0 JBC
↳1 JBC2FIG (⇐)
↳2 FIGraph
↳3 FIGtoITRSProof (⇐)
↳4 ITRS
↳5 ITRStoIDPProof (⇔)
↳6 IDP
↳7 UsableRulesProof (⇔)
↳8 IDP
↳9 ItpfGraphProof (⇔)
↳10 IDP
↳11 IDPNonInfProof (⇐)
↳12 AND
↳13 IDP
↳14 IDependencyGraphProof (⇔)
↳15 IDP
↳16 IDPNonInfProof (⇐)
↳17 AND
↳18 IDP
↳19 IDependencyGraphProof (⇔)
↳20 IDP
↳21 IDPNonInfProof (⇐)
↳22 AND
↳23 IDP
↳24 IDependencyGraphProof (⇔)
↳25 TRUE
↳26 IDP
↳27 IDependencyGraphProof (⇔)
↳28 TRUE
↳29 IDP
↳30 IDependencyGraphProof (⇔)
↳31 TRUE
↳32 IDP
↳33 IDependencyGraphProof (⇔)
↳34 IDP
↳35 IDPNonInfProof (⇐)
↳36 AND
↳37 IDP
↳38 IDependencyGraphProof (⇔)
↳39 TRUE
↳40 IDP
↳41 IDependencyGraphProof (⇔)
↳42 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaB18 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
while (x > 0 && y > 0) {
if (x > y) {
while (x > 0) {
x--;
}
} else {
while (y > 0) {
y--;
}
}
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i88[0] →* i88[1])∧(i88[0] > 0 && i88[0] + -1 > 0 →* TRUE)∧(i80[0] →* i80[1]))
(1) -> (0), if ((i80[1] →* i80[0])∧(i88[1] + -1 →* i88[0]))
(1) -> (4), if ((i88[1] + -1 →* 1)∧(i80[1] →* i80[4]))
(2) -> (3), if ((i88[2] →* i88[3])∧(i80[2] →* i80[3])∧(i80[2] > 0 && i80[2] <= i88[2] && i88[2] + -1 > 0 →* TRUE))
(3) -> (0), if ((i88[3] + -1 →* i88[0])∧(i80[3] →* i80[0]))
(3) -> (4), if ((i80[3] →* i80[4])∧(i88[3] + -1 →* 1))
(4) -> (5), if ((1 > 0 →* TRUE)∧(i80[4] →* i80[5]))
(5) -> (2), if ((0 →* i88[2])∧(i80[5] →* i80[2]))
(5) -> (6), if ((i80[5] →* i80[6])∧(0 →* 1))
(5) -> (10), if ((i80[5] →* 1)∧(0 →* i88[10]))
(5) -> (14), if ((0 →* i88[14])∧(i80[5] →* i80[14]))
(6) -> (7), if ((i80[6] > 0 && i80[6] <= 1 →* TRUE)∧(i80[6] →* i80[7]))
(7) -> (2), if ((i80[7] →* i80[2])∧(0 →* i88[2]))
(7) -> (6), if ((i80[7] →* i80[6])∧(0 →* 1))
(7) -> (10), if ((0 →* i88[10])∧(i80[7] →* 1))
(7) -> (14), if ((i80[7] →* i80[14])∧(0 →* i88[14]))
(8) -> (9), if ((i88[8] →* i88[9])∧(1 > 0 →* TRUE))
(9) -> (2), if ((0 →* i80[2])∧(i88[9] →* i88[2]))
(9) -> (6), if ((0 →* i80[6])∧(i88[9] →* 1))
(9) -> (10), if ((0 →* 1)∧(i88[9] →* i88[10]))
(9) -> (14), if ((0 →* i80[14])∧(i88[9] →* i88[14]))
(10) -> (11), if ((i88[10] > 0 && 1 > i88[10] →* TRUE)∧(i88[10] →* i88[11]))
(11) -> (2), if ((i88[11] →* i88[2])∧(0 →* i80[2]))
(11) -> (6), if ((0 →* i80[6])∧(i88[11] →* 1))
(11) -> (10), if ((0 →* 1)∧(i88[11] →* i88[10]))
(11) -> (14), if ((i88[11] →* i88[14])∧(0 →* i80[14]))
(12) -> (13), if ((i88[12] →* i88[13])∧(i80[12] →* i80[13])∧(i80[12] > 0 && i80[12] + -1 > 0 →* TRUE))
(13) -> (8), if ((i88[13] →* i88[8])∧(i80[13] + -1 →* 1))
(13) -> (12), if ((i88[13] →* i88[12])∧(i80[13] + -1 →* i80[12]))
(14) -> (15), if ((i88[14] > 0 && i80[14] > i88[14] →* TRUE)∧(i80[14] →* i80[15])∧(i88[14] →* i88[15]))
(15) -> (8), if ((i80[15] + -1 →* 1)∧(i88[15] →* i88[8]))
(15) -> (12), if ((i80[15] + -1 →* i80[12])∧(i88[15] →* i88[12]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i88[0] →* i88[1])∧(i88[0] > 0 && i88[0] + -1 > 0 →* TRUE)∧(i80[0] →* i80[1]))
(1) -> (0), if ((i80[1] →* i80[0])∧(i88[1] + -1 →* i88[0]))
(1) -> (4), if ((i88[1] + -1 →* 1)∧(i80[1] →* i80[4]))
(2) -> (3), if ((i88[2] →* i88[3])∧(i80[2] →* i80[3])∧(i80[2] > 0 && i80[2] <= i88[2] && i88[2] + -1 > 0 →* TRUE))
(3) -> (0), if ((i88[3] + -1 →* i88[0])∧(i80[3] →* i80[0]))
(3) -> (4), if ((i80[3] →* i80[4])∧(i88[3] + -1 →* 1))
(4) -> (5), if ((1 > 0 →* TRUE)∧(i80[4] →* i80[5]))
(5) -> (2), if ((0 →* i88[2])∧(i80[5] →* i80[2]))
(5) -> (6), if ((i80[5] →* i80[6])∧(0 →* 1))
(5) -> (10), if ((i80[5] →* 1)∧(0 →* i88[10]))
(5) -> (14), if ((0 →* i88[14])∧(i80[5] →* i80[14]))
(6) -> (7), if ((i80[6] > 0 && i80[6] <= 1 →* TRUE)∧(i80[6] →* i80[7]))
(7) -> (2), if ((i80[7] →* i80[2])∧(0 →* i88[2]))
(7) -> (6), if ((i80[7] →* i80[6])∧(0 →* 1))
(7) -> (10), if ((0 →* i88[10])∧(i80[7] →* 1))
(7) -> (14), if ((i80[7] →* i80[14])∧(0 →* i88[14]))
(8) -> (9), if ((i88[8] →* i88[9])∧(1 > 0 →* TRUE))
(9) -> (2), if ((0 →* i80[2])∧(i88[9] →* i88[2]))
(9) -> (6), if ((0 →* i80[6])∧(i88[9] →* 1))
(9) -> (10), if ((0 →* 1)∧(i88[9] →* i88[10]))
(9) -> (14), if ((0 →* i80[14])∧(i88[9] →* i88[14]))
(10) -> (11), if ((i88[10] > 0 && 1 > i88[10] →* TRUE)∧(i88[10] →* i88[11]))
(11) -> (2), if ((i88[11] →* i88[2])∧(0 →* i80[2]))
(11) -> (6), if ((0 →* i80[6])∧(i88[11] →* 1))
(11) -> (10), if ((0 →* 1)∧(i88[11] →* i88[10]))
(11) -> (14), if ((i88[11] →* i88[14])∧(0 →* i80[14]))
(12) -> (13), if ((i88[12] →* i88[13])∧(i80[12] →* i80[13])∧(i80[12] > 0 && i80[12] + -1 > 0 →* TRUE))
(13) -> (8), if ((i88[13] →* i88[8])∧(i80[13] + -1 →* 1))
(13) -> (12), if ((i88[13] →* i88[12])∧(i80[13] + -1 →* i80[12]))
(14) -> (15), if ((i88[14] > 0 && i80[14] > i88[14] →* TRUE)∧(i80[14] →* i80[15])∧(i88[14] →* i88[15]))
(15) -> (8), if ((i80[15] + -1 →* 1)∧(i88[15] →* i88[8]))
(15) -> (12), if ((i80[15] + -1 →* i80[12])∧(i88[15] →* i88[12]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i88[0] →* i88[1])∧(i88[0] > 0 && i88[0] + -1 > 0 →* TRUE)∧(i80[0] →* i80[1]))
(1) -> (0), if ((i80[1] →* i80[0])∧(i88[1] + -1 →* i88[0]))
(1) -> (4), if ((i88[1] + -1 →* 1)∧(i80[1] →* i80[4]))
(2) -> (3), if ((i88[2] →* i88[3])∧(i80[2] →* i80[3])∧(i80[2] > 0 && i80[2] <= i88[2] && i88[2] + -1 > 0 →* TRUE))
(3) -> (0), if ((i88[3] + -1 →* i88[0])∧(i80[3] →* i80[0]))
(3) -> (4), if ((i80[3] →* i80[4])∧(i88[3] + -1 →* 1))
(4) -> (5), if ((1 > 0 →* TRUE)∧(i80[4] →* i80[5]))
(5) -> (2), if ((0 →* i88[2])∧(i80[5] →* i80[2]))
(5) -> (10), if ((i80[5] →* 1)∧(0 →* i88[10]))
(5) -> (14), if ((0 →* i88[14])∧(i80[5] →* i80[14]))
(6) -> (7), if ((i80[6] > 0 && i80[6] <= 1 →* TRUE)∧(i80[6] →* i80[7]))
(7) -> (2), if ((i80[7] →* i80[2])∧(0 →* i88[2]))
(7) -> (10), if ((0 →* i88[10])∧(i80[7] →* 1))
(7) -> (14), if ((i80[7] →* i80[14])∧(0 →* i88[14]))
(8) -> (9), if ((i88[8] →* i88[9])∧(1 > 0 →* TRUE))
(9) -> (2), if ((0 →* i80[2])∧(i88[9] →* i88[2]))
(9) -> (6), if ((0 →* i80[6])∧(i88[9] →* 1))
(9) -> (14), if ((0 →* i80[14])∧(i88[9] →* i88[14]))
(10) -> (11), if ((i88[10] > 0 && 1 > i88[10] →* TRUE)∧(i88[10] →* i88[11]))
(11) -> (2), if ((i88[11] →* i88[2])∧(0 →* i80[2]))
(11) -> (6), if ((0 →* i80[6])∧(i88[11] →* 1))
(11) -> (14), if ((i88[11] →* i88[14])∧(0 →* i80[14]))
(12) -> (13), if ((i88[12] →* i88[13])∧(i80[12] →* i80[13])∧(i80[12] > 0 && i80[12] + -1 > 0 →* TRUE))
(13) -> (8), if ((i88[13] →* i88[8])∧(i80[13] + -1 →* 1))
(13) -> (12), if ((i88[13] →* i88[12])∧(i80[13] + -1 →* i80[12]))
(14) -> (15), if ((i88[14] > 0 && i80[14] > i88[14] →* TRUE)∧(i80[14] →* i80[15])∧(i88[14] →* i88[15]))
(15) -> (8), if ((i80[15] + -1 →* 1)∧(i88[15] →* i88[8]))
(15) -> (12), if ((i80[15] + -1 →* i80[12])∧(i88[15] →* i88[12]))
(5) -> (6), if ((i80[5] →* i80[6])∧false)
(7) -> (6), if ((i80[7] →* i80[6])∧false)
(9) -> (10), if (false∧(i88[9] →* i88[10]))
(11) -> (10), if (false∧(i88[11] →* i88[10]))
(1) (i88[0]=i88[1]∧&&(>(i88[0], 0), >(+(i88[0], -1), 0))=TRUE∧i80[0]=i80[1] ⇒ LE1011'(i80[0], i88[0], i88[0])≥NonInfC∧LE1011'(i80[0], i88[0], i88[0])≥COND_LE1011(&&(>(i88[0], 0), >(+(i88[0], -1), 0)), i80[0], i88[0], i88[0])∧(UIncreasing(COND_LE1011(&&(>(i88[0], 0), >(+(i88[0], -1), 0)), i80[0], i88[0], i88[0])), ≥))
(2) (>(i88[0], 0)=TRUE∧>(+(i88[0], -1), 0)=TRUE ⇒ LE1011'(i80[0], i88[0], i88[0])≥NonInfC∧LE1011'(i80[0], i88[0], i88[0])≥COND_LE1011(&&(>(i88[0], 0), >(+(i88[0], -1), 0)), i80[0], i88[0], i88[0])∧(UIncreasing(COND_LE1011(&&(>(i88[0], 0), >(+(i88[0], -1), 0)), i80[0], i88[0], i88[0])), ≥))
(3) (i88[0] + [-1] ≥ 0∧i88[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_LE1011(&&(>(i88[0], 0), >(+(i88[0], -1), 0)), i80[0], i88[0], i88[0])), ≥)∧[(-1)bni_29 + (-1)Bound*bni_29] + [bni_29]i88[0] ≥ 0∧[(-1)bso_30] ≥ 0)
(4) (i88[0] + [-1] ≥ 0∧i88[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_LE1011(&&(>(i88[0], 0), >(+(i88[0], -1), 0)), i80[0], i88[0], i88[0])), ≥)∧[(-1)bni_29 + (-1)Bound*bni_29] + [bni_29]i88[0] ≥ 0∧[(-1)bso_30] ≥ 0)
(5) (i88[0] + [-1] ≥ 0∧i88[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_LE1011(&&(>(i88[0], 0), >(+(i88[0], -1), 0)), i80[0], i88[0], i88[0])), ≥)∧[(-1)bni_29 + (-1)Bound*bni_29] + [bni_29]i88[0] ≥ 0∧[(-1)bso_30] ≥ 0)
(6) (i88[0] + [-1] ≥ 0∧i88[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_LE1011(&&(>(i88[0], 0), >(+(i88[0], -1), 0)), i80[0], i88[0], i88[0])), ≥)∧0 = 0∧[(-1)bni_29 + (-1)Bound*bni_29] + [bni_29]i88[0] ≥ 0∧0 = 0∧[(-1)bso_30] ≥ 0)
(7) (i88[0] ≥ 0∧[-1] + i88[0] ≥ 0 ⇒ (UIncreasing(COND_LE1011(&&(>(i88[0], 0), >(+(i88[0], -1), 0)), i80[0], i88[0], i88[0])), ≥)∧0 = 0∧[(-1)Bound*bni_29] + [bni_29]i88[0] ≥ 0∧0 = 0∧[(-1)bso_30] ≥ 0)
(8) ([1] + i88[0] ≥ 0∧i88[0] ≥ 0 ⇒ (UIncreasing(COND_LE1011(&&(>(i88[0], 0), >(+(i88[0], -1), 0)), i80[0], i88[0], i88[0])), ≥)∧0 = 0∧[bni_29 + (-1)Bound*bni_29] + [bni_29]i88[0] ≥ 0∧0 = 0∧[(-1)bso_30] ≥ 0)
(9) (COND_LE1011(TRUE, i80[1], i88[1], i88[1])≥NonInfC∧COND_LE1011(TRUE, i80[1], i88[1], i88[1])≥LE1011'(i80[1], +(i88[1], -1), +(i88[1], -1))∧(UIncreasing(LE1011'(i80[1], +(i88[1], -1), +(i88[1], -1))), ≥))
(10) ((UIncreasing(LE1011'(i80[1], +(i88[1], -1), +(i88[1], -1))), ≥)∧[1 + (-1)bso_32] ≥ 0)
(11) ((UIncreasing(LE1011'(i80[1], +(i88[1], -1), +(i88[1], -1))), ≥)∧[1 + (-1)bso_32] ≥ 0)
(12) ((UIncreasing(LE1011'(i80[1], +(i88[1], -1), +(i88[1], -1))), ≥)∧[1 + (-1)bso_32] ≥ 0)
(13) ((UIncreasing(LE1011'(i80[1], +(i88[1], -1), +(i88[1], -1))), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_32] ≥ 0)
(14) (i88[2]=i88[3]∧i80[2]=i80[3]∧&&(&&(>(i80[2], 0), <=(i80[2], i88[2])), >(+(i88[2], -1), 0))=TRUE ⇒ LOAD827(i80[2], i88[2])≥NonInfC∧LOAD827(i80[2], i88[2])≥COND_LOAD827(&&(&&(>(i80[2], 0), <=(i80[2], i88[2])), >(+(i88[2], -1), 0)), i80[2], i88[2])∧(UIncreasing(COND_LOAD827(&&(&&(>(i80[2], 0), <=(i80[2], i88[2])), >(+(i88[2], -1), 0)), i80[2], i88[2])), ≥))
(15) (>(+(i88[2], -1), 0)=TRUE∧>(i80[2], 0)=TRUE∧<=(i80[2], i88[2])=TRUE ⇒ LOAD827(i80[2], i88[2])≥NonInfC∧LOAD827(i80[2], i88[2])≥COND_LOAD827(&&(&&(>(i80[2], 0), <=(i80[2], i88[2])), >(+(i88[2], -1), 0)), i80[2], i88[2])∧(UIncreasing(COND_LOAD827(&&(&&(>(i80[2], 0), <=(i80[2], i88[2])), >(+(i88[2], -1), 0)), i80[2], i88[2])), ≥))
(16) (i88[2] + [-2] ≥ 0∧i80[2] + [-1] ≥ 0∧i88[2] + [-1]i80[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD827(&&(&&(>(i80[2], 0), <=(i80[2], i88[2])), >(+(i88[2], -1), 0)), i80[2], i88[2])), ≥)∧[(-1)bni_33 + (-1)Bound*bni_33] + [bni_33]i88[2] ≥ 0∧[(-1)bso_34] ≥ 0)
(17) (i88[2] + [-2] ≥ 0∧i80[2] + [-1] ≥ 0∧i88[2] + [-1]i80[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD827(&&(&&(>(i80[2], 0), <=(i80[2], i88[2])), >(+(i88[2], -1), 0)), i80[2], i88[2])), ≥)∧[(-1)bni_33 + (-1)Bound*bni_33] + [bni_33]i88[2] ≥ 0∧[(-1)bso_34] ≥ 0)
(18) (i88[2] + [-2] ≥ 0∧i80[2] + [-1] ≥ 0∧i88[2] + [-1]i80[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD827(&&(&&(>(i80[2], 0), <=(i80[2], i88[2])), >(+(i88[2], -1), 0)), i80[2], i88[2])), ≥)∧[(-1)bni_33 + (-1)Bound*bni_33] + [bni_33]i88[2] ≥ 0∧[(-1)bso_34] ≥ 0)
(19) (i88[2] ≥ 0∧i80[2] + [-1] ≥ 0∧[2] + i88[2] + [-1]i80[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD827(&&(&&(>(i80[2], 0), <=(i80[2], i88[2])), >(+(i88[2], -1), 0)), i80[2], i88[2])), ≥)∧[bni_33 + (-1)Bound*bni_33] + [bni_33]i88[2] ≥ 0∧[(-1)bso_34] ≥ 0)
(20) (i88[2] ≥ 0∧i80[2] ≥ 0∧[1] + i88[2] + [-1]i80[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD827(&&(&&(>(i80[2], 0), <=(i80[2], i88[2])), >(+(i88[2], -1), 0)), i80[2], i88[2])), ≥)∧[bni_33 + (-1)Bound*bni_33] + [bni_33]i88[2] ≥ 0∧[(-1)bso_34] ≥ 0)
(21) (COND_LOAD827(TRUE, i80[3], i88[3])≥NonInfC∧COND_LOAD827(TRUE, i80[3], i88[3])≥LE1011'(i80[3], +(i88[3], -1), +(i88[3], -1))∧(UIncreasing(LE1011'(i80[3], +(i88[3], -1), +(i88[3], -1))), ≥))
(22) ((UIncreasing(LE1011'(i80[3], +(i88[3], -1), +(i88[3], -1))), ≥)∧[1 + (-1)bso_36] ≥ 0)
(23) ((UIncreasing(LE1011'(i80[3], +(i88[3], -1), +(i88[3], -1))), ≥)∧[1 + (-1)bso_36] ≥ 0)
(24) ((UIncreasing(LE1011'(i80[3], +(i88[3], -1), +(i88[3], -1))), ≥)∧[1 + (-1)bso_36] ≥ 0)
(25) ((UIncreasing(LE1011'(i80[3], +(i88[3], -1), +(i88[3], -1))), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_36] ≥ 0)
(26) (>(1, 0)=TRUE∧i80[4]=i80[5] ⇒ LE1011'(i80[4], 1, 1)≥NonInfC∧LE1011'(i80[4], 1, 1)≥COND_LE10111(>(1, 0), i80[4], 1, 1)∧(UIncreasing(COND_LE10111(>(1, 0), i80[4], 1, 1)), ≥))
(27) (LE1011'(i80[4], 1, 1)≥NonInfC∧LE1011'(i80[4], 1, 1)≥COND_LE10111(>(1, 0), i80[4], 1, 1)∧(UIncreasing(COND_LE10111(>(1, 0), i80[4], 1, 1)), ≥))
(28) ((UIncreasing(COND_LE10111(>(1, 0), i80[4], 1, 1)), ≥)∧[(-1)bso_38] ≥ 0)
(29) ((UIncreasing(COND_LE10111(>(1, 0), i80[4], 1, 1)), ≥)∧[(-1)bso_38] ≥ 0)
(30) ((UIncreasing(COND_LE10111(>(1, 0), i80[4], 1, 1)), ≥)∧[(-1)bso_38] ≥ 0)
(31) ((UIncreasing(COND_LE10111(>(1, 0), i80[4], 1, 1)), ≥)∧0 = 0∧[(-1)bso_38] ≥ 0)
(32) (COND_LE10111(TRUE, i80[5], 1, 1)≥NonInfC∧COND_LE10111(TRUE, i80[5], 1, 1)≥LOAD827(i80[5], 0)∧(UIncreasing(LOAD827(i80[5], 0)), ≥))
(33) ((UIncreasing(LOAD827(i80[5], 0)), ≥)∧[1 + (-1)bso_40] ≥ 0)
(34) ((UIncreasing(LOAD827(i80[5], 0)), ≥)∧[1 + (-1)bso_40] ≥ 0)
(35) ((UIncreasing(LOAD827(i80[5], 0)), ≥)∧[1 + (-1)bso_40] ≥ 0)
(36) ((UIncreasing(LOAD827(i80[5], 0)), ≥)∧0 = 0∧[1 + (-1)bso_40] ≥ 0)
(37) (&&(>(i80[6], 0), <=(i80[6], 1))=TRUE∧i80[6]=i80[7] ⇒ LOAD827(i80[6], 1)≥NonInfC∧LOAD827(i80[6], 1)≥COND_LOAD8271(&&(>(i80[6], 0), <=(i80[6], 1)), i80[6], 1)∧(UIncreasing(COND_LOAD8271(&&(>(i80[6], 0), <=(i80[6], 1)), i80[6], 1)), ≥))
(38) (>(i80[6], 0)=TRUE∧<=(i80[6], 1)=TRUE ⇒ LOAD827(i80[6], 1)≥NonInfC∧LOAD827(i80[6], 1)≥COND_LOAD8271(&&(>(i80[6], 0), <=(i80[6], 1)), i80[6], 1)∧(UIncreasing(COND_LOAD8271(&&(>(i80[6], 0), <=(i80[6], 1)), i80[6], 1)), ≥))
(39) (i80[6] + [-1] ≥ 0∧[1] + [-1]i80[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD8271(&&(>(i80[6], 0), <=(i80[6], 1)), i80[6], 1)), ≥)∧[(-1)Bound*bni_41] ≥ 0∧[1 + (-1)bso_42] ≥ 0)
(40) (i80[6] + [-1] ≥ 0∧[1] + [-1]i80[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD8271(&&(>(i80[6], 0), <=(i80[6], 1)), i80[6], 1)), ≥)∧[(-1)Bound*bni_41] ≥ 0∧[1 + (-1)bso_42] ≥ 0)
(41) (i80[6] + [-1] ≥ 0∧[1] + [-1]i80[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD8271(&&(>(i80[6], 0), <=(i80[6], 1)), i80[6], 1)), ≥)∧[(-1)Bound*bni_41] ≥ 0∧[1 + (-1)bso_42] ≥ 0)
(42) (i80[6] ≥ 0∧[-1]i80[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD8271(&&(>(i80[6], 0), <=(i80[6], 1)), i80[6], 1)), ≥)∧[(-1)Bound*bni_41] ≥ 0∧[1 + (-1)bso_42] ≥ 0)
(43) (0 ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(COND_LOAD8271(&&(>(i80[6], 0), <=(i80[6], 1)), i80[6], 1)), ≥)∧[(-1)Bound*bni_41] ≥ 0∧[1 + (-1)bso_42] ≥ 0)
(44) (COND_LOAD8271(TRUE, i80[7], 1)≥NonInfC∧COND_LOAD8271(TRUE, i80[7], 1)≥LOAD827(i80[7], 0)∧(UIncreasing(LOAD827(i80[7], 0)), ≥))
(45) ((UIncreasing(LOAD827(i80[7], 0)), ≥)∧[(-1)bso_44] ≥ 0)
(46) ((UIncreasing(LOAD827(i80[7], 0)), ≥)∧[(-1)bso_44] ≥ 0)
(47) ((UIncreasing(LOAD827(i80[7], 0)), ≥)∧[(-1)bso_44] ≥ 0)
(48) ((UIncreasing(LOAD827(i80[7], 0)), ≥)∧0 = 0∧[(-1)bso_44] ≥ 0)
(49) (i88[8]=i88[9]∧>(1, 0)=TRUE ⇒ LE1012'(1, i88[8], 1)≥NonInfC∧LE1012'(1, i88[8], 1)≥COND_LE1012(>(1, 0), 1, i88[8], 1)∧(UIncreasing(COND_LE1012(>(1, 0), 1, i88[8], 1)), ≥))
(50) (LE1012'(1, i88[8], 1)≥NonInfC∧LE1012'(1, i88[8], 1)≥COND_LE1012(>(1, 0), 1, i88[8], 1)∧(UIncreasing(COND_LE1012(>(1, 0), 1, i88[8], 1)), ≥))
(51) ((UIncreasing(COND_LE1012(>(1, 0), 1, i88[8], 1)), ≥)∧[(-1)bso_46] ≥ 0)
(52) ((UIncreasing(COND_LE1012(>(1, 0), 1, i88[8], 1)), ≥)∧[(-1)bso_46] ≥ 0)
(53) ((UIncreasing(COND_LE1012(>(1, 0), 1, i88[8], 1)), ≥)∧[(-1)bso_46] ≥ 0)
(54) ((UIncreasing(COND_LE1012(>(1, 0), 1, i88[8], 1)), ≥)∧0 = 0∧[(-1)bso_46] ≥ 0)
(55) (COND_LE1012(TRUE, 1, i88[9], 1)≥NonInfC∧COND_LE1012(TRUE, 1, i88[9], 1)≥LOAD827(0, i88[9])∧(UIncreasing(LOAD827(0, i88[9])), ≥))
(56) ((UIncreasing(LOAD827(0, i88[9])), ≥)∧[(-1)bso_48] ≥ 0)
(57) ((UIncreasing(LOAD827(0, i88[9])), ≥)∧[(-1)bso_48] ≥ 0)
(58) ((UIncreasing(LOAD827(0, i88[9])), ≥)∧[(-1)bso_48] ≥ 0)
(59) ((UIncreasing(LOAD827(0, i88[9])), ≥)∧0 = 0∧[(-1)bso_48] ≥ 0)
(60) (&&(>(i88[10], 0), >(1, i88[10]))=TRUE∧i88[10]=i88[11] ⇒ LOAD827(1, i88[10])≥NonInfC∧LOAD827(1, i88[10])≥COND_LOAD8272(&&(>(i88[10], 0), >(1, i88[10])), 1, i88[10])∧(UIncreasing(COND_LOAD8272(&&(>(i88[10], 0), >(1, i88[10])), 1, i88[10])), ≥))
(61) (>(i88[10], 0)=TRUE∧>(1, i88[10])=TRUE ⇒ LOAD827(1, i88[10])≥NonInfC∧LOAD827(1, i88[10])≥COND_LOAD8272(&&(>(i88[10], 0), >(1, i88[10])), 1, i88[10])∧(UIncreasing(COND_LOAD8272(&&(>(i88[10], 0), >(1, i88[10])), 1, i88[10])), ≥))
(62) (i88[10] + [-1] ≥ 0∧[-1]i88[10] ≥ 0 ⇒ (UIncreasing(COND_LOAD8272(&&(>(i88[10], 0), >(1, i88[10])), 1, i88[10])), ≥)∧[(-1)bni_49 + (-1)Bound*bni_49] + [bni_49]i88[10] ≥ 0∧[(-1)bso_50] ≥ 0)
(63) (i88[10] + [-1] ≥ 0∧[-1]i88[10] ≥ 0 ⇒ (UIncreasing(COND_LOAD8272(&&(>(i88[10], 0), >(1, i88[10])), 1, i88[10])), ≥)∧[(-1)bni_49 + (-1)Bound*bni_49] + [bni_49]i88[10] ≥ 0∧[(-1)bso_50] ≥ 0)
(64) (i88[10] + [-1] ≥ 0∧[-1]i88[10] ≥ 0 ⇒ (UIncreasing(COND_LOAD8272(&&(>(i88[10], 0), >(1, i88[10])), 1, i88[10])), ≥)∧[(-1)bni_49 + (-1)Bound*bni_49] + [bni_49]i88[10] ≥ 0∧[(-1)bso_50] ≥ 0)
(65) (COND_LOAD8272(TRUE, 1, i88[11])≥NonInfC∧COND_LOAD8272(TRUE, 1, i88[11])≥LOAD827(0, i88[11])∧(UIncreasing(LOAD827(0, i88[11])), ≥))
(66) ((UIncreasing(LOAD827(0, i88[11])), ≥)∧[(-1)bso_52] ≥ 0)
(67) ((UIncreasing(LOAD827(0, i88[11])), ≥)∧[(-1)bso_52] ≥ 0)
(68) ((UIncreasing(LOAD827(0, i88[11])), ≥)∧[(-1)bso_52] ≥ 0)
(69) ((UIncreasing(LOAD827(0, i88[11])), ≥)∧0 = 0∧[(-1)bso_52] ≥ 0)
(70) (i88[12]=i88[13]∧i80[12]=i80[13]∧&&(>(i80[12], 0), >(+(i80[12], -1), 0))=TRUE ⇒ LE1012'(i80[12], i88[12], i80[12])≥NonInfC∧LE1012'(i80[12], i88[12], i80[12])≥COND_LE10121(&&(>(i80[12], 0), >(+(i80[12], -1), 0)), i80[12], i88[12], i80[12])∧(UIncreasing(COND_LE10121(&&(>(i80[12], 0), >(+(i80[12], -1), 0)), i80[12], i88[12], i80[12])), ≥))
(71) (>(i80[12], 0)=TRUE∧>(+(i80[12], -1), 0)=TRUE ⇒ LE1012'(i80[12], i88[12], i80[12])≥NonInfC∧LE1012'(i80[12], i88[12], i80[12])≥COND_LE10121(&&(>(i80[12], 0), >(+(i80[12], -1), 0)), i80[12], i88[12], i80[12])∧(UIncreasing(COND_LE10121(&&(>(i80[12], 0), >(+(i80[12], -1), 0)), i80[12], i88[12], i80[12])), ≥))
(72) (i80[12] + [-1] ≥ 0∧i80[12] + [-2] ≥ 0 ⇒ (UIncreasing(COND_LE10121(&&(>(i80[12], 0), >(+(i80[12], -1), 0)), i80[12], i88[12], i80[12])), ≥)∧[(-1)bni_53 + (-1)Bound*bni_53] + [bni_53]i88[12] ≥ 0∧[(-1)bso_54] ≥ 0)
(73) (i80[12] + [-1] ≥ 0∧i80[12] + [-2] ≥ 0 ⇒ (UIncreasing(COND_LE10121(&&(>(i80[12], 0), >(+(i80[12], -1), 0)), i80[12], i88[12], i80[12])), ≥)∧[(-1)bni_53 + (-1)Bound*bni_53] + [bni_53]i88[12] ≥ 0∧[(-1)bso_54] ≥ 0)
(74) (i80[12] + [-1] ≥ 0∧i80[12] + [-2] ≥ 0 ⇒ (UIncreasing(COND_LE10121(&&(>(i80[12], 0), >(+(i80[12], -1), 0)), i80[12], i88[12], i80[12])), ≥)∧[(-1)bni_53 + (-1)Bound*bni_53] + [bni_53]i88[12] ≥ 0∧[(-1)bso_54] ≥ 0)
(75) (i80[12] + [-1] ≥ 0∧i80[12] + [-2] ≥ 0 ⇒ (UIncreasing(COND_LE10121(&&(>(i80[12], 0), >(+(i80[12], -1), 0)), i80[12], i88[12], i80[12])), ≥)∧[bni_53] = 0∧[(-1)bni_53 + (-1)Bound*bni_53] ≥ 0∧0 = 0∧[(-1)bso_54] ≥ 0)
(76) (i80[12] ≥ 0∧[-1] + i80[12] ≥ 0 ⇒ (UIncreasing(COND_LE10121(&&(>(i80[12], 0), >(+(i80[12], -1), 0)), i80[12], i88[12], i80[12])), ≥)∧[bni_53] = 0∧[(-1)bni_53 + (-1)Bound*bni_53] ≥ 0∧0 = 0∧[(-1)bso_54] ≥ 0)
(77) ([1] + i80[12] ≥ 0∧i80[12] ≥ 0 ⇒ (UIncreasing(COND_LE10121(&&(>(i80[12], 0), >(+(i80[12], -1), 0)), i80[12], i88[12], i80[12])), ≥)∧[bni_53] = 0∧[(-1)bni_53 + (-1)Bound*bni_53] ≥ 0∧0 = 0∧[(-1)bso_54] ≥ 0)
(78) (COND_LE10121(TRUE, i80[13], i88[13], i80[13])≥NonInfC∧COND_LE10121(TRUE, i80[13], i88[13], i80[13])≥LE1012'(+(i80[13], -1), i88[13], +(i80[13], -1))∧(UIncreasing(LE1012'(+(i80[13], -1), i88[13], +(i80[13], -1))), ≥))
(79) ((UIncreasing(LE1012'(+(i80[13], -1), i88[13], +(i80[13], -1))), ≥)∧[(-1)bso_56] ≥ 0)
(80) ((UIncreasing(LE1012'(+(i80[13], -1), i88[13], +(i80[13], -1))), ≥)∧[(-1)bso_56] ≥ 0)
(81) ((UIncreasing(LE1012'(+(i80[13], -1), i88[13], +(i80[13], -1))), ≥)∧[(-1)bso_56] ≥ 0)
(82) ((UIncreasing(LE1012'(+(i80[13], -1), i88[13], +(i80[13], -1))), ≥)∧0 = 0∧0 = 0∧[(-1)bso_56] ≥ 0)
(83) (&&(>(i88[14], 0), >(i80[14], i88[14]))=TRUE∧i80[14]=i80[15]∧i88[14]=i88[15] ⇒ LOAD827(i80[14], i88[14])≥NonInfC∧LOAD827(i80[14], i88[14])≥COND_LOAD8273(&&(>(i88[14], 0), >(i80[14], i88[14])), i80[14], i88[14])∧(UIncreasing(COND_LOAD8273(&&(>(i88[14], 0), >(i80[14], i88[14])), i80[14], i88[14])), ≥))
(84) (>(i88[14], 0)=TRUE∧>(i80[14], i88[14])=TRUE ⇒ LOAD827(i80[14], i88[14])≥NonInfC∧LOAD827(i80[14], i88[14])≥COND_LOAD8273(&&(>(i88[14], 0), >(i80[14], i88[14])), i80[14], i88[14])∧(UIncreasing(COND_LOAD8273(&&(>(i88[14], 0), >(i80[14], i88[14])), i80[14], i88[14])), ≥))
(85) (i88[14] + [-1] ≥ 0∧i80[14] + [-1] + [-1]i88[14] ≥ 0 ⇒ (UIncreasing(COND_LOAD8273(&&(>(i88[14], 0), >(i80[14], i88[14])), i80[14], i88[14])), ≥)∧[(-1)bni_57 + (-1)Bound*bni_57] + [bni_57]i88[14] ≥ 0∧[(-1)bso_58] ≥ 0)
(86) (i88[14] + [-1] ≥ 0∧i80[14] + [-1] + [-1]i88[14] ≥ 0 ⇒ (UIncreasing(COND_LOAD8273(&&(>(i88[14], 0), >(i80[14], i88[14])), i80[14], i88[14])), ≥)∧[(-1)bni_57 + (-1)Bound*bni_57] + [bni_57]i88[14] ≥ 0∧[(-1)bso_58] ≥ 0)
(87) (i88[14] + [-1] ≥ 0∧i80[14] + [-1] + [-1]i88[14] ≥ 0 ⇒ (UIncreasing(COND_LOAD8273(&&(>(i88[14], 0), >(i80[14], i88[14])), i80[14], i88[14])), ≥)∧[(-1)bni_57 + (-1)Bound*bni_57] + [bni_57]i88[14] ≥ 0∧[(-1)bso_58] ≥ 0)
(88) (i88[14] ≥ 0∧i80[14] + [-2] + [-1]i88[14] ≥ 0 ⇒ (UIncreasing(COND_LOAD8273(&&(>(i88[14], 0), >(i80[14], i88[14])), i80[14], i88[14])), ≥)∧[(-1)Bound*bni_57] + [bni_57]i88[14] ≥ 0∧[(-1)bso_58] ≥ 0)
(89) (i88[14] ≥ 0∧i80[14] ≥ 0 ⇒ (UIncreasing(COND_LOAD8273(&&(>(i88[14], 0), >(i80[14], i88[14])), i80[14], i88[14])), ≥)∧[(-1)Bound*bni_57] + [bni_57]i88[14] ≥ 0∧[(-1)bso_58] ≥ 0)
(90) (COND_LOAD8273(TRUE, i80[15], i88[15])≥NonInfC∧COND_LOAD8273(TRUE, i80[15], i88[15])≥LE1012'(+(i80[15], -1), i88[15], +(i80[15], -1))∧(UIncreasing(LE1012'(+(i80[15], -1), i88[15], +(i80[15], -1))), ≥))
(91) ((UIncreasing(LE1012'(+(i80[15], -1), i88[15], +(i80[15], -1))), ≥)∧[(-1)bso_60] ≥ 0)
(92) ((UIncreasing(LE1012'(+(i80[15], -1), i88[15], +(i80[15], -1))), ≥)∧[(-1)bso_60] ≥ 0)
(93) ((UIncreasing(LE1012'(+(i80[15], -1), i88[15], +(i80[15], -1))), ≥)∧[(-1)bso_60] ≥ 0)
(94) ((UIncreasing(LE1012'(+(i80[15], -1), i88[15], +(i80[15], -1))), ≥)∧0 = 0∧0 = 0∧[(-1)bso_60] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(LE1011'(x1, x2, x3)) = [-1] + [2]x3 + [-1]x2
POL(COND_LE1011(x1, x2, x3, x4)) = [-1] + [-1]x4 + [2]x3
POL(&&(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(LOAD827(x1, x2)) = [-1] + x2
POL(COND_LOAD827(x1, x2, x3)) = [-1] + x3
POL(<=(x1, x2)) = [-1]
POL(1) = [1]
POL(COND_LE10111(x1, x2, x3, x4)) = 0
POL(COND_LOAD8271(x1, x2, x3)) = [-1]
POL(LE1012'(x1, x2, x3)) = [-1] + x2
POL(COND_LE1012(x1, x2, x3, x4)) = [-1] + x3
POL(COND_LOAD8272(x1, x2, x3)) = [-1] + x3
POL(COND_LE10121(x1, x2, x3, x4)) = [-1] + x3
POL(COND_LOAD8273(x1, x2, x3)) = [-1] + x3
COND_LE1011(TRUE, i80[1], i88[1], i88[1]) → LE1011'(i80[1], +(i88[1], -1), +(i88[1], -1))
COND_LOAD827(TRUE, i80[3], i88[3]) → LE1011'(i80[3], +(i88[3], -1), +(i88[3], -1))
COND_LE10111(TRUE, i80[5], 1, 1) → LOAD827(i80[5], 0)
LOAD827(i80[6], 1) → COND_LOAD8271(&&(>(i80[6], 0), <=(i80[6], 1)), i80[6], 1)
LOAD827(1, i88[10]) → COND_LOAD8272(&&(>(i88[10], 0), >(1, i88[10])), 1, i88[10])
LE1011'(i80[0], i88[0], i88[0]) → COND_LE1011(&&(>(i88[0], 0), >(+(i88[0], -1), 0)), i80[0], i88[0], i88[0])
LOAD827(i80[2], i88[2]) → COND_LOAD827(&&(&&(>(i80[2], 0), <=(i80[2], i88[2])), >(+(i88[2], -1), 0)), i80[2], i88[2])
LOAD827(i80[6], 1) → COND_LOAD8271(&&(>(i80[6], 0), <=(i80[6], 1)), i80[6], 1)
LOAD827(1, i88[10]) → COND_LOAD8272(&&(>(i88[10], 0), >(1, i88[10])), 1, i88[10])
LOAD827(i80[14], i88[14]) → COND_LOAD8273(&&(>(i88[14], 0), >(i80[14], i88[14])), i80[14], i88[14])
LE1011'(i80[0], i88[0], i88[0]) → COND_LE1011(&&(>(i88[0], 0), >(+(i88[0], -1), 0)), i80[0], i88[0], i88[0])
LOAD827(i80[2], i88[2]) → COND_LOAD827(&&(&&(>(i80[2], 0), <=(i80[2], i88[2])), >(+(i88[2], -1), 0)), i80[2], i88[2])
LE1011'(i80[4], 1, 1) → COND_LE10111(>(1, 0), i80[4], 1, 1)
COND_LOAD8271(TRUE, i80[7], 1) → LOAD827(i80[7], 0)
LE1012'(1, i88[8], 1) → COND_LE1012(>(1, 0), 1, i88[8], 1)
COND_LE1012(TRUE, 1, i88[9], 1) → LOAD827(0, i88[9])
COND_LOAD8272(TRUE, 1, i88[11]) → LOAD827(0, i88[11])
LE1012'(i80[12], i88[12], i80[12]) → COND_LE10121(&&(>(i80[12], 0), >(+(i80[12], -1), 0)), i80[12], i88[12], i80[12])
COND_LE10121(TRUE, i80[13], i88[13], i80[13]) → LE1012'(+(i80[13], -1), i88[13], +(i80[13], -1))
LOAD827(i80[14], i88[14]) → COND_LOAD8273(&&(>(i88[14], 0), >(i80[14], i88[14])), i80[14], i88[14])
COND_LOAD8273(TRUE, i80[15], i88[15]) → LE1012'(+(i80[15], -1), i88[15], +(i80[15], -1))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(7) -> (2), if ((i80[7] →* i80[2])∧(0 →* i88[2]))
(9) -> (2), if ((0 →* i80[2])∧(i88[9] →* i88[2]))
(11) -> (2), if ((i88[11] →* i88[2])∧(0 →* i80[2]))
(13) -> (8), if ((i88[13] →* i88[8])∧(i80[13] + -1 →* 1))
(15) -> (8), if ((i80[15] + -1 →* 1)∧(i88[15] →* i88[8]))
(8) -> (9), if ((i88[8] →* i88[9])∧(1 > 0 →* TRUE))
(13) -> (12), if ((i88[13] →* i88[12])∧(i80[13] + -1 →* i80[12]))
(15) -> (12), if ((i80[15] + -1 →* i80[12])∧(i88[15] →* i88[12]))
(12) -> (13), if ((i88[12] →* i88[13])∧(i80[12] →* i80[13])∧(i80[12] > 0 && i80[12] + -1 > 0 →* TRUE))
(7) -> (14), if ((i80[7] →* i80[14])∧(0 →* i88[14]))
(9) -> (14), if ((0 →* i80[14])∧(i88[9] →* i88[14]))
(11) -> (14), if ((i88[11] →* i88[14])∧(0 →* i80[14]))
(14) -> (15), if ((i88[14] > 0 && i80[14] > i88[14] →* TRUE)∧(i80[14] →* i80[15])∧(i88[14] →* i88[15]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(13) -> (8), if ((i88[13] →* i88[8])∧(i80[13] + -1 →* 1))
(15) -> (8), if ((i80[15] + -1 →* 1)∧(i88[15] →* i88[8]))
(8) -> (9), if ((i88[8] →* i88[9])∧(1 > 0 →* TRUE))
(13) -> (12), if ((i88[13] →* i88[12])∧(i80[13] + -1 →* i80[12]))
(15) -> (12), if ((i80[15] + -1 →* i80[12])∧(i88[15] →* i88[12]))
(12) -> (13), if ((i88[12] →* i88[13])∧(i80[12] →* i80[13])∧(i80[12] > 0 && i80[12] + -1 > 0 →* TRUE))
(9) -> (14), if ((0 →* i80[14])∧(i88[9] →* i88[14]))
(14) -> (15), if ((i88[14] > 0 && i80[14] > i88[14] →* TRUE)∧(i80[14] →* i80[15])∧(i88[14] →* i88[15]))
(1) (COND_LE10121(TRUE, i80[13], i88[13], i80[13])≥NonInfC∧COND_LE10121(TRUE, i80[13], i88[13], i80[13])≥LE1012'(+(i80[13], -1), i88[13], +(i80[13], -1))∧(UIncreasing(LE1012'(+(i80[13], -1), i88[13], +(i80[13], -1))), ≥))
(2) ((UIncreasing(LE1012'(+(i80[13], -1), i88[13], +(i80[13], -1))), ≥)∧[(-1)bso_16] ≥ 0)
(3) ((UIncreasing(LE1012'(+(i80[13], -1), i88[13], +(i80[13], -1))), ≥)∧[(-1)bso_16] ≥ 0)
(4) ((UIncreasing(LE1012'(+(i80[13], -1), i88[13], +(i80[13], -1))), ≥)∧[(-1)bso_16] ≥ 0)
(5) ((UIncreasing(LE1012'(+(i80[13], -1), i88[13], +(i80[13], -1))), ≥)∧0 = 0∧0 = 0∧[(-1)bso_16] ≥ 0)
(6) (i88[12]=i88[13]∧i80[12]=i80[13]∧&&(>(i80[12], 0), >(+(i80[12], -1), 0))=TRUE ⇒ LE1012'(i80[12], i88[12], i80[12])≥NonInfC∧LE1012'(i80[12], i88[12], i80[12])≥COND_LE10121(&&(>(i80[12], 0), >(+(i80[12], -1), 0)), i80[12], i88[12], i80[12])∧(UIncreasing(COND_LE10121(&&(>(i80[12], 0), >(+(i80[12], -1), 0)), i80[12], i88[12], i80[12])), ≥))
(7) (>(i80[12], 0)=TRUE∧>(+(i80[12], -1), 0)=TRUE ⇒ LE1012'(i80[12], i88[12], i80[12])≥NonInfC∧LE1012'(i80[12], i88[12], i80[12])≥COND_LE10121(&&(>(i80[12], 0), >(+(i80[12], -1), 0)), i80[12], i88[12], i80[12])∧(UIncreasing(COND_LE10121(&&(>(i80[12], 0), >(+(i80[12], -1), 0)), i80[12], i88[12], i80[12])), ≥))
(8) (i80[12] + [-1] ≥ 0∧i80[12] + [-2] ≥ 0 ⇒ (UIncreasing(COND_LE10121(&&(>(i80[12], 0), >(+(i80[12], -1), 0)), i80[12], i88[12], i80[12])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] ≥ 0∧[(-1)bso_18] ≥ 0)
(9) (i80[12] + [-1] ≥ 0∧i80[12] + [-2] ≥ 0 ⇒ (UIncreasing(COND_LE10121(&&(>(i80[12], 0), >(+(i80[12], -1), 0)), i80[12], i88[12], i80[12])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] ≥ 0∧[(-1)bso_18] ≥ 0)
(10) (i80[12] + [-1] ≥ 0∧i80[12] + [-2] ≥ 0 ⇒ (UIncreasing(COND_LE10121(&&(>(i80[12], 0), >(+(i80[12], -1), 0)), i80[12], i88[12], i80[12])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] ≥ 0∧[(-1)bso_18] ≥ 0)
(11) (i80[12] + [-1] ≥ 0∧i80[12] + [-2] ≥ 0 ⇒ (UIncreasing(COND_LE10121(&&(>(i80[12], 0), >(+(i80[12], -1), 0)), i80[12], i88[12], i80[12])), ≥)∧0 = 0∧[(-1)bni_17 + (-1)Bound*bni_17] ≥ 0∧0 = 0∧[(-1)bso_18] ≥ 0)
(12) (i80[12] ≥ 0∧[-1] + i80[12] ≥ 0 ⇒ (UIncreasing(COND_LE10121(&&(>(i80[12], 0), >(+(i80[12], -1), 0)), i80[12], i88[12], i80[12])), ≥)∧0 = 0∧[(-1)bni_17 + (-1)Bound*bni_17] ≥ 0∧0 = 0∧[(-1)bso_18] ≥ 0)
(13) ([1] + i80[12] ≥ 0∧i80[12] ≥ 0 ⇒ (UIncreasing(COND_LE10121(&&(>(i80[12], 0), >(+(i80[12], -1), 0)), i80[12], i88[12], i80[12])), ≥)∧0 = 0∧[(-1)bni_17 + (-1)Bound*bni_17] ≥ 0∧0 = 0∧[(-1)bso_18] ≥ 0)
(14) (COND_LE1012(TRUE, 1, i88[9], 1)≥NonInfC∧COND_LE1012(TRUE, 1, i88[9], 1)≥LOAD827(0, i88[9])∧(UIncreasing(LOAD827(0, i88[9])), ≥))
(15) ((UIncreasing(LOAD827(0, i88[9])), ≥)∧[(-1)bso_20] ≥ 0)
(16) ((UIncreasing(LOAD827(0, i88[9])), ≥)∧[(-1)bso_20] ≥ 0)
(17) ((UIncreasing(LOAD827(0, i88[9])), ≥)∧[(-1)bso_20] ≥ 0)
(18) ((UIncreasing(LOAD827(0, i88[9])), ≥)∧0 = 0∧[(-1)bso_20] ≥ 0)
(19) (i88[8]=i88[9]∧>(1, 0)=TRUE ⇒ LE1012'(1, i88[8], 1)≥NonInfC∧LE1012'(1, i88[8], 1)≥COND_LE1012(>(1, 0), 1, i88[8], 1)∧(UIncreasing(COND_LE1012(>(1, 0), 1, i88[8], 1)), ≥))
(20) (LE1012'(1, i88[8], 1)≥NonInfC∧LE1012'(1, i88[8], 1)≥COND_LE1012(>(1, 0), 1, i88[8], 1)∧(UIncreasing(COND_LE1012(>(1, 0), 1, i88[8], 1)), ≥))
(21) ((UIncreasing(COND_LE1012(>(1, 0), 1, i88[8], 1)), ≥)∧[(-1)bso_22] ≥ 0)
(22) ((UIncreasing(COND_LE1012(>(1, 0), 1, i88[8], 1)), ≥)∧[(-1)bso_22] ≥ 0)
(23) ((UIncreasing(COND_LE1012(>(1, 0), 1, i88[8], 1)), ≥)∧[(-1)bso_22] ≥ 0)
(24) ((UIncreasing(COND_LE1012(>(1, 0), 1, i88[8], 1)), ≥)∧0 = 0∧[(-1)bso_22] ≥ 0)
(25) (COND_LOAD8273(TRUE, i80[15], i88[15])≥NonInfC∧COND_LOAD8273(TRUE, i80[15], i88[15])≥LE1012'(+(i80[15], -1), i88[15], +(i80[15], -1))∧(UIncreasing(LE1012'(+(i80[15], -1), i88[15], +(i80[15], -1))), ≥))
(26) ((UIncreasing(LE1012'(+(i80[15], -1), i88[15], +(i80[15], -1))), ≥)∧[2 + (-1)bso_24] ≥ 0)
(27) ((UIncreasing(LE1012'(+(i80[15], -1), i88[15], +(i80[15], -1))), ≥)∧[2 + (-1)bso_24] ≥ 0)
(28) ((UIncreasing(LE1012'(+(i80[15], -1), i88[15], +(i80[15], -1))), ≥)∧[2 + (-1)bso_24] ≥ 0)
(29) ((UIncreasing(LE1012'(+(i80[15], -1), i88[15], +(i80[15], -1))), ≥)∧0 = 0∧0 = 0∧[2 + (-1)bso_24] ≥ 0)
(30) (&&(>(i88[14], 0), >(i80[14], i88[14]))=TRUE∧i80[14]=i80[15]∧i88[14]=i88[15] ⇒ LOAD827(i80[14], i88[14])≥NonInfC∧LOAD827(i80[14], i88[14])≥COND_LOAD8273(&&(>(i88[14], 0), >(i80[14], i88[14])), i80[14], i88[14])∧(UIncreasing(COND_LOAD8273(&&(>(i88[14], 0), >(i80[14], i88[14])), i80[14], i88[14])), ≥))
(31) (>(i88[14], 0)=TRUE∧>(i80[14], i88[14])=TRUE ⇒ LOAD827(i80[14], i88[14])≥NonInfC∧LOAD827(i80[14], i88[14])≥COND_LOAD8273(&&(>(i88[14], 0), >(i80[14], i88[14])), i80[14], i88[14])∧(UIncreasing(COND_LOAD8273(&&(>(i88[14], 0), >(i80[14], i88[14])), i80[14], i88[14])), ≥))
(32) (i88[14] + [-1] ≥ 0∧i80[14] + [-1] + [-1]i88[14] ≥ 0 ⇒ (UIncreasing(COND_LOAD8273(&&(>(i88[14], 0), >(i80[14], i88[14])), i80[14], i88[14])), ≥)∧[(-1)bni_25 + (-1)Bound*bni_25] + [bni_25]i80[14] ≥ 0∧[-2 + (-1)bso_26] + i80[14] ≥ 0)
(33) (i88[14] + [-1] ≥ 0∧i80[14] + [-1] + [-1]i88[14] ≥ 0 ⇒ (UIncreasing(COND_LOAD8273(&&(>(i88[14], 0), >(i80[14], i88[14])), i80[14], i88[14])), ≥)∧[(-1)bni_25 + (-1)Bound*bni_25] + [bni_25]i80[14] ≥ 0∧[-2 + (-1)bso_26] + i80[14] ≥ 0)
(34) (i88[14] + [-1] ≥ 0∧i80[14] + [-1] + [-1]i88[14] ≥ 0 ⇒ (UIncreasing(COND_LOAD8273(&&(>(i88[14], 0), >(i80[14], i88[14])), i80[14], i88[14])), ≥)∧[(-1)bni_25 + (-1)Bound*bni_25] + [bni_25]i80[14] ≥ 0∧[-2 + (-1)bso_26] + i80[14] ≥ 0)
(35) (i88[14] ≥ 0∧i80[14] + [-2] + [-1]i88[14] ≥ 0 ⇒ (UIncreasing(COND_LOAD8273(&&(>(i88[14], 0), >(i80[14], i88[14])), i80[14], i88[14])), ≥)∧[(-1)bni_25 + (-1)Bound*bni_25] + [bni_25]i80[14] ≥ 0∧[-2 + (-1)bso_26] + i80[14] ≥ 0)
(36) (i88[14] ≥ 0∧i80[14] ≥ 0 ⇒ (UIncreasing(COND_LOAD8273(&&(>(i88[14], 0), >(i80[14], i88[14])), i80[14], i88[14])), ≥)∧[bni_25 + (-1)Bound*bni_25] + [bni_25]i88[14] + [bni_25]i80[14] ≥ 0∧[(-1)bso_26] + i88[14] + i80[14] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_LE10121(x1, x2, x3, x4)) = [-1] + [-1]x4 + x2
POL(LE1012'(x1, x2, x3)) = [-1] + x3 + [-1]x1
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(&&(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(COND_LE1012(x1, x2, x3, x4)) = [-1]
POL(1) = [1]
POL(LOAD827(x1, x2)) = [-1] + x1
POL(COND_LOAD8273(x1, x2, x3)) = [1]
COND_LOAD8273(TRUE, i80[15], i88[15]) → LE1012'(+(i80[15], -1), i88[15], +(i80[15], -1))
LE1012'(i80[12], i88[12], i80[12]) → COND_LE10121(&&(>(i80[12], 0), >(+(i80[12], -1), 0)), i80[12], i88[12], i80[12])
LOAD827(i80[14], i88[14]) → COND_LOAD8273(&&(>(i88[14], 0), >(i80[14], i88[14])), i80[14], i88[14])
COND_LE10121(TRUE, i80[13], i88[13], i80[13]) → LE1012'(+(i80[13], -1), i88[13], +(i80[13], -1))
LE1012'(i80[12], i88[12], i80[12]) → COND_LE10121(&&(>(i80[12], 0), >(+(i80[12], -1), 0)), i80[12], i88[12], i80[12])
COND_LE1012(TRUE, 1, i88[9], 1) → LOAD827(0, i88[9])
LE1012'(1, i88[8], 1) → COND_LE1012(>(1, 0), 1, i88[8], 1)
LOAD827(i80[14], i88[14]) → COND_LOAD8273(&&(>(i88[14], 0), >(i80[14], i88[14])), i80[14], i88[14])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(13) -> (8), if ((i88[13] →* i88[8])∧(i80[13] + -1 →* 1))
(8) -> (9), if ((i88[8] →* i88[9])∧(1 > 0 →* TRUE))
(13) -> (12), if ((i88[13] →* i88[12])∧(i80[13] + -1 →* i80[12]))
(12) -> (13), if ((i88[12] →* i88[13])∧(i80[12] →* i80[13])∧(i80[12] > 0 && i80[12] + -1 > 0 →* TRUE))
(9) -> (14), if ((0 →* i80[14])∧(i88[9] →* i88[14]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(13) -> (12), if ((i88[13] →* i88[12])∧(i80[13] + -1 →* i80[12]))
(12) -> (13), if ((i88[12] →* i88[13])∧(i80[12] →* i80[13])∧(i80[12] > 0 && i80[12] + -1 > 0 →* TRUE))
(1) (i88[12]=i88[13]∧i80[12]=i80[13]∧&&(>(i80[12], 0), >(+(i80[12], -1), 0))=TRUE ⇒ LE1012'(i80[12], i88[12], i80[12])≥NonInfC∧LE1012'(i80[12], i88[12], i80[12])≥COND_LE10121(&&(>(i80[12], 0), >(+(i80[12], -1), 0)), i80[12], i88[12], i80[12])∧(UIncreasing(COND_LE10121(&&(>(i80[12], 0), >(+(i80[12], -1), 0)), i80[12], i88[12], i80[12])), ≥))
(2) (>(i80[12], 0)=TRUE∧>(+(i80[12], -1), 0)=TRUE ⇒ LE1012'(i80[12], i88[12], i80[12])≥NonInfC∧LE1012'(i80[12], i88[12], i80[12])≥COND_LE10121(&&(>(i80[12], 0), >(+(i80[12], -1), 0)), i80[12], i88[12], i80[12])∧(UIncreasing(COND_LE10121(&&(>(i80[12], 0), >(+(i80[12], -1), 0)), i80[12], i88[12], i80[12])), ≥))
(3) (i80[12] + [-1] ≥ 0∧i80[12] + [-2] ≥ 0 ⇒ (UIncreasing(COND_LE10121(&&(>(i80[12], 0), >(+(i80[12], -1), 0)), i80[12], i88[12], i80[12])), ≥)∧[bni_7 + (-1)Bound*bni_7] + [bni_7]i80[12] ≥ 0∧[(-1)bso_8] ≥ 0)
(4) (i80[12] + [-1] ≥ 0∧i80[12] + [-2] ≥ 0 ⇒ (UIncreasing(COND_LE10121(&&(>(i80[12], 0), >(+(i80[12], -1), 0)), i80[12], i88[12], i80[12])), ≥)∧[bni_7 + (-1)Bound*bni_7] + [bni_7]i80[12] ≥ 0∧[(-1)bso_8] ≥ 0)
(5) (i80[12] + [-1] ≥ 0∧i80[12] + [-2] ≥ 0 ⇒ (UIncreasing(COND_LE10121(&&(>(i80[12], 0), >(+(i80[12], -1), 0)), i80[12], i88[12], i80[12])), ≥)∧[bni_7 + (-1)Bound*bni_7] + [bni_7]i80[12] ≥ 0∧[(-1)bso_8] ≥ 0)
(6) (i80[12] ≥ 0∧[-1] + i80[12] ≥ 0 ⇒ (UIncreasing(COND_LE10121(&&(>(i80[12], 0), >(+(i80[12], -1), 0)), i80[12], i88[12], i80[12])), ≥)∧[(2)bni_7 + (-1)Bound*bni_7] + [bni_7]i80[12] ≥ 0∧[(-1)bso_8] ≥ 0)
(7) ([1] + i80[12] ≥ 0∧i80[12] ≥ 0 ⇒ (UIncreasing(COND_LE10121(&&(>(i80[12], 0), >(+(i80[12], -1), 0)), i80[12], i88[12], i80[12])), ≥)∧[(3)bni_7 + (-1)Bound*bni_7] + [bni_7]i80[12] ≥ 0∧[(-1)bso_8] ≥ 0)
(8) (COND_LE10121(TRUE, i80[13], i88[13], i80[13])≥NonInfC∧COND_LE10121(TRUE, i80[13], i88[13], i80[13])≥LE1012'(+(i80[13], -1), i88[13], +(i80[13], -1))∧(UIncreasing(LE1012'(+(i80[13], -1), i88[13], +(i80[13], -1))), ≥))
(9) ((UIncreasing(LE1012'(+(i80[13], -1), i88[13], +(i80[13], -1))), ≥)∧[1 + (-1)bso_10] ≥ 0)
(10) ((UIncreasing(LE1012'(+(i80[13], -1), i88[13], +(i80[13], -1))), ≥)∧[1 + (-1)bso_10] ≥ 0)
(11) ((UIncreasing(LE1012'(+(i80[13], -1), i88[13], +(i80[13], -1))), ≥)∧[1 + (-1)bso_10] ≥ 0)
(12) ((UIncreasing(LE1012'(+(i80[13], -1), i88[13], +(i80[13], -1))), ≥)∧0 = 0∧[1 + (-1)bso_10] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(LE1012'(x1, x2, x3)) = [1] + x3
POL(COND_LE10121(x1, x2, x3, x4)) = [1] + [2]x4 + [-1]x2
POL(&&(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
COND_LE10121(TRUE, i80[13], i88[13], i80[13]) → LE1012'(+(i80[13], -1), i88[13], +(i80[13], -1))
LE1012'(i80[12], i88[12], i80[12]) → COND_LE10121(&&(>(i80[12], 0), >(+(i80[12], -1), 0)), i80[12], i88[12], i80[12])
LE1012'(i80[12], i88[12], i80[12]) → COND_LE10121(&&(>(i80[12], 0), >(+(i80[12], -1), 0)), i80[12], i88[12], i80[12])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(13) -> (8), if ((i88[13] →* i88[8])∧(i80[13] + -1 →* 1))
(15) -> (8), if ((i80[15] + -1 →* 1)∧(i88[15] →* i88[8]))
(8) -> (9), if ((i88[8] →* i88[9])∧(1 > 0 →* TRUE))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(1) -> (4), if ((i88[1] + -1 →* 1)∧(i80[1] →* i80[4]))
(3) -> (4), if ((i80[3] →* i80[4])∧(i88[3] + -1 →* 1))
(4) -> (5), if ((1 > 0 →* TRUE)∧(i80[4] →* i80[5]))
(13) -> (8), if ((i88[13] →* i88[8])∧(i80[13] + -1 →* 1))
(15) -> (8), if ((i80[15] + -1 →* 1)∧(i88[15] →* i88[8]))
(8) -> (9), if ((i88[8] →* i88[9])∧(1 > 0 →* TRUE))
(13) -> (12), if ((i88[13] →* i88[12])∧(i80[13] + -1 →* i80[12]))
(15) -> (12), if ((i80[15] + -1 →* i80[12])∧(i88[15] →* i88[12]))
(12) -> (13), if ((i88[12] →* i88[13])∧(i80[12] →* i80[13])∧(i80[12] > 0 && i80[12] + -1 > 0 →* TRUE))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(13) -> (12), if ((i88[13] →* i88[12])∧(i80[13] + -1 →* i80[12]))
(12) -> (13), if ((i88[12] →* i88[13])∧(i80[12] →* i80[13])∧(i80[12] > 0 && i80[12] + -1 > 0 →* TRUE))
(1) (COND_LE10121(TRUE, i80[13], i88[13], i80[13])≥NonInfC∧COND_LE10121(TRUE, i80[13], i88[13], i80[13])≥LE1012'(+(i80[13], -1), i88[13], +(i80[13], -1))∧(UIncreasing(LE1012'(+(i80[13], -1), i88[13], +(i80[13], -1))), ≥))
(2) ((UIncreasing(LE1012'(+(i80[13], -1), i88[13], +(i80[13], -1))), ≥)∧[2 + (-1)bso_8] ≥ 0)
(3) ((UIncreasing(LE1012'(+(i80[13], -1), i88[13], +(i80[13], -1))), ≥)∧[2 + (-1)bso_8] ≥ 0)
(4) ((UIncreasing(LE1012'(+(i80[13], -1), i88[13], +(i80[13], -1))), ≥)∧[2 + (-1)bso_8] ≥ 0)
(5) ((UIncreasing(LE1012'(+(i80[13], -1), i88[13], +(i80[13], -1))), ≥)∧0 = 0∧[2 + (-1)bso_8] ≥ 0)
(6) (i88[12]=i88[13]∧i80[12]=i80[13]∧&&(>(i80[12], 0), >(+(i80[12], -1), 0))=TRUE ⇒ LE1012'(i80[12], i88[12], i80[12])≥NonInfC∧LE1012'(i80[12], i88[12], i80[12])≥COND_LE10121(&&(>(i80[12], 0), >(+(i80[12], -1), 0)), i80[12], i88[12], i80[12])∧(UIncreasing(COND_LE10121(&&(>(i80[12], 0), >(+(i80[12], -1), 0)), i80[12], i88[12], i80[12])), ≥))
(7) (>(i80[12], 0)=TRUE∧>(+(i80[12], -1), 0)=TRUE ⇒ LE1012'(i80[12], i88[12], i80[12])≥NonInfC∧LE1012'(i80[12], i88[12], i80[12])≥COND_LE10121(&&(>(i80[12], 0), >(+(i80[12], -1), 0)), i80[12], i88[12], i80[12])∧(UIncreasing(COND_LE10121(&&(>(i80[12], 0), >(+(i80[12], -1), 0)), i80[12], i88[12], i80[12])), ≥))
(8) (i80[12] + [-1] ≥ 0∧i80[12] + [-2] ≥ 0 ⇒ (UIncreasing(COND_LE10121(&&(>(i80[12], 0), >(+(i80[12], -1), 0)), i80[12], i88[12], i80[12])), ≥)∧[(-1)bni_9 + (-1)Bound*bni_9] + [(2)bni_9]i80[12] ≥ 0∧[(-1)bso_10] ≥ 0)
(9) (i80[12] + [-1] ≥ 0∧i80[12] + [-2] ≥ 0 ⇒ (UIncreasing(COND_LE10121(&&(>(i80[12], 0), >(+(i80[12], -1), 0)), i80[12], i88[12], i80[12])), ≥)∧[(-1)bni_9 + (-1)Bound*bni_9] + [(2)bni_9]i80[12] ≥ 0∧[(-1)bso_10] ≥ 0)
(10) (i80[12] + [-1] ≥ 0∧i80[12] + [-2] ≥ 0 ⇒ (UIncreasing(COND_LE10121(&&(>(i80[12], 0), >(+(i80[12], -1), 0)), i80[12], i88[12], i80[12])), ≥)∧[(-1)bni_9 + (-1)Bound*bni_9] + [(2)bni_9]i80[12] ≥ 0∧[(-1)bso_10] ≥ 0)
(11) (i80[12] ≥ 0∧[-1] + i80[12] ≥ 0 ⇒ (UIncreasing(COND_LE10121(&&(>(i80[12], 0), >(+(i80[12], -1), 0)), i80[12], i88[12], i80[12])), ≥)∧[bni_9 + (-1)Bound*bni_9] + [(2)bni_9]i80[12] ≥ 0∧[(-1)bso_10] ≥ 0)
(12) ([1] + i80[12] ≥ 0∧i80[12] ≥ 0 ⇒ (UIncreasing(COND_LE10121(&&(>(i80[12], 0), >(+(i80[12], -1), 0)), i80[12], i88[12], i80[12])), ≥)∧[(3)bni_9 + (-1)Bound*bni_9] + [(2)bni_9]i80[12] ≥ 0∧[(-1)bso_10] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_LE10121(x1, x2, x3, x4)) = [-1] + x4 + x2
POL(LE1012'(x1, x2, x3)) = [-1] + x3 + x1
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(&&(x1, x2)) = [1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
COND_LE10121(TRUE, i80[13], i88[13], i80[13]) → LE1012'(+(i80[13], -1), i88[13], +(i80[13], -1))
LE1012'(i80[12], i88[12], i80[12]) → COND_LE10121(&&(>(i80[12], 0), >(+(i80[12], -1), 0)), i80[12], i88[12], i80[12])
LE1012'(i80[12], i88[12], i80[12]) → COND_LE10121(&&(>(i80[12], 0), >(+(i80[12], -1), 0)), i80[12], i88[12], i80[12])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer