified constraint (13) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (14)    ([1] + i237[0] ≥ 0∧i220[0] ≥ 0∧i237[0]1 + [-1] ≥ 0∧i220[0] + [1] ≥ 0∧i237[0] ≥ 0∧i220[0] + [2] ≥ 0 ⇒ (UIncreasing(LOAD1127(-(i237[1]1, 1), i218[1]1, +(i220[1]1, 1))), ≥)∧[(2)bni_16 + (-1)Bound*bni_16] + [bni_16]i220[0] + [(2)bni_16]i237[0]1 + [(2)bni_16]i237[0] ≥ 0∧[1 + (-1)bso_17] ≥ 0)



    We simplified constraint (14) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (15)    ([1] + i237[0] ≥ 0∧i220[0] ≥ 0∧i237[0]1 ≥ 0∧i220[0] + [1] ≥ 0∧i237[0] ≥ 0∧i220[0] + [2] ≥ 0 ⇒ (UIncreasing(LOAD1127(-(i237[1]1, 1), i218[1]1, +(i220[1]1, 1))), ≥)∧[(-1)Bound*bni_16 + (4)bni_16] + [bni_16]i220[0] + [(2)bni_16]i237[0]1 + [(2)bni_16]i237[0] ≥ 0∧[1 + (-1)bso_17] ≥ 0)



    We simplified constraint (15) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (16)    ([1] + i237[0] ≥ 0∧i220[0] ≥ 0∧i237[0]1 ≥ 0∧i220[0] + [1] ≥ 0∧i237[0] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(LOAD1127(-(i237[1]1, 1), i218[1]1, +(i220[1]1, 1))), ≥)∧[(-1)Bound*bni_16 + (4)bni_16] + [bni_16]i220[0] + [(2)bni_16]i237[0]1 + [(2)bni_16]i237[0] ≥ 0∧[1 + (-1)bso_17] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • LOAD1127(i218, i237, i220) → COND_LOAD1127(&&(>(i237, 0), >(+(i220, 1), 0)), i218, i237, i220)
    • (i237[0] ≥ 0∧i220[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1127(&&(>(i237[0], 0), >(+(i220[0], 1), 0)), i218[0], i237[0], i220[0])), ≥)∧[(2)bni_14] = 0∧[bni_14 + (-1)Bound*bni_14] + [bni_14]i220[0] + [(2)bni_14]i237[0] ≥ 0∧0 = 0∧[(-1)bso_15] ≥ 0)

  • COND_LOAD1127(TRUE, i218, i237, i220) → LOAD1127(-(i237, 1), i218, +(i220, 1))
    • ([1] + i237[0] ≥ 0∧i220[0] ≥ 0∧i237[0]1 ≥ 0∧i220[0] + [1] ≥ 0∧i237[0] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(LOAD1127(-(i237[1]1, 1), i218[1]1, +(i220[1]1, 1))), ≥)∧[(-1)Bound*bni_16 + (4)bni_16] + [bni_16]i220[0] + [(2)bni_16]i237[0]1 + [(2)bni_16]i237[0] ≥ 0∧[1 + (-1)bso_17] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(LOAD1127(x1, x2, x3)) = [-1] + x3 + [2]x2 + [2]x1   
POL(COND_LOAD1127(x1, x2, x3, x4)) = [-1] + x4 + [2]x3 + [2]x2 + [-1]x1   
POL(&&(x1, x2)) = 0   
POL(>(x1, x2)) = [-1]   
POL(0) = 0   
POL(+(x1, x2)) = x1 + x2   
POL(1) = [1]   
POL(-(x1, x2)) = x1 + [-1]x2   

The following pairs are in P>:

COND_LOAD1127(TRUE, i218[1], i237[1], i220[1]) → LOAD1127(-(i237[1], 1), i218[1], +(i220[1], 1))

The following pairs are in Pbound:

COND_LOAD1127(TRUE, i218[1], i237[1], i220[1]) → LOAD1127(-(i237[1], 1), i218[1], +(i220[1], 1))

The following pairs are in P:

LOAD1127(i218[0], i237[0], i220[0]) → COND_LOAD1127(&&(>(i237[0], 0), >(+(i220[0], 1), 0)), i218[0], i237[0], i220[0])

At least the following rules have been oriented under context sensitive arithmetic replacement:

&&(TRUE, TRUE)1TRUE1
&&(TRUE, FALSE)1FALSE1
&&(FALSE, TRUE)1FALSE1
&&(FALSE, FALSE)1FALSE1

(10) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): LOAD1127(i218[0], i237[0], i220[0]) → COND_LOAD1127(i237[0] > 0 && i220[0] + 1 > 0, i218[0], i237[0], i220[0])


The set Q consists of the following terms:
Load1127(x0, x1, x2)
Cond_Load1127(TRUE, x0, x1, x2)

(11) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(12) TRUE