0 JBC
↳1 JBC2FIG (⇐)
↳2 FIGraph
↳3 FIGtoITRSProof (⇐)
↳4 ITRS
↳5 ITRStoIDPProof (⇔)
↳6 IDP
↳7 UsableRulesProof (⇔)
↳8 IDP
↳9 IDPNonInfProof (⇐)
↳10 AND
↳11 IDP
↳12 IDependencyGraphProof (⇔)
↳13 TRUE
↳14 IDP
↳15 IDependencyGraphProof (⇔)
↳16 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaB5 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
while (x > 0 && (x % 2) == 0) {
x--;
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
| != | ~ | Neq: (Integer, Integer) -> Boolean |
| * | ~ | Mul: (Integer, Integer) -> Integer |
| >= | ~ | Ge: (Integer, Integer) -> Boolean |
| -1 | ~ | UnaryMinus: (Integer) -> Integer |
| | | ~ | Bwor: (Integer, Integer) -> Integer |
| / | ~ | Div: (Integer, Integer) -> Integer |
| = | ~ | Eq: (Integer, Integer) -> Boolean |
| ~ | Bwxor: (Integer, Integer) -> Integer | |
| || | ~ | Lor: (Boolean, Boolean) -> Boolean |
| ! | ~ | Lnot: (Boolean) -> Boolean |
| < | ~ | Lt: (Integer, Integer) -> Boolean |
| - | ~ | Sub: (Integer, Integer) -> Integer |
| <= | ~ | Le: (Integer, Integer) -> Boolean |
| > | ~ | Gt: (Integer, Integer) -> Boolean |
| ~ | ~ | Bwnot: (Integer) -> Integer |
| % | ~ | Mod: (Integer, Integer) -> Integer |
| & | ~ | Bwand: (Integer, Integer) -> Integer |
| + | ~ | Add: (Integer, Integer) -> Integer |
| && | ~ | Land: (Boolean, Boolean) -> Boolean |
| != | ~ | Neq: (Integer, Integer) -> Boolean |
| * | ~ | Mul: (Integer, Integer) -> Integer |
| >= | ~ | Ge: (Integer, Integer) -> Boolean |
| -1 | ~ | UnaryMinus: (Integer) -> Integer |
| | | ~ | Bwor: (Integer, Integer) -> Integer |
| / | ~ | Div: (Integer, Integer) -> Integer |
| = | ~ | Eq: (Integer, Integer) -> Boolean |
| ~ | Bwxor: (Integer, Integer) -> Integer | |
| || | ~ | Lor: (Boolean, Boolean) -> Boolean |
| ! | ~ | Lnot: (Boolean) -> Boolean |
| < | ~ | Lt: (Integer, Integer) -> Boolean |
| - | ~ | Sub: (Integer, Integer) -> Integer |
| <= | ~ | Le: (Integer, Integer) -> Boolean |
| > | ~ | Gt: (Integer, Integer) -> Boolean |
| ~ | ~ | Bwnot: (Integer) -> Integer |
| % | ~ | Mod: (Integer, Integer) -> Integer |
| & | ~ | Bwand: (Integer, Integer) -> Integer |
| + | ~ | Add: (Integer, Integer) -> Integer |
| && | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i34[0] →* i34[1])∧(i34[0] > 0 && 0 = i34[0] % 2 →* TRUE))
(1) -> (0), if ((i34[1] + -1 →* i34[0]))
| != | ~ | Neq: (Integer, Integer) -> Boolean |
| * | ~ | Mul: (Integer, Integer) -> Integer |
| >= | ~ | Ge: (Integer, Integer) -> Boolean |
| -1 | ~ | UnaryMinus: (Integer) -> Integer |
| | | ~ | Bwor: (Integer, Integer) -> Integer |
| / | ~ | Div: (Integer, Integer) -> Integer |
| = | ~ | Eq: (Integer, Integer) -> Boolean |
| ~ | Bwxor: (Integer, Integer) -> Integer | |
| || | ~ | Lor: (Boolean, Boolean) -> Boolean |
| ! | ~ | Lnot: (Boolean) -> Boolean |
| < | ~ | Lt: (Integer, Integer) -> Boolean |
| - | ~ | Sub: (Integer, Integer) -> Integer |
| <= | ~ | Le: (Integer, Integer) -> Boolean |
| > | ~ | Gt: (Integer, Integer) -> Boolean |
| ~ | ~ | Bwnot: (Integer) -> Integer |
| % | ~ | Mod: (Integer, Integer) -> Integer |
| & | ~ | Bwand: (Integer, Integer) -> Integer |
| + | ~ | Add: (Integer, Integer) -> Integer |
| && | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i34[0] →* i34[1])∧(i34[0] > 0 && 0 = i34[0] % 2 →* TRUE))
(1) -> (0), if ((i34[1] + -1 →* i34[0]))
(1) (i34[0]=i34[1]∧&&(>(i34[0], 0), =(0, %(i34[0], 2)))=TRUE ⇒ LOAD350(i34[0])≥NonInfC∧LOAD350(i34[0])≥COND_LOAD350(&&(>(i34[0], 0), =(0, %(i34[0], 2))), i34[0])∧(UIncreasing(COND_LOAD350(&&(>(i34[0], 0), =(0, %(i34[0], 2))), i34[0])), ≥))
(2) (>(i34[0], 0)=TRUE∧>=(0, %(i34[0], 2))=TRUE∧<=(0, %(i34[0], 2))=TRUE ⇒ LOAD350(i34[0])≥NonInfC∧LOAD350(i34[0])≥COND_LOAD350(&&(>(i34[0], 0), =(0, %(i34[0], 2))), i34[0])∧(UIncreasing(COND_LOAD350(&&(>(i34[0], 0), =(0, %(i34[0], 2))), i34[0])), ≥))
(3) (i34[0] + [-1] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0 ⇒ (UIncreasing(COND_LOAD350(&&(>(i34[0], 0), =(0, %(i34[0], 2))), i34[0])), ≥)∧[(-1)Bound*bni_10] + [(2)bni_10]i34[0] ≥ 0∧[(-1)bso_11] ≥ 0)
(4) (i34[0] + [-1] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0 ⇒ (UIncreasing(COND_LOAD350(&&(>(i34[0], 0), =(0, %(i34[0], 2))), i34[0])), ≥)∧[(-1)Bound*bni_10] + [(2)bni_10]i34[0] ≥ 0∧[(-1)bso_11] ≥ 0)
(5) (i34[0] + [-1] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD350(&&(>(i34[0], 0), =(0, %(i34[0], 2))), i34[0])), ≥)∧[(-1)Bound*bni_10] + [(2)bni_10]i34[0] ≥ 0∧[(-1)bso_11] ≥ 0)
(6) (i34[0] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD350(&&(>(i34[0], 0), =(0, %(i34[0], 2))), i34[0])), ≥)∧[(-1)Bound*bni_10 + (2)bni_10] + [(2)bni_10]i34[0] ≥ 0∧[(-1)bso_11] ≥ 0)
(7) (i34[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_LOAD350(&&(>(i34[0], 0), =(0, %(i34[0], 2))), i34[0])), ≥)∧[(-1)Bound*bni_10 + (2)bni_10] + [(2)bni_10]i34[0] ≥ 0∧[(-1)bso_11] ≥ 0)
(8) (COND_LOAD350(TRUE, i34[1])≥NonInfC∧COND_LOAD350(TRUE, i34[1])≥LOAD350(+(i34[1], -1))∧(UIncreasing(LOAD350(+(i34[1], -1))), ≥))
(9) ((UIncreasing(LOAD350(+(i34[1], -1))), ≥)∧[2 + (-1)bso_13] ≥ 0)
(10) ((UIncreasing(LOAD350(+(i34[1], -1))), ≥)∧[2 + (-1)bso_13] ≥ 0)
(11) ((UIncreasing(LOAD350(+(i34[1], -1))), ≥)∧[2 + (-1)bso_13] ≥ 0)
(12) ((UIncreasing(LOAD350(+(i34[1], -1))), ≥)∧0 = 0∧[2 + (-1)bso_13] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(LOAD350(x1)) = [2]x1
POL(COND_LOAD350(x1, x2)) = [2]x2
POL(&&(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(=(x1, x2)) = [-1]
POL(2) = [2]
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
Polynomial Interpretations with Context Sensitive Arithemetic Replacement
POL(TermCSAR-Mode @ Context)
POL(%(x1, 2)-1 @ {}) = min{x2, [-1]x2}
POL(%(x1, 2)1 @ {}) = max{x2, [-1]x2}
COND_LOAD350(TRUE, i34[1]) → LOAD350(+(i34[1], -1))
LOAD350(i34[0]) → COND_LOAD350(&&(>(i34[0], 0), =(0, %(i34[0], 2))), i34[0])
LOAD350(i34[0]) → COND_LOAD350(&&(>(i34[0], 0), =(0, %(i34[0], 2))), i34[0])
| != | ~ | Neq: (Integer, Integer) -> Boolean |
| * | ~ | Mul: (Integer, Integer) -> Integer |
| >= | ~ | Ge: (Integer, Integer) -> Boolean |
| -1 | ~ | UnaryMinus: (Integer) -> Integer |
| | | ~ | Bwor: (Integer, Integer) -> Integer |
| / | ~ | Div: (Integer, Integer) -> Integer |
| = | ~ | Eq: (Integer, Integer) -> Boolean |
| ~ | Bwxor: (Integer, Integer) -> Integer | |
| || | ~ | Lor: (Boolean, Boolean) -> Boolean |
| ! | ~ | Lnot: (Boolean) -> Boolean |
| < | ~ | Lt: (Integer, Integer) -> Boolean |
| - | ~ | Sub: (Integer, Integer) -> Integer |
| <= | ~ | Le: (Integer, Integer) -> Boolean |
| > | ~ | Gt: (Integer, Integer) -> Boolean |
| ~ | ~ | Bwnot: (Integer) -> Integer |
| % | ~ | Mod: (Integer, Integer) -> Integer |
| & | ~ | Bwand: (Integer, Integer) -> Integer |
| + | ~ | Add: (Integer, Integer) -> Integer |
| && | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
| != | ~ | Neq: (Integer, Integer) -> Boolean |
| * | ~ | Mul: (Integer, Integer) -> Integer |
| >= | ~ | Ge: (Integer, Integer) -> Boolean |
| -1 | ~ | UnaryMinus: (Integer) -> Integer |
| | | ~ | Bwor: (Integer, Integer) -> Integer |
| / | ~ | Div: (Integer, Integer) -> Integer |
| = | ~ | Eq: (Integer, Integer) -> Boolean |
| ~ | Bwxor: (Integer, Integer) -> Integer | |
| || | ~ | Lor: (Boolean, Boolean) -> Boolean |
| ! | ~ | Lnot: (Boolean) -> Boolean |
| < | ~ | Lt: (Integer, Integer) -> Boolean |
| - | ~ | Sub: (Integer, Integer) -> Integer |
| <= | ~ | Le: (Integer, Integer) -> Boolean |
| > | ~ | Gt: (Integer, Integer) -> Boolean |
| ~ | ~ | Bwnot: (Integer) -> Integer |
| % | ~ | Mod: (Integer, Integer) -> Integer |
| & | ~ | Bwand: (Integer, Integer) -> Integer |
| + | ~ | Add: (Integer, Integer) -> Integer |
| && | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer