0 JBC
↳1 JBC2FIG (⇐)
↳2 FIGraph
↳3 FIGtoITRSProof (⇐)
↳4 ITRS
↳5 ITRStoIDPProof (⇔)
↳6 IDP
↳7 UsableRulesProof (⇔)
↳8 IDP
↳9 IDPNonInfProof (⇐)
↳10 AND
↳11 IDP
↳12 IDependencyGraphProof (⇔)
↳13 TRUE
↳14 IDP
↳15 IDPNonInfProof (⇐)
↳16 AND
↳17 IDP
↳18 IDependencyGraphProof (⇔)
↳19 TRUE
↳20 IDP
↳21 IDependencyGraphProof (⇔)
↳22 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaC3 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
int z = Random.random();
while (x < y) {
if (x < z) {
x++;
} else {
z++;
}
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i62[0] →* i62[1])∧(i23[0] →* i23[1])∧(i11[0] >= i62[0] && i11[0] < i23[0] →* TRUE)∧(i11[0] →* i11[1]))
(1) -> (0), if ((i23[1] →* i23[0])∧(i62[1] + 1 →* i62[0])∧(i11[1] →* i11[0]))
(1) -> (2), if ((i11[1] →* i11[2])∧(i23[1] →* i23[2])∧(i62[1] + 1 →* i62[2]))
(2) -> (3), if ((i11[2] < i62[2] && i11[2] < i23[2] →* TRUE)∧(i11[2] →* i11[3])∧(i62[2] →* i62[3])∧(i23[2] →* i23[3]))
(3) -> (0), if ((i23[3] →* i23[0])∧(i11[3] + 1 →* i11[0])∧(i62[3] →* i62[0]))
(3) -> (2), if ((i11[3] + 1 →* i11[2])∧(i23[3] →* i23[2])∧(i62[3] →* i62[2]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i62[0] →* i62[1])∧(i23[0] →* i23[1])∧(i11[0] >= i62[0] && i11[0] < i23[0] →* TRUE)∧(i11[0] →* i11[1]))
(1) -> (0), if ((i23[1] →* i23[0])∧(i62[1] + 1 →* i62[0])∧(i11[1] →* i11[0]))
(1) -> (2), if ((i11[1] →* i11[2])∧(i23[1] →* i23[2])∧(i62[1] + 1 →* i62[2]))
(2) -> (3), if ((i11[2] < i62[2] && i11[2] < i23[2] →* TRUE)∧(i11[2] →* i11[3])∧(i62[2] →* i62[3])∧(i23[2] →* i23[3]))
(3) -> (0), if ((i23[3] →* i23[0])∧(i11[3] + 1 →* i11[0])∧(i62[3] →* i62[0]))
(3) -> (2), if ((i11[3] + 1 →* i11[2])∧(i23[3] →* i23[2])∧(i62[3] →* i62[2]))
(1) (i62[0]=i62[1]∧i23[0]=i23[1]∧&&(>=(i11[0], i62[0]), <(i11[0], i23[0]))=TRUE∧i11[0]=i11[1] ⇒ LOAD1224(i11[0], i23[0], i62[0])≥NonInfC∧LOAD1224(i11[0], i23[0], i62[0])≥COND_LOAD1224(&&(>=(i11[0], i62[0]), <(i11[0], i23[0])), i11[0], i23[0], i62[0])∧(UIncreasing(COND_LOAD1224(&&(>=(i11[0], i62[0]), <(i11[0], i23[0])), i11[0], i23[0], i62[0])), ≥))
(2) (>=(i11[0], i62[0])=TRUE∧<(i11[0], i23[0])=TRUE ⇒ LOAD1224(i11[0], i23[0], i62[0])≥NonInfC∧LOAD1224(i11[0], i23[0], i62[0])≥COND_LOAD1224(&&(>=(i11[0], i62[0]), <(i11[0], i23[0])), i11[0], i23[0], i62[0])∧(UIncreasing(COND_LOAD1224(&&(>=(i11[0], i62[0]), <(i11[0], i23[0])), i11[0], i23[0], i62[0])), ≥))
(3) (i11[0] + [-1]i62[0] ≥ 0∧i23[0] + [-1] + [-1]i11[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1224(&&(>=(i11[0], i62[0]), <(i11[0], i23[0])), i11[0], i23[0], i62[0])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [(-1)bni_20]i62[0] + [(2)bni_20]i23[0] + [(-1)bni_20]i11[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(4) (i11[0] + [-1]i62[0] ≥ 0∧i23[0] + [-1] + [-1]i11[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1224(&&(>=(i11[0], i62[0]), <(i11[0], i23[0])), i11[0], i23[0], i62[0])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [(-1)bni_20]i62[0] + [(2)bni_20]i23[0] + [(-1)bni_20]i11[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(5) (i11[0] + [-1]i62[0] ≥ 0∧i23[0] + [-1] + [-1]i11[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1224(&&(>=(i11[0], i62[0]), <(i11[0], i23[0])), i11[0], i23[0], i62[0])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [(-1)bni_20]i62[0] + [(2)bni_20]i23[0] + [(-1)bni_20]i11[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(6) (i11[0] ≥ 0∧i23[0] + [-1] + [-1]i62[0] + [-1]i11[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1224(&&(>=(i11[0], i62[0]), <(i11[0], i23[0])), i11[0], i23[0], i62[0])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [(-2)bni_20]i62[0] + [(2)bni_20]i23[0] + [(-1)bni_20]i11[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(7) (i11[0] ≥ 0∧i62[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1224(&&(>=(i11[0], i62[0]), <(i11[0], i23[0])), i11[0], i23[0], i62[0])), ≥)∧[(-1)Bound*bni_20 + bni_20] + [bni_20]i11[0] + [(2)bni_20]i62[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(8) (i11[0] ≥ 0∧i62[0] ≥ 0∧i23[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1224(&&(>=(i11[0], i62[0]), <(i11[0], i23[0])), i11[0], i23[0], i62[0])), ≥)∧[(-1)Bound*bni_20 + bni_20] + [bni_20]i11[0] + [(2)bni_20]i62[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(9) (i11[0] ≥ 0∧i62[0] ≥ 0∧i23[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1224(&&(>=(i11[0], i62[0]), <(i11[0], i23[0])), i11[0], i23[0], i62[0])), ≥)∧[(-1)Bound*bni_20 + bni_20] + [bni_20]i11[0] + [(2)bni_20]i62[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(10) (i62[0]=i62[1]∧i23[0]=i23[1]∧&&(>=(i11[0], i62[0]), <(i11[0], i23[0]))=TRUE∧i11[0]=i11[1]∧i23[1]=i23[0]1∧+(i62[1], 1)=i62[0]1∧i11[1]=i11[0]1 ⇒ COND_LOAD1224(TRUE, i11[1], i23[1], i62[1])≥NonInfC∧COND_LOAD1224(TRUE, i11[1], i23[1], i62[1])≥LOAD1224(i11[1], i23[1], +(i62[1], 1))∧(UIncreasing(LOAD1224(i11[1], i23[1], +(i62[1], 1))), ≥))
(11) (>=(i11[0], i62[0])=TRUE∧<(i11[0], i23[0])=TRUE ⇒ COND_LOAD1224(TRUE, i11[0], i23[0], i62[0])≥NonInfC∧COND_LOAD1224(TRUE, i11[0], i23[0], i62[0])≥LOAD1224(i11[0], i23[0], +(i62[0], 1))∧(UIncreasing(LOAD1224(i11[1], i23[1], +(i62[1], 1))), ≥))
(12) (i11[0] + [-1]i62[0] ≥ 0∧i23[0] + [-1] + [-1]i11[0] ≥ 0 ⇒ (UIncreasing(LOAD1224(i11[1], i23[1], +(i62[1], 1))), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]i62[0] + [(2)bni_22]i23[0] + [(-1)bni_22]i11[0] ≥ 0∧[1 + (-1)bso_23] ≥ 0)
(13) (i11[0] + [-1]i62[0] ≥ 0∧i23[0] + [-1] + [-1]i11[0] ≥ 0 ⇒ (UIncreasing(LOAD1224(i11[1], i23[1], +(i62[1], 1))), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]i62[0] + [(2)bni_22]i23[0] + [(-1)bni_22]i11[0] ≥ 0∧[1 + (-1)bso_23] ≥ 0)
(14) (i11[0] + [-1]i62[0] ≥ 0∧i23[0] + [-1] + [-1]i11[0] ≥ 0 ⇒ (UIncreasing(LOAD1224(i11[1], i23[1], +(i62[1], 1))), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]i62[0] + [(2)bni_22]i23[0] + [(-1)bni_22]i11[0] ≥ 0∧[1 + (-1)bso_23] ≥ 0)
(15) (i11[0] ≥ 0∧i23[0] + [-1] + [-1]i62[0] + [-1]i11[0] ≥ 0 ⇒ (UIncreasing(LOAD1224(i11[1], i23[1], +(i62[1], 1))), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [(-2)bni_22]i62[0] + [(2)bni_22]i23[0] + [(-1)bni_22]i11[0] ≥ 0∧[1 + (-1)bso_23] ≥ 0)
(16) (i11[0] ≥ 0∧i62[0] ≥ 0 ⇒ (UIncreasing(LOAD1224(i11[1], i23[1], +(i62[1], 1))), ≥)∧[(-1)Bound*bni_22 + bni_22] + [bni_22]i11[0] + [(2)bni_22]i62[0] ≥ 0∧[1 + (-1)bso_23] ≥ 0)
(17) (i11[0] ≥ 0∧i62[0] ≥ 0∧i23[0] ≥ 0 ⇒ (UIncreasing(LOAD1224(i11[1], i23[1], +(i62[1], 1))), ≥)∧[(-1)Bound*bni_22 + bni_22] + [bni_22]i11[0] + [(2)bni_22]i62[0] ≥ 0∧[1 + (-1)bso_23] ≥ 0)
(18) (i11[0] ≥ 0∧i62[0] ≥ 0∧i23[0] ≥ 0 ⇒ (UIncreasing(LOAD1224(i11[1], i23[1], +(i62[1], 1))), ≥)∧[(-1)Bound*bni_22 + bni_22] + [bni_22]i11[0] + [(2)bni_22]i62[0] ≥ 0∧[1 + (-1)bso_23] ≥ 0)
(19) (i62[0]=i62[1]∧i23[0]=i23[1]∧&&(>=(i11[0], i62[0]), <(i11[0], i23[0]))=TRUE∧i11[0]=i11[1]∧i11[1]=i11[2]∧i23[1]=i23[2]∧+(i62[1], 1)=i62[2] ⇒ COND_LOAD1224(TRUE, i11[1], i23[1], i62[1])≥NonInfC∧COND_LOAD1224(TRUE, i11[1], i23[1], i62[1])≥LOAD1224(i11[1], i23[1], +(i62[1], 1))∧(UIncreasing(LOAD1224(i11[1], i23[1], +(i62[1], 1))), ≥))
(20) (>=(i11[0], i62[0])=TRUE∧<(i11[0], i23[0])=TRUE ⇒ COND_LOAD1224(TRUE, i11[0], i23[0], i62[0])≥NonInfC∧COND_LOAD1224(TRUE, i11[0], i23[0], i62[0])≥LOAD1224(i11[0], i23[0], +(i62[0], 1))∧(UIncreasing(LOAD1224(i11[1], i23[1], +(i62[1], 1))), ≥))
(21) (i11[0] + [-1]i62[0] ≥ 0∧i23[0] + [-1] + [-1]i11[0] ≥ 0 ⇒ (UIncreasing(LOAD1224(i11[1], i23[1], +(i62[1], 1))), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]i62[0] + [(2)bni_22]i23[0] + [(-1)bni_22]i11[0] ≥ 0∧[1 + (-1)bso_23] ≥ 0)
(22) (i11[0] + [-1]i62[0] ≥ 0∧i23[0] + [-1] + [-1]i11[0] ≥ 0 ⇒ (UIncreasing(LOAD1224(i11[1], i23[1], +(i62[1], 1))), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]i62[0] + [(2)bni_22]i23[0] + [(-1)bni_22]i11[0] ≥ 0∧[1 + (-1)bso_23] ≥ 0)
(23) (i11[0] + [-1]i62[0] ≥ 0∧i23[0] + [-1] + [-1]i11[0] ≥ 0 ⇒ (UIncreasing(LOAD1224(i11[1], i23[1], +(i62[1], 1))), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]i62[0] + [(2)bni_22]i23[0] + [(-1)bni_22]i11[0] ≥ 0∧[1 + (-1)bso_23] ≥ 0)
(24) (i11[0] ≥ 0∧i23[0] + [-1] + [-1]i62[0] + [-1]i11[0] ≥ 0 ⇒ (UIncreasing(LOAD1224(i11[1], i23[1], +(i62[1], 1))), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [(-2)bni_22]i62[0] + [(2)bni_22]i23[0] + [(-1)bni_22]i11[0] ≥ 0∧[1 + (-1)bso_23] ≥ 0)
(25) (i11[0] ≥ 0∧i62[0] ≥ 0 ⇒ (UIncreasing(LOAD1224(i11[1], i23[1], +(i62[1], 1))), ≥)∧[(-1)Bound*bni_22 + bni_22] + [bni_22]i11[0] + [(2)bni_22]i62[0] ≥ 0∧[1 + (-1)bso_23] ≥ 0)
(26) (i11[0] ≥ 0∧i62[0] ≥ 0∧i23[0] ≥ 0 ⇒ (UIncreasing(LOAD1224(i11[1], i23[1], +(i62[1], 1))), ≥)∧[(-1)Bound*bni_22 + bni_22] + [bni_22]i11[0] + [(2)bni_22]i62[0] ≥ 0∧[1 + (-1)bso_23] ≥ 0)
(27) (i11[0] ≥ 0∧i62[0] ≥ 0∧i23[0] ≥ 0 ⇒ (UIncreasing(LOAD1224(i11[1], i23[1], +(i62[1], 1))), ≥)∧[(-1)Bound*bni_22 + bni_22] + [bni_22]i11[0] + [(2)bni_22]i62[0] ≥ 0∧[1 + (-1)bso_23] ≥ 0)
(28) (&&(<(i11[2], i62[2]), <(i11[2], i23[2]))=TRUE∧i11[2]=i11[3]∧i62[2]=i62[3]∧i23[2]=i23[3] ⇒ LOAD1224(i11[2], i23[2], i62[2])≥NonInfC∧LOAD1224(i11[2], i23[2], i62[2])≥COND_LOAD12241(&&(<(i11[2], i62[2]), <(i11[2], i23[2])), i11[2], i23[2], i62[2])∧(UIncreasing(COND_LOAD12241(&&(<(i11[2], i62[2]), <(i11[2], i23[2])), i11[2], i23[2], i62[2])), ≥))
(29) (<(i11[2], i62[2])=TRUE∧<(i11[2], i23[2])=TRUE ⇒ LOAD1224(i11[2], i23[2], i62[2])≥NonInfC∧LOAD1224(i11[2], i23[2], i62[2])≥COND_LOAD12241(&&(<(i11[2], i62[2]), <(i11[2], i23[2])), i11[2], i23[2], i62[2])∧(UIncreasing(COND_LOAD12241(&&(<(i11[2], i62[2]), <(i11[2], i23[2])), i11[2], i23[2], i62[2])), ≥))
(30) (i62[2] + [-1] + [-1]i11[2] ≥ 0∧i23[2] + [-1] + [-1]i11[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD12241(&&(<(i11[2], i62[2]), <(i11[2], i23[2])), i11[2], i23[2], i62[2])), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [(-1)bni_24]i62[2] + [(2)bni_24]i23[2] + [(-1)bni_24]i11[2] ≥ 0∧[(-1)bso_25] ≥ 0)
(31) (i62[2] + [-1] + [-1]i11[2] ≥ 0∧i23[2] + [-1] + [-1]i11[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD12241(&&(<(i11[2], i62[2]), <(i11[2], i23[2])), i11[2], i23[2], i62[2])), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [(-1)bni_24]i62[2] + [(2)bni_24]i23[2] + [(-1)bni_24]i11[2] ≥ 0∧[(-1)bso_25] ≥ 0)
(32) (i62[2] + [-1] + [-1]i11[2] ≥ 0∧i23[2] + [-1] + [-1]i11[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD12241(&&(<(i11[2], i62[2]), <(i11[2], i23[2])), i11[2], i23[2], i62[2])), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [(-1)bni_24]i62[2] + [(2)bni_24]i23[2] + [(-1)bni_24]i11[2] ≥ 0∧[(-1)bso_25] ≥ 0)
(33) (i62[2] ≥ 0∧i23[2] + [-1] + [-1]i11[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD12241(&&(<(i11[2], i62[2]), <(i11[2], i23[2])), i11[2], i23[2], i62[2])), ≥)∧[(-2)bni_24 + (-1)Bound*bni_24] + [(-2)bni_24]i11[2] + [(-1)bni_24]i62[2] + [(2)bni_24]i23[2] ≥ 0∧[(-1)bso_25] ≥ 0)
(34) (i62[2] ≥ 0∧i11[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD12241(&&(<(i11[2], i62[2]), <(i11[2], i23[2])), i11[2], i23[2], i62[2])), ≥)∧[(-1)Bound*bni_24] + [(2)bni_24]i11[2] + [(-1)bni_24]i62[2] ≥ 0∧[(-1)bso_25] ≥ 0)
(35) (i62[2] ≥ 0∧i11[2] ≥ 0∧i23[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD12241(&&(<(i11[2], i62[2]), <(i11[2], i23[2])), i11[2], i23[2], i62[2])), ≥)∧[(-1)Bound*bni_24] + [(2)bni_24]i11[2] + [(-1)bni_24]i62[2] ≥ 0∧[(-1)bso_25] ≥ 0)
(36) (i62[2] ≥ 0∧i11[2] ≥ 0∧i23[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD12241(&&(<(i11[2], i62[2]), <(i11[2], i23[2])), i11[2], i23[2], i62[2])), ≥)∧[(-1)Bound*bni_24] + [(2)bni_24]i11[2] + [(-1)bni_24]i62[2] ≥ 0∧[(-1)bso_25] ≥ 0)
(37) (&&(<(i11[2], i62[2]), <(i11[2], i23[2]))=TRUE∧i11[2]=i11[3]∧i62[2]=i62[3]∧i23[2]=i23[3]∧i23[3]=i23[0]∧+(i11[3], 1)=i11[0]∧i62[3]=i62[0] ⇒ COND_LOAD12241(TRUE, i11[3], i23[3], i62[3])≥NonInfC∧COND_LOAD12241(TRUE, i11[3], i23[3], i62[3])≥LOAD1224(+(i11[3], 1), i23[3], i62[3])∧(UIncreasing(LOAD1224(+(i11[3], 1), i23[3], i62[3])), ≥))
(38) (<(i11[2], i62[2])=TRUE∧<(i11[2], i23[2])=TRUE ⇒ COND_LOAD12241(TRUE, i11[2], i23[2], i62[2])≥NonInfC∧COND_LOAD12241(TRUE, i11[2], i23[2], i62[2])≥LOAD1224(+(i11[2], 1), i23[2], i62[2])∧(UIncreasing(LOAD1224(+(i11[3], 1), i23[3], i62[3])), ≥))
(39) (i62[2] + [-1] + [-1]i11[2] ≥ 0∧i23[2] + [-1] + [-1]i11[2] ≥ 0 ⇒ (UIncreasing(LOAD1224(+(i11[3], 1), i23[3], i62[3])), ≥)∧[(-1)bni_26 + (-1)Bound*bni_26] + [(-1)bni_26]i62[2] + [(2)bni_26]i23[2] + [(-1)bni_26]i11[2] ≥ 0∧[1 + (-1)bso_27] ≥ 0)
(40) (i62[2] + [-1] + [-1]i11[2] ≥ 0∧i23[2] + [-1] + [-1]i11[2] ≥ 0 ⇒ (UIncreasing(LOAD1224(+(i11[3], 1), i23[3], i62[3])), ≥)∧[(-1)bni_26 + (-1)Bound*bni_26] + [(-1)bni_26]i62[2] + [(2)bni_26]i23[2] + [(-1)bni_26]i11[2] ≥ 0∧[1 + (-1)bso_27] ≥ 0)
(41) (i62[2] + [-1] + [-1]i11[2] ≥ 0∧i23[2] + [-1] + [-1]i11[2] ≥ 0 ⇒ (UIncreasing(LOAD1224(+(i11[3], 1), i23[3], i62[3])), ≥)∧[(-1)bni_26 + (-1)Bound*bni_26] + [(-1)bni_26]i62[2] + [(2)bni_26]i23[2] + [(-1)bni_26]i11[2] ≥ 0∧[1 + (-1)bso_27] ≥ 0)
(42) (i62[2] ≥ 0∧i23[2] + [-1] + [-1]i11[2] ≥ 0 ⇒ (UIncreasing(LOAD1224(+(i11[3], 1), i23[3], i62[3])), ≥)∧[(-2)bni_26 + (-1)Bound*bni_26] + [(-2)bni_26]i11[2] + [(-1)bni_26]i62[2] + [(2)bni_26]i23[2] ≥ 0∧[1 + (-1)bso_27] ≥ 0)
(43) (i62[2] ≥ 0∧i11[2] ≥ 0 ⇒ (UIncreasing(LOAD1224(+(i11[3], 1), i23[3], i62[3])), ≥)∧[(-1)Bound*bni_26] + [(2)bni_26]i11[2] + [(-1)bni_26]i62[2] ≥ 0∧[1 + (-1)bso_27] ≥ 0)
(44) (i62[2] ≥ 0∧i11[2] ≥ 0∧i23[2] ≥ 0 ⇒ (UIncreasing(LOAD1224(+(i11[3], 1), i23[3], i62[3])), ≥)∧[(-1)Bound*bni_26] + [(2)bni_26]i11[2] + [(-1)bni_26]i62[2] ≥ 0∧[1 + (-1)bso_27] ≥ 0)
(45) (i62[2] ≥ 0∧i11[2] ≥ 0∧i23[2] ≥ 0 ⇒ (UIncreasing(LOAD1224(+(i11[3], 1), i23[3], i62[3])), ≥)∧[(-1)Bound*bni_26] + [(2)bni_26]i11[2] + [(-1)bni_26]i62[2] ≥ 0∧[1 + (-1)bso_27] ≥ 0)
(46) (&&(<(i11[2], i62[2]), <(i11[2], i23[2]))=TRUE∧i11[2]=i11[3]∧i62[2]=i62[3]∧i23[2]=i23[3]∧+(i11[3], 1)=i11[2]1∧i23[3]=i23[2]1∧i62[3]=i62[2]1 ⇒ COND_LOAD12241(TRUE, i11[3], i23[3], i62[3])≥NonInfC∧COND_LOAD12241(TRUE, i11[3], i23[3], i62[3])≥LOAD1224(+(i11[3], 1), i23[3], i62[3])∧(UIncreasing(LOAD1224(+(i11[3], 1), i23[3], i62[3])), ≥))
(47) (<(i11[2], i62[2])=TRUE∧<(i11[2], i23[2])=TRUE ⇒ COND_LOAD12241(TRUE, i11[2], i23[2], i62[2])≥NonInfC∧COND_LOAD12241(TRUE, i11[2], i23[2], i62[2])≥LOAD1224(+(i11[2], 1), i23[2], i62[2])∧(UIncreasing(LOAD1224(+(i11[3], 1), i23[3], i62[3])), ≥))
(48) (i62[2] + [-1] + [-1]i11[2] ≥ 0∧i23[2] + [-1] + [-1]i11[2] ≥ 0 ⇒ (UIncreasing(LOAD1224(+(i11[3], 1), i23[3], i62[3])), ≥)∧[(-1)bni_26 + (-1)Bound*bni_26] + [(-1)bni_26]i62[2] + [(2)bni_26]i23[2] + [(-1)bni_26]i11[2] ≥ 0∧[1 + (-1)bso_27] ≥ 0)
(49) (i62[2] + [-1] + [-1]i11[2] ≥ 0∧i23[2] + [-1] + [-1]i11[2] ≥ 0 ⇒ (UIncreasing(LOAD1224(+(i11[3], 1), i23[3], i62[3])), ≥)∧[(-1)bni_26 + (-1)Bound*bni_26] + [(-1)bni_26]i62[2] + [(2)bni_26]i23[2] + [(-1)bni_26]i11[2] ≥ 0∧[1 + (-1)bso_27] ≥ 0)
(50) (i62[2] + [-1] + [-1]i11[2] ≥ 0∧i23[2] + [-1] + [-1]i11[2] ≥ 0 ⇒ (UIncreasing(LOAD1224(+(i11[3], 1), i23[3], i62[3])), ≥)∧[(-1)bni_26 + (-1)Bound*bni_26] + [(-1)bni_26]i62[2] + [(2)bni_26]i23[2] + [(-1)bni_26]i11[2] ≥ 0∧[1 + (-1)bso_27] ≥ 0)
(51) (i62[2] ≥ 0∧i23[2] + [-1] + [-1]i11[2] ≥ 0 ⇒ (UIncreasing(LOAD1224(+(i11[3], 1), i23[3], i62[3])), ≥)∧[(-2)bni_26 + (-1)Bound*bni_26] + [(-2)bni_26]i11[2] + [(-1)bni_26]i62[2] + [(2)bni_26]i23[2] ≥ 0∧[1 + (-1)bso_27] ≥ 0)
(52) (i62[2] ≥ 0∧i11[2] ≥ 0 ⇒ (UIncreasing(LOAD1224(+(i11[3], 1), i23[3], i62[3])), ≥)∧[(-1)Bound*bni_26] + [(2)bni_26]i11[2] + [(-1)bni_26]i62[2] ≥ 0∧[1 + (-1)bso_27] ≥ 0)
(53) (i62[2] ≥ 0∧i11[2] ≥ 0∧i23[2] ≥ 0 ⇒ (UIncreasing(LOAD1224(+(i11[3], 1), i23[3], i62[3])), ≥)∧[(-1)Bound*bni_26] + [(2)bni_26]i11[2] + [(-1)bni_26]i62[2] ≥ 0∧[1 + (-1)bso_27] ≥ 0)
(54) (i62[2] ≥ 0∧i11[2] ≥ 0∧i23[2] ≥ 0 ⇒ (UIncreasing(LOAD1224(+(i11[3], 1), i23[3], i62[3])), ≥)∧[(-1)Bound*bni_26] + [(2)bni_26]i11[2] + [(-1)bni_26]i62[2] ≥ 0∧[1 + (-1)bso_27] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(LOAD1224(x1, x2, x3)) = [-1] + [-1]x3 + [2]x2 + [-1]x1
POL(COND_LOAD1224(x1, x2, x3, x4)) = [-1] + [-1]x4 + [2]x3 + [-1]x2
POL(&&(x1, x2)) = [-1]
POL(>=(x1, x2)) = [-1]
POL(<(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(1) = [1]
POL(COND_LOAD12241(x1, x2, x3, x4)) = [-1] + [-1]x4 + [2]x3 + [-1]x2
COND_LOAD1224(TRUE, i11[1], i23[1], i62[1]) → LOAD1224(i11[1], i23[1], +(i62[1], 1))
COND_LOAD12241(TRUE, i11[3], i23[3], i62[3]) → LOAD1224(+(i11[3], 1), i23[3], i62[3])
LOAD1224(i11[0], i23[0], i62[0]) → COND_LOAD1224(&&(>=(i11[0], i62[0]), <(i11[0], i23[0])), i11[0], i23[0], i62[0])
COND_LOAD1224(TRUE, i11[1], i23[1], i62[1]) → LOAD1224(i11[1], i23[1], +(i62[1], 1))
LOAD1224(i11[0], i23[0], i62[0]) → COND_LOAD1224(&&(>=(i11[0], i62[0]), <(i11[0], i23[0])), i11[0], i23[0], i62[0])
LOAD1224(i11[2], i23[2], i62[2]) → COND_LOAD12241(&&(<(i11[2], i62[2]), <(i11[2], i23[2])), i11[2], i23[2], i62[2])
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(FALSE, FALSE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(3) -> (2), if ((i11[3] + 1 →* i11[2])∧(i23[3] →* i23[2])∧(i62[3] →* i62[2]))
(2) -> (3), if ((i11[2] < i62[2] && i11[2] < i23[2] →* TRUE)∧(i11[2] →* i11[3])∧(i62[2] →* i62[3])∧(i23[2] →* i23[3]))
(1) (&&(<(i11[2], i62[2]), <(i11[2], i23[2]))=TRUE∧i11[2]=i11[3]∧i62[2]=i62[3]∧i23[2]=i23[3] ⇒ LOAD1224(i11[2], i23[2], i62[2])≥NonInfC∧LOAD1224(i11[2], i23[2], i62[2])≥COND_LOAD12241(&&(<(i11[2], i62[2]), <(i11[2], i23[2])), i11[2], i23[2], i62[2])∧(UIncreasing(COND_LOAD12241(&&(<(i11[2], i62[2]), <(i11[2], i23[2])), i11[2], i23[2], i62[2])), ≥))
(2) (<(i11[2], i62[2])=TRUE∧<(i11[2], i23[2])=TRUE ⇒ LOAD1224(i11[2], i23[2], i62[2])≥NonInfC∧LOAD1224(i11[2], i23[2], i62[2])≥COND_LOAD12241(&&(<(i11[2], i62[2]), <(i11[2], i23[2])), i11[2], i23[2], i62[2])∧(UIncreasing(COND_LOAD12241(&&(<(i11[2], i62[2]), <(i11[2], i23[2])), i11[2], i23[2], i62[2])), ≥))
(3) (i62[2] + [-1] + [-1]i11[2] ≥ 0∧i23[2] + [-1] + [-1]i11[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD12241(&&(<(i11[2], i62[2]), <(i11[2], i23[2])), i11[2], i23[2], i62[2])), ≥)∧[(-1)Bound*bni_14] + [bni_14]i23[2] + [(-1)bni_14]i11[2] ≥ 0∧[(-1)bso_15] ≥ 0)
(4) (i62[2] + [-1] + [-1]i11[2] ≥ 0∧i23[2] + [-1] + [-1]i11[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD12241(&&(<(i11[2], i62[2]), <(i11[2], i23[2])), i11[2], i23[2], i62[2])), ≥)∧[(-1)Bound*bni_14] + [bni_14]i23[2] + [(-1)bni_14]i11[2] ≥ 0∧[(-1)bso_15] ≥ 0)
(5) (i62[2] + [-1] + [-1]i11[2] ≥ 0∧i23[2] + [-1] + [-1]i11[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD12241(&&(<(i11[2], i62[2]), <(i11[2], i23[2])), i11[2], i23[2], i62[2])), ≥)∧[(-1)Bound*bni_14] + [bni_14]i23[2] + [(-1)bni_14]i11[2] ≥ 0∧[(-1)bso_15] ≥ 0)
(6) (i62[2] ≥ 0∧i23[2] + [-1] + [-1]i11[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD12241(&&(<(i11[2], i62[2]), <(i11[2], i23[2])), i11[2], i23[2], i62[2])), ≥)∧[(-1)Bound*bni_14] + [(-1)bni_14]i11[2] + [bni_14]i23[2] ≥ 0∧[(-1)bso_15] ≥ 0)
(7) (i62[2] ≥ 0∧i11[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD12241(&&(<(i11[2], i62[2]), <(i11[2], i23[2])), i11[2], i23[2], i62[2])), ≥)∧[(-1)Bound*bni_14 + bni_14] + [bni_14]i11[2] ≥ 0∧[(-1)bso_15] ≥ 0)
(8) (i62[2] ≥ 0∧i11[2] ≥ 0∧i23[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD12241(&&(<(i11[2], i62[2]), <(i11[2], i23[2])), i11[2], i23[2], i62[2])), ≥)∧[(-1)Bound*bni_14 + bni_14] + [bni_14]i11[2] ≥ 0∧[(-1)bso_15] ≥ 0)
(9) (i62[2] ≥ 0∧i11[2] ≥ 0∧i23[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD12241(&&(<(i11[2], i62[2]), <(i11[2], i23[2])), i11[2], i23[2], i62[2])), ≥)∧[(-1)Bound*bni_14 + bni_14] + [bni_14]i11[2] ≥ 0∧[(-1)bso_15] ≥ 0)
(10) (&&(<(i11[2], i62[2]), <(i11[2], i23[2]))=TRUE∧i11[2]=i11[3]∧i62[2]=i62[3]∧i23[2]=i23[3]∧+(i11[3], 1)=i11[2]1∧i23[3]=i23[2]1∧i62[3]=i62[2]1 ⇒ COND_LOAD12241(TRUE, i11[3], i23[3], i62[3])≥NonInfC∧COND_LOAD12241(TRUE, i11[3], i23[3], i62[3])≥LOAD1224(+(i11[3], 1), i23[3], i62[3])∧(UIncreasing(LOAD1224(+(i11[3], 1), i23[3], i62[3])), ≥))
(11) (<(i11[2], i62[2])=TRUE∧<(i11[2], i23[2])=TRUE ⇒ COND_LOAD12241(TRUE, i11[2], i23[2], i62[2])≥NonInfC∧COND_LOAD12241(TRUE, i11[2], i23[2], i62[2])≥LOAD1224(+(i11[2], 1), i23[2], i62[2])∧(UIncreasing(LOAD1224(+(i11[3], 1), i23[3], i62[3])), ≥))
(12) (i62[2] + [-1] + [-1]i11[2] ≥ 0∧i23[2] + [-1] + [-1]i11[2] ≥ 0 ⇒ (UIncreasing(LOAD1224(+(i11[3], 1), i23[3], i62[3])), ≥)∧[(-1)Bound*bni_16] + [bni_16]i23[2] + [(-1)bni_16]i11[2] ≥ 0∧[1 + (-1)bso_17] ≥ 0)
(13) (i62[2] + [-1] + [-1]i11[2] ≥ 0∧i23[2] + [-1] + [-1]i11[2] ≥ 0 ⇒ (UIncreasing(LOAD1224(+(i11[3], 1), i23[3], i62[3])), ≥)∧[(-1)Bound*bni_16] + [bni_16]i23[2] + [(-1)bni_16]i11[2] ≥ 0∧[1 + (-1)bso_17] ≥ 0)
(14) (i62[2] + [-1] + [-1]i11[2] ≥ 0∧i23[2] + [-1] + [-1]i11[2] ≥ 0 ⇒ (UIncreasing(LOAD1224(+(i11[3], 1), i23[3], i62[3])), ≥)∧[(-1)Bound*bni_16] + [bni_16]i23[2] + [(-1)bni_16]i11[2] ≥ 0∧[1 + (-1)bso_17] ≥ 0)
(15) (i62[2] ≥ 0∧i23[2] + [-1] + [-1]i11[2] ≥ 0 ⇒ (UIncreasing(LOAD1224(+(i11[3], 1), i23[3], i62[3])), ≥)∧[(-1)Bound*bni_16] + [(-1)bni_16]i11[2] + [bni_16]i23[2] ≥ 0∧[1 + (-1)bso_17] ≥ 0)
(16) (i62[2] ≥ 0∧i11[2] ≥ 0 ⇒ (UIncreasing(LOAD1224(+(i11[3], 1), i23[3], i62[3])), ≥)∧[(-1)Bound*bni_16 + bni_16] + [bni_16]i11[2] ≥ 0∧[1 + (-1)bso_17] ≥ 0)
(17) (i62[2] ≥ 0∧i11[2] ≥ 0∧i23[2] ≥ 0 ⇒ (UIncreasing(LOAD1224(+(i11[3], 1), i23[3], i62[3])), ≥)∧[(-1)Bound*bni_16 + bni_16] + [bni_16]i11[2] ≥ 0∧[1 + (-1)bso_17] ≥ 0)
(18) (i62[2] ≥ 0∧i11[2] ≥ 0∧i23[2] ≥ 0 ⇒ (UIncreasing(LOAD1224(+(i11[3], 1), i23[3], i62[3])), ≥)∧[(-1)Bound*bni_16 + bni_16] + [bni_16]i11[2] ≥ 0∧[1 + (-1)bso_17] ≥ 0)
POL(TRUE) = [1]
POL(FALSE) = [1]
POL(LOAD1224(x1, x2, x3)) = x2 + [-1]x1
POL(COND_LOAD12241(x1, x2, x3, x4)) = x3 + [-1]x2
POL(&&(x1, x2)) = [-1]
POL(<(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(1) = [1]
COND_LOAD12241(TRUE, i11[3], i23[3], i62[3]) → LOAD1224(+(i11[3], 1), i23[3], i62[3])
LOAD1224(i11[2], i23[2], i62[2]) → COND_LOAD12241(&&(<(i11[2], i62[2]), <(i11[2], i23[2])), i11[2], i23[2], i62[2])
COND_LOAD12241(TRUE, i11[3], i23[3], i62[3]) → LOAD1224(+(i11[3], 1), i23[3], i62[3])
LOAD1224(i11[2], i23[2], i62[2]) → COND_LOAD12241(&&(<(i11[2], i62[2]), <(i11[2], i23[2])), i11[2], i23[2], i62[2])
FALSE1 → &&(FALSE, TRUE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |