0 JBC
↳1 JBC2FIG (⇐)
↳2 FIGraph
↳3 FIGtoITRSProof (⇐)
↳4 ITRS
↳5 ITRStoIDPProof (⇔)
↳6 IDP
↳7 UsableRulesProof (⇔)
↳8 IDP
↳9 IDPNonInfProof (⇐)
↳10 AND
↳11 IDP
↳12 IDependencyGraphProof (⇔)
↳13 TRUE
↳14 IDP
↳15 IDependencyGraphProof (⇔)
↳16 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaB3 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
if (x > 0) {
while (x > y) {
y = x+y;
}
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i26[0] > i22[0] && i26[0] > 0 →* TRUE)∧(i26[0] →* i26[1])∧(i22[0] →* i22[1]))
(1) -> (0), if ((i26[1] + i22[1] →* i22[0])∧(i26[1] →* i26[0]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i26[0] > i22[0] && i26[0] > 0 →* TRUE)∧(i26[0] →* i26[1])∧(i22[0] →* i22[1]))
(1) -> (0), if ((i26[1] + i22[1] →* i22[0])∧(i26[1] →* i26[0]))
(1) (&&(>(i26[0], i22[0]), >(i26[0], 0))=TRUE∧i26[0]=i26[1]∧i22[0]=i22[1] ⇒ LOAD570(i26[0], i22[0])≥NonInfC∧LOAD570(i26[0], i22[0])≥COND_LOAD570(&&(>(i26[0], i22[0]), >(i26[0], 0)), i26[0], i22[0])∧(UIncreasing(COND_LOAD570(&&(>(i26[0], i22[0]), >(i26[0], 0)), i26[0], i22[0])), ≥))
(2) (>(i26[0], i22[0])=TRUE∧>(i26[0], 0)=TRUE ⇒ LOAD570(i26[0], i22[0])≥NonInfC∧LOAD570(i26[0], i22[0])≥COND_LOAD570(&&(>(i26[0], i22[0]), >(i26[0], 0)), i26[0], i22[0])∧(UIncreasing(COND_LOAD570(&&(>(i26[0], i22[0]), >(i26[0], 0)), i26[0], i22[0])), ≥))
(3) (i26[0] + [-1] + [-1]i22[0] ≥ 0∧i26[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD570(&&(>(i26[0], i22[0]), >(i26[0], 0)), i26[0], i22[0])), ≥)∧[(-1)bni_12 + (-1)Bound*bni_12] + [(-1)bni_12]i22[0] + [bni_12]i26[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(4) (i26[0] + [-1] + [-1]i22[0] ≥ 0∧i26[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD570(&&(>(i26[0], i22[0]), >(i26[0], 0)), i26[0], i22[0])), ≥)∧[(-1)bni_12 + (-1)Bound*bni_12] + [(-1)bni_12]i22[0] + [bni_12]i26[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(5) (i26[0] + [-1] + [-1]i22[0] ≥ 0∧i26[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD570(&&(>(i26[0], i22[0]), >(i26[0], 0)), i26[0], i22[0])), ≥)∧[(-1)bni_12 + (-1)Bound*bni_12] + [(-1)bni_12]i22[0] + [bni_12]i26[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(6) (i26[0] ≥ 0∧i22[0] + i26[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD570(&&(>(i26[0], i22[0]), >(i26[0], 0)), i26[0], i22[0])), ≥)∧[(-1)Bound*bni_12] + [bni_12]i26[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(7) (i26[0] ≥ 0∧i22[0] + i26[0] ≥ 0∧i22[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD570(&&(>(i26[0], i22[0]), >(i26[0], 0)), i26[0], i22[0])), ≥)∧[(-1)Bound*bni_12] + [bni_12]i26[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(8) (i26[0] ≥ 0∧[-1]i22[0] + i26[0] ≥ 0∧i22[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD570(&&(>(i26[0], i22[0]), >(i26[0], 0)), i26[0], i22[0])), ≥)∧[(-1)Bound*bni_12] + [bni_12]i26[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(9) (i22[0] + i26[0] ≥ 0∧i26[0] ≥ 0∧i22[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD570(&&(>(i26[0], i22[0]), >(i26[0], 0)), i26[0], i22[0])), ≥)∧[(-1)Bound*bni_12] + [bni_12]i22[0] + [bni_12]i26[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(10) (&&(>(i26[0], i22[0]), >(i26[0], 0))=TRUE∧i26[0]=i26[1]∧i22[0]=i22[1]∧+(i26[1], i22[1])=i22[0]1∧i26[1]=i26[0]1 ⇒ COND_LOAD570(TRUE, i26[1], i22[1])≥NonInfC∧COND_LOAD570(TRUE, i26[1], i22[1])≥LOAD570(i26[1], +(i26[1], i22[1]))∧(UIncreasing(LOAD570(i26[1], +(i26[1], i22[1]))), ≥))
(11) (>(i26[0], i22[0])=TRUE∧>(i26[0], 0)=TRUE ⇒ COND_LOAD570(TRUE, i26[0], i22[0])≥NonInfC∧COND_LOAD570(TRUE, i26[0], i22[0])≥LOAD570(i26[0], +(i26[0], i22[0]))∧(UIncreasing(LOAD570(i26[1], +(i26[1], i22[1]))), ≥))
(12) (i26[0] + [-1] + [-1]i22[0] ≥ 0∧i26[0] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD570(i26[1], +(i26[1], i22[1]))), ≥)∧[(-1)bni_14 + (-1)Bound*bni_14] + [(-1)bni_14]i22[0] + [bni_14]i26[0] ≥ 0∧[(-1)bso_15] + i26[0] ≥ 0)
(13) (i26[0] + [-1] + [-1]i22[0] ≥ 0∧i26[0] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD570(i26[1], +(i26[1], i22[1]))), ≥)∧[(-1)bni_14 + (-1)Bound*bni_14] + [(-1)bni_14]i22[0] + [bni_14]i26[0] ≥ 0∧[(-1)bso_15] + i26[0] ≥ 0)
(14) (i26[0] + [-1] + [-1]i22[0] ≥ 0∧i26[0] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD570(i26[1], +(i26[1], i22[1]))), ≥)∧[(-1)bni_14 + (-1)Bound*bni_14] + [(-1)bni_14]i22[0] + [bni_14]i26[0] ≥ 0∧[(-1)bso_15] + i26[0] ≥ 0)
(15) (i26[0] ≥ 0∧i22[0] + i26[0] ≥ 0 ⇒ (UIncreasing(LOAD570(i26[1], +(i26[1], i22[1]))), ≥)∧[(-1)Bound*bni_14] + [bni_14]i26[0] ≥ 0∧[1 + (-1)bso_15] + i22[0] + i26[0] ≥ 0)
(16) (i26[0] ≥ 0∧i22[0] + i26[0] ≥ 0∧i22[0] ≥ 0 ⇒ (UIncreasing(LOAD570(i26[1], +(i26[1], i22[1]))), ≥)∧[(-1)Bound*bni_14] + [bni_14]i26[0] ≥ 0∧[1 + (-1)bso_15] + i22[0] + i26[0] ≥ 0)
(17) (i26[0] ≥ 0∧[-1]i22[0] + i26[0] ≥ 0∧i22[0] ≥ 0 ⇒ (UIncreasing(LOAD570(i26[1], +(i26[1], i22[1]))), ≥)∧[(-1)Bound*bni_14] + [bni_14]i26[0] ≥ 0∧[1 + (-1)bso_15] + [-1]i22[0] + i26[0] ≥ 0)
(18) (i22[0] + i26[0] ≥ 0∧i26[0] ≥ 0∧i22[0] ≥ 0 ⇒ (UIncreasing(LOAD570(i26[1], +(i26[1], i22[1]))), ≥)∧[(-1)Bound*bni_14] + [bni_14]i22[0] + [bni_14]i26[0] ≥ 0∧[1 + (-1)bso_15] + i26[0] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(LOAD570(x1, x2)) = [-1] + [-1]x2 + x1
POL(COND_LOAD570(x1, x2, x3)) = [-1] + [-1]x3 + x2
POL(&&(x1, x2)) = [1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(+(x1, x2)) = x1 + x2
COND_LOAD570(TRUE, i26[1], i22[1]) → LOAD570(i26[1], +(i26[1], i22[1]))
LOAD570(i26[0], i22[0]) → COND_LOAD570(&&(>(i26[0], i22[0]), >(i26[0], 0)), i26[0], i22[0])
COND_LOAD570(TRUE, i26[1], i22[1]) → LOAD570(i26[1], +(i26[1], i22[1]))
LOAD570(i26[0], i22[0]) → COND_LOAD570(&&(>(i26[0], i22[0]), >(i26[0], 0)), i26[0], i22[0])
&&(TRUE, FALSE)1 → FALSE1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |