0 JBC
↳1 JBC2FIG (⇐)
↳2 FIGraph
↳3 FIGtoITRSProof (⇐)
↳4 ITRS
↳5 ITRStoIDPProof (⇔)
↳6 IDP
↳7 UsableRulesProof (⇔)
↳8 IDP
↳9 IDPNonInfProof (⇐)
↳10 AND
↳11 IDP
↳12 IDependencyGraphProof (⇔)
↳13 TRUE
↳14 IDP
↳15 IDependencyGraphProof (⇔)
↳16 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaB4 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
while (x > y) {
int t = x;
x = y;
y = t;
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(0) -> (1), if ((i14[0] →* i14[1])∧(i20[0] →* i20[1])∧(i14[0] > i20[0] →* TRUE))
(1) -> (0), if ((i20[1] →* i14[0])∧(i14[1] →* i20[0]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(0) -> (1), if ((i14[0] →* i14[1])∧(i20[0] →* i20[1])∧(i14[0] > i20[0] →* TRUE))
(1) -> (0), if ((i20[1] →* i14[0])∧(i14[1] →* i20[0]))
(1) (i20[1]=i14[0]∧i14[1]=i20[0]∧i14[0]=i14[1]1∧i20[0]=i20[1]1∧>(i14[0], i20[0])=TRUE ⇒ LOAD681(i14[0], i20[0])≥NonInfC∧LOAD681(i14[0], i20[0])≥COND_LOAD681(>(i14[0], i20[0]), i14[0], i20[0])∧(UIncreasing(COND_LOAD681(>(i14[0], i20[0]), i14[0], i20[0])), ≥))
(2) (>(i14[0], i20[0])=TRUE ⇒ LOAD681(i14[0], i20[0])≥NonInfC∧LOAD681(i14[0], i20[0])≥COND_LOAD681(>(i14[0], i20[0]), i14[0], i20[0])∧(UIncreasing(COND_LOAD681(>(i14[0], i20[0]), i14[0], i20[0])), ≥))
(3) (i14[0] + [-1] + [-1]i20[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD681(>(i14[0], i20[0]), i14[0], i20[0])), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [(-1)bni_11]i20[0] + [bni_11]i14[0] ≥ 0∧[-1 + (-1)bso_12] + [-2]i20[0] + [2]i14[0] ≥ 0)
(4) (i14[0] + [-1] + [-1]i20[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD681(>(i14[0], i20[0]), i14[0], i20[0])), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [(-1)bni_11]i20[0] + [bni_11]i14[0] ≥ 0∧[-1 + (-1)bso_12] + [-2]i20[0] + [2]i14[0] ≥ 0)
(5) (i14[0] + [-1] + [-1]i20[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD681(>(i14[0], i20[0]), i14[0], i20[0])), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [(-1)bni_11]i20[0] + [bni_11]i14[0] ≥ 0∧[-1 + (-1)bso_12] + [-2]i20[0] + [2]i14[0] ≥ 0)
(6) (i14[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD681(>(i14[0], i20[0]), i14[0], i20[0])), ≥)∧[(-1)Bound*bni_11] + [bni_11]i14[0] ≥ 0∧[1 + (-1)bso_12] + [2]i14[0] ≥ 0)
(7) (i14[0] ≥ 0∧i20[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD681(>(i14[0], i20[0]), i14[0], i20[0])), ≥)∧[(-1)Bound*bni_11] + [bni_11]i14[0] ≥ 0∧[1 + (-1)bso_12] + [2]i14[0] ≥ 0)
(8) (i14[0] ≥ 0∧i20[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD681(>(i14[0], i20[0]), i14[0], i20[0])), ≥)∧[(-1)Bound*bni_11] + [bni_11]i14[0] ≥ 0∧[1 + (-1)bso_12] + [2]i14[0] ≥ 0)
(9) (i14[0]=i14[1]∧i20[0]=i20[1]∧>(i14[0], i20[0])=TRUE∧i20[1]=i14[0]1∧i14[1]=i20[0]1 ⇒ COND_LOAD681(TRUE, i14[1], i20[1])≥NonInfC∧COND_LOAD681(TRUE, i14[1], i20[1])≥LOAD681(i20[1], i14[1])∧(UIncreasing(LOAD681(i20[1], i14[1])), ≥))
(10) (>(i14[0], i20[0])=TRUE ⇒ COND_LOAD681(TRUE, i14[0], i20[0])≥NonInfC∧COND_LOAD681(TRUE, i14[0], i20[0])≥LOAD681(i20[0], i14[0])∧(UIncreasing(LOAD681(i20[1], i14[1])), ≥))
(11) (i14[0] + [-1] + [-1]i20[0] ≥ 0 ⇒ (UIncreasing(LOAD681(i20[1], i14[1])), ≥)∧[(-1)Bound*bni_13] + [bni_13]i20[0] + [(-1)bni_13]i14[0] ≥ 0∧[1 + (-1)bso_14] ≥ 0)
(12) (i14[0] + [-1] + [-1]i20[0] ≥ 0 ⇒ (UIncreasing(LOAD681(i20[1], i14[1])), ≥)∧[(-1)Bound*bni_13] + [bni_13]i20[0] + [(-1)bni_13]i14[0] ≥ 0∧[1 + (-1)bso_14] ≥ 0)
(13) (i14[0] + [-1] + [-1]i20[0] ≥ 0 ⇒ (UIncreasing(LOAD681(i20[1], i14[1])), ≥)∧[(-1)Bound*bni_13] + [bni_13]i20[0] + [(-1)bni_13]i14[0] ≥ 0∧[1 + (-1)bso_14] ≥ 0)
(14) (i14[0] ≥ 0 ⇒ (UIncreasing(LOAD681(i20[1], i14[1])), ≥)∧[(-1)Bound*bni_13 + (-1)bni_13] + [(-1)bni_13]i14[0] ≥ 0∧[1 + (-1)bso_14] ≥ 0)
(15) (i14[0] ≥ 0∧i20[0] ≥ 0 ⇒ (UIncreasing(LOAD681(i20[1], i14[1])), ≥)∧[(-1)Bound*bni_13 + (-1)bni_13] + [(-1)bni_13]i14[0] ≥ 0∧[1 + (-1)bso_14] ≥ 0)
(16) (i14[0] ≥ 0∧i20[0] ≥ 0 ⇒ (UIncreasing(LOAD681(i20[1], i14[1])), ≥)∧[(-1)Bound*bni_13 + (-1)bni_13] + [(-1)bni_13]i14[0] ≥ 0∧[1 + (-1)bso_14] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(LOAD681(x1, x2)) = [-1] + [-1]x2 + x1
POL(COND_LOAD681(x1, x2, x3)) = x3 + [-1]x2
POL(>(x1, x2)) = [1]
LOAD681(i14[0], i20[0]) → COND_LOAD681(>(i14[0], i20[0]), i14[0], i20[0])
COND_LOAD681(TRUE, i14[1], i20[1]) → LOAD681(i20[1], i14[1])
LOAD681(i14[0], i20[0]) → COND_LOAD681(>(i14[0], i20[0]), i14[0], i20[0])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |