(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: PastaB3
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/

public class PastaB3 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();

if (x > 0) {
while (x > y) {
y = x+y;
}
}
}
}


public class Random {
static String[] args;
static int index = 0;

public static int random() {
String string = args[index];
index++;
return string.length();
}
}


(1) JBC2FIG (SOUND transformation)

Constructed FIGraph.

(2) Obligation:

FIGraph based on JBC Program:
Graph of 192 nodes with 1 SCC.

(3) FIGtoITRSProof (SOUND transformation)

Transformed FIGraph to ITRS rules

(4) Obligation:

ITRS problem:

The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean

The TRS R consists of the following rules:
Load570(i26, i22) → Cond_Load570(i26 > i22 && i26 > 0, i26, i22)
Cond_Load570(TRUE, i26, i22) → Load570(i26, i26 + i22)
The set Q consists of the following terms:
Load570(x0, x1)
Cond_Load570(TRUE, x0, x1)

(5) ITRStoIDPProof (EQUIVALENT transformation)

Added dependency pairs

(6) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


The ITRS R consists of the following rules:
Load570(i26, i22) → Cond_Load570(i26 > i22 && i26 > 0, i26, i22)
Cond_Load570(TRUE, i26, i22) → Load570(i26, i26 + i22)

The integer pair graph contains the following rules and edges:
(0): LOAD570(i26[0], i22[0]) → COND_LOAD570(i26[0] > i22[0] && i26[0] > 0, i26[0], i22[0])
(1): COND_LOAD570(TRUE, i26[1], i22[1]) → LOAD570(i26[1], i26[1] + i22[1])

(0) -> (1), if ((i26[0] > i22[0] && i26[0] > 0* TRUE)∧(i26[0]* i26[1])∧(i22[0]* i22[1]))


(1) -> (0), if ((i26[1] + i22[1]* i22[0])∧(i26[1]* i26[0]))



The set Q consists of the following terms:
Load570(x0, x1)
Cond_Load570(TRUE, x0, x1)

(7) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(8) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): LOAD570(i26[0], i22[0]) → COND_LOAD570(i26[0] > i22[0] && i26[0] > 0, i26[0], i22[0])
(1): COND_LOAD570(TRUE, i26[1], i22[1]) → LOAD570(i26[1], i26[1] + i22[1])

(0) -> (1), if ((i26[0] > i22[0] && i26[0] > 0* TRUE)∧(i26[0]* i26[1])∧(i22[0]* i22[1]))


(1) -> (0), if ((i26[1] + i22[1]* i22[0])∧(i26[1]* i26[0]))



The set Q consists of the following terms:
Load570(x0, x1)
Cond_Load570(TRUE, x0, x1)

(9) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair LOAD570(i26, i22) → COND_LOAD570(&&(>(i26, i22), >(i26, 0)), i26, i22) the following chains were created:
  • We consider the chain LOAD570(i26[0], i22[0]) → COND_LOAD570(&&(>(i26[0], i22[0]), >(i26[0], 0)), i26[0], i22[0]), COND_LOAD570(TRUE, i26[1], i22[1]) → LOAD570(i26[1], +(i26[1], i22[1])) which results in the following constraint:

    (1)    (&&(>(i26[0], i22[0]), >(i26[0], 0))=TRUEi26[0]=i26[1]i22[0]=i22[1]LOAD570(i26[0], i22[0])≥NonInfC∧LOAD570(i26[0], i22[0])≥COND_LOAD570(&&(>(i26[0], i22[0]), >(i26[0], 0)), i26[0], i22[0])∧(UIncreasing(COND_LOAD570(&&(>(i26[0], i22[0]), >(i26[0], 0)), i26[0], i22[0])), ≥))



    We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (>(i26[0], i22[0])=TRUE>(i26[0], 0)=TRUELOAD570(i26[0], i22[0])≥NonInfC∧LOAD570(i26[0], i22[0])≥COND_LOAD570(&&(>(i26[0], i22[0]), >(i26[0], 0)), i26[0], i22[0])∧(UIncreasing(COND_LOAD570(&&(>(i26[0], i22[0]), >(i26[0], 0)), i26[0], i22[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (i26[0] + [-1] + [-1]i22[0] ≥ 0∧i26[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD570(&&(>(i26[0], i22[0]), >(i26[0], 0)), i26[0], i22[0])), ≥)∧[(-1)bni_12 + (-1)Bound*bni_12] + [(-1)bni_12]i22[0] + [bni_12]i26[0] ≥ 0∧[(-1)bso_13] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (i26[0] + [-1] + [-1]i22[0] ≥ 0∧i26[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD570(&&(>(i26[0], i22[0]), >(i26[0], 0)), i26[0], i22[0])), ≥)∧[(-1)bni_12 + (-1)Bound*bni_12] + [(-1)bni_12]i22[0] + [bni_12]i26[0] ≥ 0∧[(-1)bso_13] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (i26[0] + [-1] + [-1]i22[0] ≥ 0∧i26[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD570(&&(>(i26[0], i22[0]), >(i26[0], 0)), i26[0], i22[0])), ≥)∧[(-1)bni_12 + (-1)Bound*bni_12] + [(-1)bni_12]i22[0] + [bni_12]i26[0] ≥ 0∧[(-1)bso_13] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (i26[0] ≥ 0∧i22[0] + i26[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD570(&&(>(i26[0], i22[0]), >(i26[0], 0)), i26[0], i22[0])), ≥)∧[(-1)Bound*bni_12] + [bni_12]i26[0] ≥ 0∧[(-1)bso_13] ≥ 0)



    We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (7)    (i26[0] ≥ 0∧i22[0] + i26[0] ≥ 0∧i22[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD570(&&(>(i26[0], i22[0]), >(i26[0], 0)), i26[0], i22[0])), ≥)∧[(-1)Bound*bni_12] + [bni_12]i26[0] ≥ 0∧[(-1)bso_13] ≥ 0)


    (8)    (i26[0] ≥ 0∧[-1]i22[0] + i26[0] ≥ 0∧i22[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD570(&&(>(i26[0], i22[0]), >(i26[0], 0)), i26[0], i22[0])), ≥)∧[(-1)Bound*bni_12] + [bni_12]i26[0] ≥ 0∧[(-1)bso_13] ≥ 0)



    We simplified constraint (8) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (9)    (i22[0] + i26[0] ≥ 0∧i26[0] ≥ 0∧i22[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD570(&&(>(i26[0], i22[0]), >(i26[0], 0)), i26[0], i22[0])), ≥)∧[(-1)Bound*bni_12] + [bni_12]i22[0] + [bni_12]i26[0] ≥ 0∧[(-1)bso_13] ≥ 0)







For Pair COND_LOAD570(TRUE, i26, i22) → LOAD570(i26, +(i26, i22)) the following chains were created:
  • We consider the chain LOAD570(i26[0], i22[0]) → COND_LOAD570(&&(>(i26[0], i22[0]), >(i26[0], 0)), i26[0], i22[0]), COND_LOAD570(TRUE, i26[1], i22[1]) → LOAD570(i26[1], +(i26[1], i22[1])), LOAD570(i26[0], i22[0]) → COND_LOAD570(&&(>(i26[0], i22[0]), >(i26[0], 0)), i26[0], i22[0]) which results in the following constraint:

    (10)    (&&(>(i26[0], i22[0]), >(i26[0], 0))=TRUEi26[0]=i26[1]i22[0]=i22[1]+(i26[1], i22[1])=i22[0]1i26[1]=i26[0]1COND_LOAD570(TRUE, i26[1], i22[1])≥NonInfC∧COND_LOAD570(TRUE, i26[1], i22[1])≥LOAD570(i26[1], +(i26[1], i22[1]))∧(UIncreasing(LOAD570(i26[1], +(i26[1], i22[1]))), ≥))



    We simplified constraint (10) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (11)    (>(i26[0], i22[0])=TRUE>(i26[0], 0)=TRUECOND_LOAD570(TRUE, i26[0], i22[0])≥NonInfC∧COND_LOAD570(TRUE, i26[0], i22[0])≥LOAD570(i26[0], +(i26[0], i22[0]))∧(UIncreasing(LOAD570(i26[1], +(i26[1], i22[1]))), ≥))



    We simplified constraint (11) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (12)    (i26[0] + [-1] + [-1]i22[0] ≥ 0∧i26[0] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD570(i26[1], +(i26[1], i22[1]))), ≥)∧[(-1)bni_14 + (-1)Bound*bni_14] + [(-1)bni_14]i22[0] + [bni_14]i26[0] ≥ 0∧[(-1)bso_15] + i26[0] ≥ 0)



    We simplified constraint (12) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (13)    (i26[0] + [-1] + [-1]i22[0] ≥ 0∧i26[0] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD570(i26[1], +(i26[1], i22[1]))), ≥)∧[(-1)bni_14 + (-1)Bound*bni_14] + [(-1)bni_14]i22[0] + [bni_14]i26[0] ≥ 0∧[(-1)bso_15] + i26[0] ≥ 0)



    We simplified constraint (13) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (14)    (i26[0] + [-1] + [-1]i22[0] ≥ 0∧i26[0] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD570(i26[1], +(i26[1], i22[1]))), ≥)∧[(-1)bni_14 + (-1)Bound*bni_14] + [(-1)bni_14]i22[0] + [bni_14]i26[0] ≥ 0∧[(-1)bso_15] + i26[0] ≥ 0)



    We simplified constraint (14) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (15)    (i26[0] ≥ 0∧i22[0] + i26[0] ≥ 0 ⇒ (UIncreasing(LOAD570(i26[1], +(i26[1], i22[1]))), ≥)∧[(-1)Bound*bni_14] + [bni_14]i26[0] ≥ 0∧[1 + (-1)bso_15] + i22[0] + i26[0] ≥ 0)



    We simplified constraint (15) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (16)    (i26[0] ≥ 0∧i22[0] + i26[0] ≥ 0∧i22[0] ≥ 0 ⇒ (UIncreasing(LOAD570(i26[1], +(i26[1], i22[1]))), ≥)∧[(-1)Bound*bni_14] + [bni_14]i26[0] ≥ 0∧[1 + (-1)bso_15] + i22[0] + i26[0] ≥ 0)


    (17)    (i26[0] ≥ 0∧[-1]i22[0] + i26[0] ≥ 0∧i22[0] ≥ 0 ⇒ (UIncreasing(LOAD570(i26[1], +(i26[1], i22[1]))), ≥)∧[(-1)Bound*bni_14] + [bni_14]i26[0] ≥ 0∧[1 + (-1)bso_15] + [-1]i22[0] + i26[0] ≥ 0)



    We simplified constraint (17) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (18)    (i22[0] + i26[0] ≥ 0∧i26[0] ≥ 0∧i22[0] ≥ 0 ⇒ (UIncreasing(LOAD570(i26[1], +(i26[1], i22[1]))), ≥)∧[(-1)Bound*bni_14] + [bni_14]i22[0] + [bni_14]i26[0] ≥ 0∧[1 + (-1)bso_15] + i26[0] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • LOAD570(i26, i22) → COND_LOAD570(&&(>(i26, i22), >(i26, 0)), i26, i22)
    • (i26[0] ≥ 0∧i22[0] + i26[0] ≥ 0∧i22[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD570(&&(>(i26[0], i22[0]), >(i26[0], 0)), i26[0], i22[0])), ≥)∧[(-1)Bound*bni_12] + [bni_12]i26[0] ≥ 0∧[(-1)bso_13] ≥ 0)
    • (i22[0] + i26[0] ≥ 0∧i26[0] ≥ 0∧i22[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD570(&&(>(i26[0], i22[0]), >(i26[0], 0)), i26[0], i22[0])), ≥)∧[(-1)Bound*bni_12] + [bni_12]i22[0] + [bni_12]i26[0] ≥ 0∧[(-1)bso_13] ≥ 0)

  • COND_LOAD570(TRUE, i26, i22) → LOAD570(i26, +(i26, i22))
    • (i26[0] ≥ 0∧i22[0] + i26[0] ≥ 0∧i22[0] ≥ 0 ⇒ (UIncreasing(LOAD570(i26[1], +(i26[1], i22[1]))), ≥)∧[(-1)Bound*bni_14] + [bni_14]i26[0] ≥ 0∧[1 + (-1)bso_15] + i22[0] + i26[0] ≥ 0)
    • (i22[0] + i26[0] ≥ 0∧i26[0] ≥ 0∧i22[0] ≥ 0 ⇒ (UIncreasing(LOAD570(i26[1], +(i26[1], i22[1]))), ≥)∧[(-1)Bound*bni_14] + [bni_14]i22[0] + [bni_14]i26[0] ≥ 0∧[1 + (-1)bso_15] + i26[0] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(LOAD570(x1, x2)) = [-1] + [-1]x2 + x1   
POL(COND_LOAD570(x1, x2, x3)) = [-1] + [-1]x3 + x2   
POL(&&(x1, x2)) = [1]   
POL(>(x1, x2)) = [-1]   
POL(0) = 0   
POL(+(x1, x2)) = x1 + x2   

The following pairs are in P>:

COND_LOAD570(TRUE, i26[1], i22[1]) → LOAD570(i26[1], +(i26[1], i22[1]))

The following pairs are in Pbound:

LOAD570(i26[0], i22[0]) → COND_LOAD570(&&(>(i26[0], i22[0]), >(i26[0], 0)), i26[0], i22[0])
COND_LOAD570(TRUE, i26[1], i22[1]) → LOAD570(i26[1], +(i26[1], i22[1]))

The following pairs are in P:

LOAD570(i26[0], i22[0]) → COND_LOAD570(&&(>(i26[0], i22[0]), >(i26[0], 0)), i26[0], i22[0])

At least the following rules have been oriented under context sensitive arithmetic replacement:

&&(TRUE, FALSE)1FALSE1

(10) Complex Obligation (AND)

(11) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): LOAD570(i26[0], i22[0]) → COND_LOAD570(i26[0] > i22[0] && i26[0] > 0, i26[0], i22[0])


The set Q consists of the following terms:
Load570(x0, x1)
Cond_Load570(TRUE, x0, x1)

(12) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(13) TRUE

(14) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:
none


R is empty.

The integer pair graph is empty.

The set Q consists of the following terms:
Load570(x0, x1)
Cond_Load570(TRUE, x0, x1)

(15) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs.

(16) TRUE