0 JBC
↳1 JBC2FIG (⇐)
↳2 FIGraph
↳3 FIGtoITRSProof (⇐)
↳4 ITRS
↳5 ITRStoIDPProof (⇔)
↳6 IDP
↳7 UsableRulesProof (⇔)
↳8 IDP
↳9 IDPNonInfProof (⇐)
↳10 IDP
↳11 IDependencyGraphProof (⇔)
↳12 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaC7 {
public static void main(String[] args) {
Random.args = args;
int i = Random.random();
int j = Random.random();
int k = Random.random();
while (i <= 100 && j <= k) {
int t = i;
i = j;
j = i + 1;
k--;
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i14[0] →* i14[1])∧(i23[0] <= i51[0] && i14[0] <= 100 →* TRUE)∧(i51[0] →* i51[1])∧(i23[0] →* i23[1]))
(1) -> (0), if ((i23[1] →* i14[0])∧(i51[1] + -1 →* i51[0])∧(i23[1] + 1 →* i23[0]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i14[0] →* i14[1])∧(i23[0] <= i51[0] && i14[0] <= 100 →* TRUE)∧(i51[0] →* i51[1])∧(i23[0] →* i23[1]))
(1) -> (0), if ((i23[1] →* i14[0])∧(i51[1] + -1 →* i51[0])∧(i23[1] + 1 →* i23[0]))
(1) (i14[0]=i14[1]∧&&(<=(i23[0], i51[0]), <=(i14[0], 100))=TRUE∧i51[0]=i51[1]∧i23[0]=i23[1] ⇒ LOAD1106(i14[0], i23[0], i51[0])≥NonInfC∧LOAD1106(i14[0], i23[0], i51[0])≥COND_LOAD1106(&&(<=(i23[0], i51[0]), <=(i14[0], 100)), i14[0], i23[0], i51[0])∧(UIncreasing(COND_LOAD1106(&&(<=(i23[0], i51[0]), <=(i14[0], 100)), i14[0], i23[0], i51[0])), ≥))
(2) (<=(i23[0], i51[0])=TRUE∧<=(i14[0], 100)=TRUE ⇒ LOAD1106(i14[0], i23[0], i51[0])≥NonInfC∧LOAD1106(i14[0], i23[0], i51[0])≥COND_LOAD1106(&&(<=(i23[0], i51[0]), <=(i14[0], 100)), i14[0], i23[0], i51[0])∧(UIncreasing(COND_LOAD1106(&&(<=(i23[0], i51[0]), <=(i14[0], 100)), i14[0], i23[0], i51[0])), ≥))
(3) (i51[0] + [-1]i23[0] ≥ 0∧[100] + [-1]i14[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1106(&&(<=(i23[0], i51[0]), <=(i14[0], 100)), i14[0], i23[0], i51[0])), ≥)∧[bni_10 + (-1)Bound*bni_10] + [bni_10]i51[0] + [(-1)bni_10]i23[0] ≥ 0∧[2 + (-1)bso_11] ≥ 0)
(4) (i51[0] + [-1]i23[0] ≥ 0∧[100] + [-1]i14[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1106(&&(<=(i23[0], i51[0]), <=(i14[0], 100)), i14[0], i23[0], i51[0])), ≥)∧[bni_10 + (-1)Bound*bni_10] + [bni_10]i51[0] + [(-1)bni_10]i23[0] ≥ 0∧[2 + (-1)bso_11] ≥ 0)
(5) (i51[0] + [-1]i23[0] ≥ 0∧[100] + [-1]i14[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1106(&&(<=(i23[0], i51[0]), <=(i14[0], 100)), i14[0], i23[0], i51[0])), ≥)∧[bni_10 + (-1)Bound*bni_10] + [bni_10]i51[0] + [(-1)bni_10]i23[0] ≥ 0∧[2 + (-1)bso_11] ≥ 0)
(6) (i51[0] ≥ 0∧[100] + [-1]i14[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1106(&&(<=(i23[0], i51[0]), <=(i14[0], 100)), i14[0], i23[0], i51[0])), ≥)∧[bni_10 + (-1)Bound*bni_10] + [bni_10]i51[0] ≥ 0∧[2 + (-1)bso_11] ≥ 0)
(7) (i51[0] ≥ 0∧[100] + [-1]i14[0] ≥ 0∧i23[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1106(&&(<=(i23[0], i51[0]), <=(i14[0], 100)), i14[0], i23[0], i51[0])), ≥)∧[bni_10 + (-1)Bound*bni_10] + [bni_10]i51[0] ≥ 0∧[2 + (-1)bso_11] ≥ 0)
(8) (i51[0] ≥ 0∧[100] + [-1]i14[0] ≥ 0∧i23[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1106(&&(<=(i23[0], i51[0]), <=(i14[0], 100)), i14[0], i23[0], i51[0])), ≥)∧[bni_10 + (-1)Bound*bni_10] + [bni_10]i51[0] ≥ 0∧[2 + (-1)bso_11] ≥ 0)
(9) (i51[0] ≥ 0∧[100] + [-1]i14[0] ≥ 0∧i23[0] ≥ 0∧i14[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1106(&&(<=(i23[0], i51[0]), <=(i14[0], 100)), i14[0], i23[0], i51[0])), ≥)∧[bni_10 + (-1)Bound*bni_10] + [bni_10]i51[0] ≥ 0∧[2 + (-1)bso_11] ≥ 0)
(10) (i51[0] ≥ 0∧[100] + i14[0] ≥ 0∧i23[0] ≥ 0∧i14[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1106(&&(<=(i23[0], i51[0]), <=(i14[0], 100)), i14[0], i23[0], i51[0])), ≥)∧[bni_10 + (-1)Bound*bni_10] + [bni_10]i51[0] ≥ 0∧[2 + (-1)bso_11] ≥ 0)
(11) (i51[0] ≥ 0∧[100] + i14[0] ≥ 0∧i23[0] ≥ 0∧i14[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1106(&&(<=(i23[0], i51[0]), <=(i14[0], 100)), i14[0], i23[0], i51[0])), ≥)∧[bni_10 + (-1)Bound*bni_10] + [bni_10]i51[0] ≥ 0∧[2 + (-1)bso_11] ≥ 0)
(12) (i51[0] ≥ 0∧[100] + [-1]i14[0] ≥ 0∧i23[0] ≥ 0∧i14[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1106(&&(<=(i23[0], i51[0]), <=(i14[0], 100)), i14[0], i23[0], i51[0])), ≥)∧[bni_10 + (-1)Bound*bni_10] + [bni_10]i51[0] ≥ 0∧[2 + (-1)bso_11] ≥ 0)
(13) (COND_LOAD1106(TRUE, i14[1], i23[1], i51[1])≥NonInfC∧COND_LOAD1106(TRUE, i14[1], i23[1], i51[1])≥LOAD1106(i23[1], +(i23[1], 1), +(i51[1], -1))∧(UIncreasing(LOAD1106(i23[1], +(i23[1], 1), +(i51[1], -1))), ≥))
(14) ((UIncreasing(LOAD1106(i23[1], +(i23[1], 1), +(i51[1], -1))), ≥)∧[(-1)bso_13] ≥ 0)
(15) ((UIncreasing(LOAD1106(i23[1], +(i23[1], 1), +(i51[1], -1))), ≥)∧[(-1)bso_13] ≥ 0)
(16) ((UIncreasing(LOAD1106(i23[1], +(i23[1], 1), +(i51[1], -1))), ≥)∧[(-1)bso_13] ≥ 0)
(17) ((UIncreasing(LOAD1106(i23[1], +(i23[1], 1), +(i51[1], -1))), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_13] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(LOAD1106(x1, x2, x3)) = [1] + x3 + [-1]x2
POL(COND_LOAD1106(x1, x2, x3, x4)) = [-1] + x4 + [-1]x3
POL(&&(x1, x2)) = [-1]
POL(<=(x1, x2)) = [-1]
POL(100) = [100]
POL(+(x1, x2)) = x1 + x2
POL(1) = [1]
POL(-1) = [-1]
LOAD1106(i14[0], i23[0], i51[0]) → COND_LOAD1106(&&(<=(i23[0], i51[0]), <=(i14[0], 100)), i14[0], i23[0], i51[0])
LOAD1106(i14[0], i23[0], i51[0]) → COND_LOAD1106(&&(<=(i23[0], i51[0]), <=(i14[0], 100)), i14[0], i23[0], i51[0])
COND_LOAD1106(TRUE, i14[1], i23[1], i51[1]) → LOAD1106(i23[1], +(i23[1], 1), +(i51[1], -1))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer