0 JBC
↳1 JBC2FIG (⇐)
↳2 FIGraph
↳3 FIGtoITRSProof (⇐)
↳4 ITRS
↳5 GroundTermsRemoverProof (⇔)
↳6 ITRS
↳7 ITRStoIDPProof (⇔)
↳8 IDP
↳9 UsableRulesProof (⇔)
↳10 IDP
↳11 IDPNonInfProof (⇐)
↳12 AND
↳13 IDP
↳14 IDependencyGraphProof (⇔)
↳15 IDP
↳16 IDPNonInfProof (⇐)
↳17 AND
↳18 IDP
↳19 IDependencyGraphProof (⇔)
↳20 TRUE
↳21 IDP
↳22 IDependencyGraphProof (⇔)
↳23 TRUE
↳24 IDP
↳25 IDependencyGraphProof (⇔)
↳26 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaC2 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
while (x >= 0) {
x = x+1;
int y = 1;
while (x >= y) {
y++;
}
x = x-2;
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Load291(x1, x2) → Load291(x2)
Cond_Load6801(x1, x2, x3, x4) → Cond_Load6801(x1, x3, x4)
Load680(x1, x2, x3) → Load680(x2, x3)
Cond_Load680(x1, x2, x3, x4) → Cond_Load680(x1, x3, x4)
Cond_Load291(x1, x2, x3) → Cond_Load291(x1, x3)
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i21[0] >= 0 && i21[0] + 1 > 0 →* TRUE)∧(i21[0] →* i21[1]))
(1) -> (2), if ((1 →* i49[2])∧(i21[1] + 1 →* i33[2]))
(1) -> (4), if ((1 →* i49[4])∧(i21[1] + 1 →* i33[4]))
(2) -> (3), if ((i49[2] →* i49[3])∧(i33[2] →* i33[3])∧(i49[2] > 0 && i33[2] >= i49[2] →* TRUE))
(3) -> (2), if ((i49[3] + 1 →* i49[2])∧(i33[3] →* i33[2]))
(3) -> (4), if ((i49[3] + 1 →* i49[4])∧(i33[3] →* i33[4]))
(4) -> (5), if ((i33[4] > 0 && i33[4] < i49[4] →* TRUE)∧(i49[4] →* i49[5])∧(i33[4] →* i33[5]))
(5) -> (0), if ((i33[5] - 2 →* i21[0]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i21[0] >= 0 && i21[0] + 1 > 0 →* TRUE)∧(i21[0] →* i21[1]))
(1) -> (2), if ((1 →* i49[2])∧(i21[1] + 1 →* i33[2]))
(1) -> (4), if ((1 →* i49[4])∧(i21[1] + 1 →* i33[4]))
(2) -> (3), if ((i49[2] →* i49[3])∧(i33[2] →* i33[3])∧(i49[2] > 0 && i33[2] >= i49[2] →* TRUE))
(3) -> (2), if ((i49[3] + 1 →* i49[2])∧(i33[3] →* i33[2]))
(3) -> (4), if ((i49[3] + 1 →* i49[4])∧(i33[3] →* i33[4]))
(4) -> (5), if ((i33[4] > 0 && i33[4] < i49[4] →* TRUE)∧(i49[4] →* i49[5])∧(i33[4] →* i33[5]))
(5) -> (0), if ((i33[5] - 2 →* i21[0]))
(1) (&&(>=(i21[0], 0), >(+(i21[0], 1), 0))=TRUE∧i21[0]=i21[1] ⇒ LOAD291(i21[0])≥NonInfC∧LOAD291(i21[0])≥COND_LOAD291(&&(>=(i21[0], 0), >(+(i21[0], 1), 0)), i21[0])∧(UIncreasing(COND_LOAD291(&&(>=(i21[0], 0), >(+(i21[0], 1), 0)), i21[0])), ≥))
(2) (>=(i21[0], 0)=TRUE∧>(+(i21[0], 1), 0)=TRUE ⇒ LOAD291(i21[0])≥NonInfC∧LOAD291(i21[0])≥COND_LOAD291(&&(>=(i21[0], 0), >(+(i21[0], 1), 0)), i21[0])∧(UIncreasing(COND_LOAD291(&&(>=(i21[0], 0), >(+(i21[0], 1), 0)), i21[0])), ≥))
(3) (i21[0] ≥ 0∧i21[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD291(&&(>=(i21[0], 0), >(+(i21[0], 1), 0)), i21[0])), ≥)∧[(-1)Bound*bni_23] + [bni_23]i21[0] ≥ 0∧[(-1)bso_24] ≥ 0)
(4) (i21[0] ≥ 0∧i21[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD291(&&(>=(i21[0], 0), >(+(i21[0], 1), 0)), i21[0])), ≥)∧[(-1)Bound*bni_23] + [bni_23]i21[0] ≥ 0∧[(-1)bso_24] ≥ 0)
(5) (i21[0] ≥ 0∧i21[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD291(&&(>=(i21[0], 0), >(+(i21[0], 1), 0)), i21[0])), ≥)∧[(-1)Bound*bni_23] + [bni_23]i21[0] ≥ 0∧[(-1)bso_24] ≥ 0)
(6) (&&(>=(i21[0], 0), >(+(i21[0], 1), 0))=TRUE∧i21[0]=i21[1]∧1=i49[2]∧+(i21[1], 1)=i33[2] ⇒ COND_LOAD291(TRUE, i21[1])≥NonInfC∧COND_LOAD291(TRUE, i21[1])≥LOAD680(+(i21[1], 1), 1)∧(UIncreasing(LOAD680(+(i21[1], 1), 1)), ≥))
(7) (>=(i21[0], 0)=TRUE∧>(+(i21[0], 1), 0)=TRUE ⇒ COND_LOAD291(TRUE, i21[0])≥NonInfC∧COND_LOAD291(TRUE, i21[0])≥LOAD680(+(i21[0], 1), 1)∧(UIncreasing(LOAD680(+(i21[1], 1), 1)), ≥))
(8) (i21[0] ≥ 0∧i21[0] ≥ 0 ⇒ (UIncreasing(LOAD680(+(i21[1], 1), 1)), ≥)∧[(-1)Bound*bni_25] + [bni_25]i21[0] ≥ 0∧[(-1)bso_26] ≥ 0)
(9) (i21[0] ≥ 0∧i21[0] ≥ 0 ⇒ (UIncreasing(LOAD680(+(i21[1], 1), 1)), ≥)∧[(-1)Bound*bni_25] + [bni_25]i21[0] ≥ 0∧[(-1)bso_26] ≥ 0)
(10) (i21[0] ≥ 0∧i21[0] ≥ 0 ⇒ (UIncreasing(LOAD680(+(i21[1], 1), 1)), ≥)∧[(-1)Bound*bni_25] + [bni_25]i21[0] ≥ 0∧[(-1)bso_26] ≥ 0)
(11) (&&(>=(i21[0], 0), >(+(i21[0], 1), 0))=TRUE∧i21[0]=i21[1]∧1=i49[4]∧+(i21[1], 1)=i33[4] ⇒ COND_LOAD291(TRUE, i21[1])≥NonInfC∧COND_LOAD291(TRUE, i21[1])≥LOAD680(+(i21[1], 1), 1)∧(UIncreasing(LOAD680(+(i21[1], 1), 1)), ≥))
(12) (>=(i21[0], 0)=TRUE∧>(+(i21[0], 1), 0)=TRUE ⇒ COND_LOAD291(TRUE, i21[0])≥NonInfC∧COND_LOAD291(TRUE, i21[0])≥LOAD680(+(i21[0], 1), 1)∧(UIncreasing(LOAD680(+(i21[1], 1), 1)), ≥))
(13) (i21[0] ≥ 0∧i21[0] ≥ 0 ⇒ (UIncreasing(LOAD680(+(i21[1], 1), 1)), ≥)∧[(-1)Bound*bni_25] + [bni_25]i21[0] ≥ 0∧[(-1)bso_26] ≥ 0)
(14) (i21[0] ≥ 0∧i21[0] ≥ 0 ⇒ (UIncreasing(LOAD680(+(i21[1], 1), 1)), ≥)∧[(-1)Bound*bni_25] + [bni_25]i21[0] ≥ 0∧[(-1)bso_26] ≥ 0)
(15) (i21[0] ≥ 0∧i21[0] ≥ 0 ⇒ (UIncreasing(LOAD680(+(i21[1], 1), 1)), ≥)∧[(-1)Bound*bni_25] + [bni_25]i21[0] ≥ 0∧[(-1)bso_26] ≥ 0)
(16) (i49[2]=i49[3]∧i33[2]=i33[3]∧&&(>(i49[2], 0), >=(i33[2], i49[2]))=TRUE ⇒ LOAD680(i33[2], i49[2])≥NonInfC∧LOAD680(i33[2], i49[2])≥COND_LOAD680(&&(>(i49[2], 0), >=(i33[2], i49[2])), i33[2], i49[2])∧(UIncreasing(COND_LOAD680(&&(>(i49[2], 0), >=(i33[2], i49[2])), i33[2], i49[2])), ≥))
(17) (>(i49[2], 0)=TRUE∧>=(i33[2], i49[2])=TRUE ⇒ LOAD680(i33[2], i49[2])≥NonInfC∧LOAD680(i33[2], i49[2])≥COND_LOAD680(&&(>(i49[2], 0), >=(i33[2], i49[2])), i33[2], i49[2])∧(UIncreasing(COND_LOAD680(&&(>(i49[2], 0), >=(i33[2], i49[2])), i33[2], i49[2])), ≥))
(18) (i49[2] + [-1] ≥ 0∧i33[2] + [-1]i49[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD680(&&(>(i49[2], 0), >=(i33[2], i49[2])), i33[2], i49[2])), ≥)∧[(-1)bni_27 + (-1)Bound*bni_27] + [bni_27]i33[2] ≥ 0∧[(-1)bso_28] ≥ 0)
(19) (i49[2] + [-1] ≥ 0∧i33[2] + [-1]i49[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD680(&&(>(i49[2], 0), >=(i33[2], i49[2])), i33[2], i49[2])), ≥)∧[(-1)bni_27 + (-1)Bound*bni_27] + [bni_27]i33[2] ≥ 0∧[(-1)bso_28] ≥ 0)
(20) (i49[2] + [-1] ≥ 0∧i33[2] + [-1]i49[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD680(&&(>(i49[2], 0), >=(i33[2], i49[2])), i33[2], i49[2])), ≥)∧[(-1)bni_27 + (-1)Bound*bni_27] + [bni_27]i33[2] ≥ 0∧[(-1)bso_28] ≥ 0)
(21) (i49[2] ≥ 0∧i33[2] + [-1] + [-1]i49[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD680(&&(>(i49[2], 0), >=(i33[2], i49[2])), i33[2], i49[2])), ≥)∧[(-1)bni_27 + (-1)Bound*bni_27] + [bni_27]i33[2] ≥ 0∧[(-1)bso_28] ≥ 0)
(22) (i49[2] ≥ 0∧i33[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD680(&&(>(i49[2], 0), >=(i33[2], i49[2])), i33[2], i49[2])), ≥)∧[(-1)Bound*bni_27] + [bni_27]i49[2] + [bni_27]i33[2] ≥ 0∧[(-1)bso_28] ≥ 0)
(23) (i49[2]=i49[3]∧i33[2]=i33[3]∧&&(>(i49[2], 0), >=(i33[2], i49[2]))=TRUE∧+(i49[3], 1)=i49[2]1∧i33[3]=i33[2]1 ⇒ COND_LOAD680(TRUE, i33[3], i49[3])≥NonInfC∧COND_LOAD680(TRUE, i33[3], i49[3])≥LOAD680(i33[3], +(i49[3], 1))∧(UIncreasing(LOAD680(i33[3], +(i49[3], 1))), ≥))
(24) (>(i49[2], 0)=TRUE∧>=(i33[2], i49[2])=TRUE ⇒ COND_LOAD680(TRUE, i33[2], i49[2])≥NonInfC∧COND_LOAD680(TRUE, i33[2], i49[2])≥LOAD680(i33[2], +(i49[2], 1))∧(UIncreasing(LOAD680(i33[3], +(i49[3], 1))), ≥))
(25) (i49[2] + [-1] ≥ 0∧i33[2] + [-1]i49[2] ≥ 0 ⇒ (UIncreasing(LOAD680(i33[3], +(i49[3], 1))), ≥)∧[(-1)bni_29 + (-1)Bound*bni_29] + [bni_29]i33[2] ≥ 0∧[(-1)bso_30] ≥ 0)
(26) (i49[2] + [-1] ≥ 0∧i33[2] + [-1]i49[2] ≥ 0 ⇒ (UIncreasing(LOAD680(i33[3], +(i49[3], 1))), ≥)∧[(-1)bni_29 + (-1)Bound*bni_29] + [bni_29]i33[2] ≥ 0∧[(-1)bso_30] ≥ 0)
(27) (i49[2] + [-1] ≥ 0∧i33[2] + [-1]i49[2] ≥ 0 ⇒ (UIncreasing(LOAD680(i33[3], +(i49[3], 1))), ≥)∧[(-1)bni_29 + (-1)Bound*bni_29] + [bni_29]i33[2] ≥ 0∧[(-1)bso_30] ≥ 0)
(28) (i49[2] ≥ 0∧i33[2] + [-1] + [-1]i49[2] ≥ 0 ⇒ (UIncreasing(LOAD680(i33[3], +(i49[3], 1))), ≥)∧[(-1)bni_29 + (-1)Bound*bni_29] + [bni_29]i33[2] ≥ 0∧[(-1)bso_30] ≥ 0)
(29) (i49[2] ≥ 0∧i33[2] ≥ 0 ⇒ (UIncreasing(LOAD680(i33[3], +(i49[3], 1))), ≥)∧[(-1)Bound*bni_29] + [bni_29]i49[2] + [bni_29]i33[2] ≥ 0∧[(-1)bso_30] ≥ 0)
(30) (i49[2]=i49[3]∧i33[2]=i33[3]∧&&(>(i49[2], 0), >=(i33[2], i49[2]))=TRUE∧+(i49[3], 1)=i49[4]∧i33[3]=i33[4] ⇒ COND_LOAD680(TRUE, i33[3], i49[3])≥NonInfC∧COND_LOAD680(TRUE, i33[3], i49[3])≥LOAD680(i33[3], +(i49[3], 1))∧(UIncreasing(LOAD680(i33[3], +(i49[3], 1))), ≥))
(31) (>(i49[2], 0)=TRUE∧>=(i33[2], i49[2])=TRUE ⇒ COND_LOAD680(TRUE, i33[2], i49[2])≥NonInfC∧COND_LOAD680(TRUE, i33[2], i49[2])≥LOAD680(i33[2], +(i49[2], 1))∧(UIncreasing(LOAD680(i33[3], +(i49[3], 1))), ≥))
(32) (i49[2] + [-1] ≥ 0∧i33[2] + [-1]i49[2] ≥ 0 ⇒ (UIncreasing(LOAD680(i33[3], +(i49[3], 1))), ≥)∧[(-1)bni_29 + (-1)Bound*bni_29] + [bni_29]i33[2] ≥ 0∧[(-1)bso_30] ≥ 0)
(33) (i49[2] + [-1] ≥ 0∧i33[2] + [-1]i49[2] ≥ 0 ⇒ (UIncreasing(LOAD680(i33[3], +(i49[3], 1))), ≥)∧[(-1)bni_29 + (-1)Bound*bni_29] + [bni_29]i33[2] ≥ 0∧[(-1)bso_30] ≥ 0)
(34) (i49[2] + [-1] ≥ 0∧i33[2] + [-1]i49[2] ≥ 0 ⇒ (UIncreasing(LOAD680(i33[3], +(i49[3], 1))), ≥)∧[(-1)bni_29 + (-1)Bound*bni_29] + [bni_29]i33[2] ≥ 0∧[(-1)bso_30] ≥ 0)
(35) (i49[2] ≥ 0∧i33[2] + [-1] + [-1]i49[2] ≥ 0 ⇒ (UIncreasing(LOAD680(i33[3], +(i49[3], 1))), ≥)∧[(-1)bni_29 + (-1)Bound*bni_29] + [bni_29]i33[2] ≥ 0∧[(-1)bso_30] ≥ 0)
(36) (i49[2] ≥ 0∧i33[2] ≥ 0 ⇒ (UIncreasing(LOAD680(i33[3], +(i49[3], 1))), ≥)∧[(-1)Bound*bni_29] + [bni_29]i49[2] + [bni_29]i33[2] ≥ 0∧[(-1)bso_30] ≥ 0)
(37) (&&(>(i33[4], 0), <(i33[4], i49[4]))=TRUE∧i49[4]=i49[5]∧i33[4]=i33[5] ⇒ LOAD680(i33[4], i49[4])≥NonInfC∧LOAD680(i33[4], i49[4])≥COND_LOAD6801(&&(>(i33[4], 0), <(i33[4], i49[4])), i33[4], i49[4])∧(UIncreasing(COND_LOAD6801(&&(>(i33[4], 0), <(i33[4], i49[4])), i33[4], i49[4])), ≥))
(38) (>(i33[4], 0)=TRUE∧<(i33[4], i49[4])=TRUE ⇒ LOAD680(i33[4], i49[4])≥NonInfC∧LOAD680(i33[4], i49[4])≥COND_LOAD6801(&&(>(i33[4], 0), <(i33[4], i49[4])), i33[4], i49[4])∧(UIncreasing(COND_LOAD6801(&&(>(i33[4], 0), <(i33[4], i49[4])), i33[4], i49[4])), ≥))
(39) (i33[4] + [-1] ≥ 0∧i49[4] + [-1] + [-1]i33[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD6801(&&(>(i33[4], 0), <(i33[4], i49[4])), i33[4], i49[4])), ≥)∧[(-1)bni_31 + (-1)Bound*bni_31] + [bni_31]i33[4] ≥ 0∧[(-1)bso_32] ≥ 0)
(40) (i33[4] + [-1] ≥ 0∧i49[4] + [-1] + [-1]i33[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD6801(&&(>(i33[4], 0), <(i33[4], i49[4])), i33[4], i49[4])), ≥)∧[(-1)bni_31 + (-1)Bound*bni_31] + [bni_31]i33[4] ≥ 0∧[(-1)bso_32] ≥ 0)
(41) (i33[4] + [-1] ≥ 0∧i49[4] + [-1] + [-1]i33[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD6801(&&(>(i33[4], 0), <(i33[4], i49[4])), i33[4], i49[4])), ≥)∧[(-1)bni_31 + (-1)Bound*bni_31] + [bni_31]i33[4] ≥ 0∧[(-1)bso_32] ≥ 0)
(42) (i33[4] ≥ 0∧i49[4] + [-2] + [-1]i33[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD6801(&&(>(i33[4], 0), <(i33[4], i49[4])), i33[4], i49[4])), ≥)∧[(-1)Bound*bni_31] + [bni_31]i33[4] ≥ 0∧[(-1)bso_32] ≥ 0)
(43) (i33[4] ≥ 0∧i49[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD6801(&&(>(i33[4], 0), <(i33[4], i49[4])), i33[4], i49[4])), ≥)∧[(-1)Bound*bni_31] + [bni_31]i33[4] ≥ 0∧[(-1)bso_32] ≥ 0)
(44) (&&(>(i33[4], 0), <(i33[4], i49[4]))=TRUE∧i49[4]=i49[5]∧i33[4]=i33[5]∧-(i33[5], 2)=i21[0] ⇒ COND_LOAD6801(TRUE, i33[5], i49[5])≥NonInfC∧COND_LOAD6801(TRUE, i33[5], i49[5])≥LOAD291(-(i33[5], 2))∧(UIncreasing(LOAD291(-(i33[5], 2))), ≥))
(45) (>(i33[4], 0)=TRUE∧<(i33[4], i49[4])=TRUE ⇒ COND_LOAD6801(TRUE, i33[4], i49[4])≥NonInfC∧COND_LOAD6801(TRUE, i33[4], i49[4])≥LOAD291(-(i33[4], 2))∧(UIncreasing(LOAD291(-(i33[5], 2))), ≥))
(46) (i33[4] + [-1] ≥ 0∧i49[4] + [-1] + [-1]i33[4] ≥ 0 ⇒ (UIncreasing(LOAD291(-(i33[5], 2))), ≥)∧[(-1)bni_33 + (-1)Bound*bni_33] + [bni_33]i33[4] ≥ 0∧[1 + (-1)bso_34] ≥ 0)
(47) (i33[4] + [-1] ≥ 0∧i49[4] + [-1] + [-1]i33[4] ≥ 0 ⇒ (UIncreasing(LOAD291(-(i33[5], 2))), ≥)∧[(-1)bni_33 + (-1)Bound*bni_33] + [bni_33]i33[4] ≥ 0∧[1 + (-1)bso_34] ≥ 0)
(48) (i33[4] + [-1] ≥ 0∧i49[4] + [-1] + [-1]i33[4] ≥ 0 ⇒ (UIncreasing(LOAD291(-(i33[5], 2))), ≥)∧[(-1)bni_33 + (-1)Bound*bni_33] + [bni_33]i33[4] ≥ 0∧[1 + (-1)bso_34] ≥ 0)
(49) (i33[4] ≥ 0∧i49[4] + [-2] + [-1]i33[4] ≥ 0 ⇒ (UIncreasing(LOAD291(-(i33[5], 2))), ≥)∧[(-1)Bound*bni_33] + [bni_33]i33[4] ≥ 0∧[1 + (-1)bso_34] ≥ 0)
(50) (i33[4] ≥ 0∧i49[4] ≥ 0 ⇒ (UIncreasing(LOAD291(-(i33[5], 2))), ≥)∧[(-1)Bound*bni_33] + [bni_33]i33[4] ≥ 0∧[1 + (-1)bso_34] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(LOAD291(x1)) = x1
POL(COND_LOAD291(x1, x2)) = x2
POL(&&(x1, x2)) = [-1]
POL(>=(x1, x2)) = [-1]
POL(0) = 0
POL(>(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(1) = [1]
POL(LOAD680(x1, x2)) = [-1] + x1
POL(COND_LOAD680(x1, x2, x3)) = [-1] + x2
POL(COND_LOAD6801(x1, x2, x3)) = [-1] + x2
POL(<(x1, x2)) = [-1]
POL(-(x1, x2)) = x1 + [-1]x2
POL(2) = [2]
COND_LOAD6801(TRUE, i33[5], i49[5]) → LOAD291(-(i33[5], 2))
LOAD291(i21[0]) → COND_LOAD291(&&(>=(i21[0], 0), >(+(i21[0], 1), 0)), i21[0])
COND_LOAD291(TRUE, i21[1]) → LOAD680(+(i21[1], 1), 1)
LOAD680(i33[2], i49[2]) → COND_LOAD680(&&(>(i49[2], 0), >=(i33[2], i49[2])), i33[2], i49[2])
COND_LOAD680(TRUE, i33[3], i49[3]) → LOAD680(i33[3], +(i49[3], 1))
LOAD680(i33[4], i49[4]) → COND_LOAD6801(&&(>(i33[4], 0), <(i33[4], i49[4])), i33[4], i49[4])
COND_LOAD6801(TRUE, i33[5], i49[5]) → LOAD291(-(i33[5], 2))
LOAD291(i21[0]) → COND_LOAD291(&&(>=(i21[0], 0), >(+(i21[0], 1), 0)), i21[0])
COND_LOAD291(TRUE, i21[1]) → LOAD680(+(i21[1], 1), 1)
LOAD680(i33[2], i49[2]) → COND_LOAD680(&&(>(i49[2], 0), >=(i33[2], i49[2])), i33[2], i49[2])
COND_LOAD680(TRUE, i33[3], i49[3]) → LOAD680(i33[3], +(i49[3], 1))
LOAD680(i33[4], i49[4]) → COND_LOAD6801(&&(>(i33[4], 0), <(i33[4], i49[4])), i33[4], i49[4])
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(FALSE, FALSE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i21[0] >= 0 && i21[0] + 1 > 0 →* TRUE)∧(i21[0] →* i21[1]))
(1) -> (2), if ((1 →* i49[2])∧(i21[1] + 1 →* i33[2]))
(3) -> (2), if ((i49[3] + 1 →* i49[2])∧(i33[3] →* i33[2]))
(2) -> (3), if ((i49[2] →* i49[3])∧(i33[2] →* i33[3])∧(i49[2] > 0 && i33[2] >= i49[2] →* TRUE))
(1) -> (4), if ((1 →* i49[4])∧(i21[1] + 1 →* i33[4]))
(3) -> (4), if ((i49[3] + 1 →* i49[4])∧(i33[3] →* i33[4]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(3) -> (2), if ((i49[3] + 1 →* i49[2])∧(i33[3] →* i33[2]))
(2) -> (3), if ((i49[2] →* i49[3])∧(i33[2] →* i33[3])∧(i49[2] > 0 && i33[2] >= i49[2] →* TRUE))
(1) (i49[2]=i49[3]∧i33[2]=i33[3]∧&&(>(i49[2], 0), >=(i33[2], i49[2]))=TRUE∧+(i49[3], 1)=i49[2]1∧i33[3]=i33[2]1 ⇒ COND_LOAD680(TRUE, i33[3], i49[3])≥NonInfC∧COND_LOAD680(TRUE, i33[3], i49[3])≥LOAD680(i33[3], +(i49[3], 1))∧(UIncreasing(LOAD680(i33[3], +(i49[3], 1))), ≥))
(2) (>(i49[2], 0)=TRUE∧>=(i33[2], i49[2])=TRUE ⇒ COND_LOAD680(TRUE, i33[2], i49[2])≥NonInfC∧COND_LOAD680(TRUE, i33[2], i49[2])≥LOAD680(i33[2], +(i49[2], 1))∧(UIncreasing(LOAD680(i33[3], +(i49[3], 1))), ≥))
(3) (i49[2] + [-1] ≥ 0∧i33[2] + [-1]i49[2] ≥ 0 ⇒ (UIncreasing(LOAD680(i33[3], +(i49[3], 1))), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]i49[2] + [bni_13]i33[2] ≥ 0∧[(-1)bso_14] ≥ 0)
(4) (i49[2] + [-1] ≥ 0∧i33[2] + [-1]i49[2] ≥ 0 ⇒ (UIncreasing(LOAD680(i33[3], +(i49[3], 1))), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]i49[2] + [bni_13]i33[2] ≥ 0∧[(-1)bso_14] ≥ 0)
(5) (i49[2] + [-1] ≥ 0∧i33[2] + [-1]i49[2] ≥ 0 ⇒ (UIncreasing(LOAD680(i33[3], +(i49[3], 1))), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]i49[2] + [bni_13]i33[2] ≥ 0∧[(-1)bso_14] ≥ 0)
(6) (i49[2] ≥ 0∧i33[2] + [-1] + [-1]i49[2] ≥ 0 ⇒ (UIncreasing(LOAD680(i33[3], +(i49[3], 1))), ≥)∧[(-2)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]i49[2] + [bni_13]i33[2] ≥ 0∧[(-1)bso_14] ≥ 0)
(7) (i49[2] ≥ 0∧i33[2] ≥ 0 ⇒ (UIncreasing(LOAD680(i33[3], +(i49[3], 1))), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]i33[2] ≥ 0∧[(-1)bso_14] ≥ 0)
(8) (i49[2]=i49[3]∧i33[2]=i33[3]∧&&(>(i49[2], 0), >=(i33[2], i49[2]))=TRUE ⇒ LOAD680(i33[2], i49[2])≥NonInfC∧LOAD680(i33[2], i49[2])≥COND_LOAD680(&&(>(i49[2], 0), >=(i33[2], i49[2])), i33[2], i49[2])∧(UIncreasing(COND_LOAD680(&&(>(i49[2], 0), >=(i33[2], i49[2])), i33[2], i49[2])), ≥))
(9) (>(i49[2], 0)=TRUE∧>=(i33[2], i49[2])=TRUE ⇒ LOAD680(i33[2], i49[2])≥NonInfC∧LOAD680(i33[2], i49[2])≥COND_LOAD680(&&(>(i49[2], 0), >=(i33[2], i49[2])), i33[2], i49[2])∧(UIncreasing(COND_LOAD680(&&(>(i49[2], 0), >=(i33[2], i49[2])), i33[2], i49[2])), ≥))
(10) (i49[2] + [-1] ≥ 0∧i33[2] + [-1]i49[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD680(&&(>(i49[2], 0), >=(i33[2], i49[2])), i33[2], i49[2])), ≥)∧[(-1)Bound*bni_15] + [(-1)bni_15]i49[2] + [bni_15]i33[2] ≥ 0∧[1 + (-1)bso_16] ≥ 0)
(11) (i49[2] + [-1] ≥ 0∧i33[2] + [-1]i49[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD680(&&(>(i49[2], 0), >=(i33[2], i49[2])), i33[2], i49[2])), ≥)∧[(-1)Bound*bni_15] + [(-1)bni_15]i49[2] + [bni_15]i33[2] ≥ 0∧[1 + (-1)bso_16] ≥ 0)
(12) (i49[2] + [-1] ≥ 0∧i33[2] + [-1]i49[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD680(&&(>(i49[2], 0), >=(i33[2], i49[2])), i33[2], i49[2])), ≥)∧[(-1)Bound*bni_15] + [(-1)bni_15]i49[2] + [bni_15]i33[2] ≥ 0∧[1 + (-1)bso_16] ≥ 0)
(13) (i49[2] ≥ 0∧i33[2] + [-1] + [-1]i49[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD680(&&(>(i49[2], 0), >=(i33[2], i49[2])), i33[2], i49[2])), ≥)∧[(-1)Bound*bni_15 + (-1)bni_15] + [(-1)bni_15]i49[2] + [bni_15]i33[2] ≥ 0∧[1 + (-1)bso_16] ≥ 0)
(14) (i49[2] ≥ 0∧i33[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD680(&&(>(i49[2], 0), >=(i33[2], i49[2])), i33[2], i49[2])), ≥)∧[(-1)Bound*bni_15] + [bni_15]i33[2] ≥ 0∧[1 + (-1)bso_16] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = [3]
POL(COND_LOAD680(x1, x2, x3)) = [-1] + [-1]x3 + x2
POL(LOAD680(x1, x2)) = [-1]x2 + x1
POL(+(x1, x2)) = x1 + x2
POL(1) = [1]
POL(&&(x1, x2)) = 0
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(>=(x1, x2)) = [-1]
LOAD680(i33[2], i49[2]) → COND_LOAD680(&&(>(i49[2], 0), >=(i33[2], i49[2])), i33[2], i49[2])
COND_LOAD680(TRUE, i33[3], i49[3]) → LOAD680(i33[3], +(i49[3], 1))
LOAD680(i33[2], i49[2]) → COND_LOAD680(&&(>(i49[2], 0), >=(i33[2], i49[2])), i33[2], i49[2])
COND_LOAD680(TRUE, i33[3], i49[3]) → LOAD680(i33[3], +(i49[3], 1))
TRUE1 → &&(TRUE, TRUE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |