(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: PastaB17
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/

public class PastaB17 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
int z = Random.random();

while (x > z) {
while (y > z) {
y--;
}
x--;
}
}
}


public class Random {
static String[] args;
static int index = 0;

public static int random() {
String string = args[index];
index++;
return string.length();
}
}


(1) JBC2FIG (SOUND transformation)

Constructed FIGraph.

(2) Obligation:

FIGraph based on JBC Program:
Graph of 253 nodes with 1 SCC.

(3) FIGtoITRSProof (SOUND transformation)

Transformed FIGraph to ITRS rules

(4) Obligation:

ITRS problem:

The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean

The TRS R consists of the following rules:
Load1082(i8, i23, i56) → Cond_Load1082(i23 > i56, i8, i23, i56)
Cond_Load1082(TRUE, i8, i23, i56) → Load1082(i8, i23 + -1, i56)
Load1003(i8, i23, i56) → Cond_Load1003(i23 > i56 && i8 > i56, i8, i23, i56)
Cond_Load1003(TRUE, i8, i23, i56) → Load1082(i8, i23 + -1, i56)
Load1082(i8, i23, i56) → Cond_Load10821(i23 <= i56, i8, i23, i56)
Cond_Load10821(TRUE, i8, i23, i56) → Load1003(i8 + -1, i23, i56)
Load1003(i8, i23, i56) → Cond_Load10031(i23 <= i56 && i8 > i56, i8, i23, i56)
Cond_Load10031(TRUE, i8, i23, i56) → Load1003(i8 + -1, i23, i56)
The set Q consists of the following terms:
Load1082(x0, x1, x2)
Cond_Load1082(TRUE, x0, x1, x2)
Load1003(x0, x1, x2)
Cond_Load1003(TRUE, x0, x1, x2)
Cond_Load10821(TRUE, x0, x1, x2)
Cond_Load10031(TRUE, x0, x1, x2)

(5) ITRStoIDPProof (EQUIVALENT transformation)

Added dependency pairs

(6) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


The ITRS R consists of the following rules:
Load1082(i8, i23, i56) → Cond_Load1082(i23 > i56, i8, i23, i56)
Cond_Load1082(TRUE, i8, i23, i56) → Load1082(i8, i23 + -1, i56)
Load1003(i8, i23, i56) → Cond_Load1003(i23 > i56 && i8 > i56, i8, i23, i56)
Cond_Load1003(TRUE, i8, i23, i56) → Load1082(i8, i23 + -1, i56)
Load1082(i8, i23, i56) → Cond_Load10821(i23 <= i56, i8, i23, i56)
Cond_Load10821(TRUE, i8, i23, i56) → Load1003(i8 + -1, i23, i56)
Load1003(i8, i23, i56) → Cond_Load10031(i23 <= i56 && i8 > i56, i8, i23, i56)
Cond_Load10031(TRUE, i8, i23, i56) → Load1003(i8 + -1, i23, i56)

The integer pair graph contains the following rules and edges:
(0): LOAD1082(i8[0], i23[0], i56[0]) → COND_LOAD1082(i23[0] > i56[0], i8[0], i23[0], i56[0])
(1): COND_LOAD1082(TRUE, i8[1], i23[1], i56[1]) → LOAD1082(i8[1], i23[1] + -1, i56[1])
(2): LOAD1003(i8[2], i23[2], i56[2]) → COND_LOAD1003(i23[2] > i56[2] && i8[2] > i56[2], i8[2], i23[2], i56[2])
(3): COND_LOAD1003(TRUE, i8[3], i23[3], i56[3]) → LOAD1082(i8[3], i23[3] + -1, i56[3])
(4): LOAD1082(i8[4], i23[4], i56[4]) → COND_LOAD10821(i23[4] <= i56[4], i8[4], i23[4], i56[4])
(5): COND_LOAD10821(TRUE, i8[5], i23[5], i56[5]) → LOAD1003(i8[5] + -1, i23[5], i56[5])
(6): LOAD1003(i8[6], i23[6], i56[6]) → COND_LOAD10031(i23[6] <= i56[6] && i8[6] > i56[6], i8[6], i23[6], i56[6])
(7): COND_LOAD10031(TRUE, i8[7], i23[7], i56[7]) → LOAD1003(i8[7] + -1, i23[7], i56[7])

(0) -> (1), if ((i8[0]* i8[1])∧(i56[0]* i56[1])∧(i23[0] > i56[0]* TRUE)∧(i23[0]* i23[1]))


(1) -> (0), if ((i8[1]* i8[0])∧(i23[1] + -1* i23[0])∧(i56[1]* i56[0]))


(1) -> (4), if ((i23[1] + -1* i23[4])∧(i56[1]* i56[4])∧(i8[1]* i8[4]))


(2) -> (3), if ((i23[2] > i56[2] && i8[2] > i56[2]* TRUE)∧(i23[2]* i23[3])∧(i56[2]* i56[3])∧(i8[2]* i8[3]))


(3) -> (0), if ((i8[3]* i8[0])∧(i23[3] + -1* i23[0])∧(i56[3]* i56[0]))


(3) -> (4), if ((i23[3] + -1* i23[4])∧(i56[3]* i56[4])∧(i8[3]* i8[4]))


(4) -> (5), if ((i8[4]* i8[5])∧(i23[4] <= i56[4]* TRUE)∧(i56[4]* i56[5])∧(i23[4]* i23[5]))


(5) -> (2), if ((i56[5]* i56[2])∧(i23[5]* i23[2])∧(i8[5] + -1* i8[2]))


(5) -> (6), if ((i23[5]* i23[6])∧(i8[5] + -1* i8[6])∧(i56[5]* i56[6]))


(6) -> (7), if ((i23[6] <= i56[6] && i8[6] > i56[6]* TRUE)∧(i56[6]* i56[7])∧(i23[6]* i23[7])∧(i8[6]* i8[7]))


(7) -> (2), if ((i56[7]* i56[2])∧(i8[7] + -1* i8[2])∧(i23[7]* i23[2]))


(7) -> (6), if ((i8[7] + -1* i8[6])∧(i56[7]* i56[6])∧(i23[7]* i23[6]))



The set Q consists of the following terms:
Load1082(x0, x1, x2)
Cond_Load1082(TRUE, x0, x1, x2)
Load1003(x0, x1, x2)
Cond_Load1003(TRUE, x0, x1, x2)
Cond_Load10821(TRUE, x0, x1, x2)
Cond_Load10031(TRUE, x0, x1, x2)

(7) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(8) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


R is empty.

The integer pair graph contains the following rules and edges:
(0): LOAD1082(i8[0], i23[0], i56[0]) → COND_LOAD1082(i23[0] > i56[0], i8[0], i23[0], i56[0])
(1): COND_LOAD1082(TRUE, i8[1], i23[1], i56[1]) → LOAD1082(i8[1], i23[1] + -1, i56[1])
(2): LOAD1003(i8[2], i23[2], i56[2]) → COND_LOAD1003(i23[2] > i56[2] && i8[2] > i56[2], i8[2], i23[2], i56[2])
(3): COND_LOAD1003(TRUE, i8[3], i23[3], i56[3]) → LOAD1082(i8[3], i23[3] + -1, i56[3])
(4): LOAD1082(i8[4], i23[4], i56[4]) → COND_LOAD10821(i23[4] <= i56[4], i8[4], i23[4], i56[4])
(5): COND_LOAD10821(TRUE, i8[5], i23[5], i56[5]) → LOAD1003(i8[5] + -1, i23[5], i56[5])
(6): LOAD1003(i8[6], i23[6], i56[6]) → COND_LOAD10031(i23[6] <= i56[6] && i8[6] > i56[6], i8[6], i23[6], i56[6])
(7): COND_LOAD10031(TRUE, i8[7], i23[7], i56[7]) → LOAD1003(i8[7] + -1, i23[7], i56[7])

(0) -> (1), if ((i8[0]* i8[1])∧(i56[0]* i56[1])∧(i23[0] > i56[0]* TRUE)∧(i23[0]* i23[1]))


(1) -> (0), if ((i8[1]* i8[0])∧(i23[1] + -1* i23[0])∧(i56[1]* i56[0]))


(1) -> (4), if ((i23[1] + -1* i23[4])∧(i56[1]* i56[4])∧(i8[1]* i8[4]))


(2) -> (3), if ((i23[2] > i56[2] && i8[2] > i56[2]* TRUE)∧(i23[2]* i23[3])∧(i56[2]* i56[3])∧(i8[2]* i8[3]))


(3) -> (0), if ((i8[3]* i8[0])∧(i23[3] + -1* i23[0])∧(i56[3]* i56[0]))


(3) -> (4), if ((i23[3] + -1* i23[4])∧(i56[3]* i56[4])∧(i8[3]* i8[4]))


(4) -> (5), if ((i8[4]* i8[5])∧(i23[4] <= i56[4]* TRUE)∧(i56[4]* i56[5])∧(i23[4]* i23[5]))


(5) -> (2), if ((i56[5]* i56[2])∧(i23[5]* i23[2])∧(i8[5] + -1* i8[2]))


(5) -> (6), if ((i23[5]* i23[6])∧(i8[5] + -1* i8[6])∧(i56[5]* i56[6]))


(6) -> (7), if ((i23[6] <= i56[6] && i8[6] > i56[6]* TRUE)∧(i56[6]* i56[7])∧(i23[6]* i23[7])∧(i8[6]* i8[7]))


(7) -> (2), if ((i56[7]* i56[2])∧(i8[7] + -1* i8[2])∧(i23[7]* i23[2]))


(7) -> (6), if ((i8[7] + -1* i8[6])∧(i56[7]* i56[6])∧(i23[7]* i23[6]))



The set Q consists of the following terms:
Load1082(x0, x1, x2)
Cond_Load1082(TRUE, x0, x1, x2)
Load1003(x0, x1, x2)
Cond_Load1003(TRUE, x0, x1, x2)
Cond_Load10821(TRUE, x0, x1, x2)
Cond_Load10031(TRUE, x0, x1, x2)

(9) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair LOAD1082(i8, i23, i56) → COND_LOAD1082(>(i23, i56), i8, i23, i56) the following chains were created:
  • We consider the chain LOAD1082(i8[0], i23[0], i56[0]) → COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0]), COND_LOAD1082(TRUE, i8[1], i23[1], i56[1]) → LOAD1082(i8[1], +(i23[1], -1), i56[1]) which results in the following constraint:

    (1)    (i8[0]=i8[1]i56[0]=i56[1]>(i23[0], i56[0])=TRUEi23[0]=i23[1]LOAD1082(i8[0], i23[0], i56[0])≥NonInfC∧LOAD1082(i8[0], i23[0], i56[0])≥COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0])∧(UIncreasing(COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0])), ≥))



    We simplified constraint (1) using rule (IV) which results in the following new constraint:

    (2)    (>(i23[0], i56[0])=TRUELOAD1082(i8[0], i23[0], i56[0])≥NonInfC∧LOAD1082(i8[0], i23[0], i56[0])≥COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0])∧(UIncreasing(COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (i23[0] + [-1] + [-1]i56[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0])), ≥)∧[(-1)bni_34 + (-1)Bound*bni_34] + [(-1)bni_34]i56[0] + [bni_34]i8[0] ≥ 0∧[(-1)bso_35] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (i23[0] + [-1] + [-1]i56[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0])), ≥)∧[(-1)bni_34 + (-1)Bound*bni_34] + [(-1)bni_34]i56[0] + [bni_34]i8[0] ≥ 0∧[(-1)bso_35] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (i23[0] + [-1] + [-1]i56[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0])), ≥)∧[(-1)bni_34 + (-1)Bound*bni_34] + [(-1)bni_34]i56[0] + [bni_34]i8[0] ≥ 0∧[(-1)bso_35] ≥ 0)



    We simplified constraint (5) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (6)    (i23[0] + [-1] + [-1]i56[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0])), ≥)∧[bni_34] = 0∧[(-1)bni_34 + (-1)Bound*bni_34] + [(-1)bni_34]i56[0] ≥ 0∧0 = 0∧[(-1)bso_35] ≥ 0)



    We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (7)    (i23[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0])), ≥)∧[bni_34] = 0∧[(-1)bni_34 + (-1)Bound*bni_34] + [(-1)bni_34]i56[0] ≥ 0∧0 = 0∧[(-1)bso_35] ≥ 0)



    We simplified constraint (7) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (8)    (i23[0] ≥ 0∧i56[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0])), ≥)∧[bni_34] = 0∧[(-1)bni_34 + (-1)Bound*bni_34] + [(-1)bni_34]i56[0] ≥ 0∧0 = 0∧[(-1)bso_35] ≥ 0)


    (9)    (i23[0] ≥ 0∧i56[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0])), ≥)∧[bni_34] = 0∧[(-1)bni_34 + (-1)Bound*bni_34] + [bni_34]i56[0] ≥ 0∧0 = 0∧[(-1)bso_35] ≥ 0)







For Pair COND_LOAD1082(TRUE, i8, i23, i56) → LOAD1082(i8, +(i23, -1), i56) the following chains were created:
  • We consider the chain LOAD1082(i8[0], i23[0], i56[0]) → COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0]), COND_LOAD1082(TRUE, i8[1], i23[1], i56[1]) → LOAD1082(i8[1], +(i23[1], -1), i56[1]), LOAD1082(i8[0], i23[0], i56[0]) → COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0]) which results in the following constraint:

    (10)    (i8[0]=i8[1]i56[0]=i56[1]>(i23[0], i56[0])=TRUEi23[0]=i23[1]i8[1]=i8[0]1+(i23[1], -1)=i23[0]1i56[1]=i56[0]1COND_LOAD1082(TRUE, i8[1], i23[1], i56[1])≥NonInfC∧COND_LOAD1082(TRUE, i8[1], i23[1], i56[1])≥LOAD1082(i8[1], +(i23[1], -1), i56[1])∧(UIncreasing(LOAD1082(i8[1], +(i23[1], -1), i56[1])), ≥))



    We simplified constraint (10) using rules (III), (IV) which results in the following new constraint:

    (11)    (>(i23[0], i56[0])=TRUECOND_LOAD1082(TRUE, i8[0], i23[0], i56[0])≥NonInfC∧COND_LOAD1082(TRUE, i8[0], i23[0], i56[0])≥LOAD1082(i8[0], +(i23[0], -1), i56[0])∧(UIncreasing(LOAD1082(i8[1], +(i23[1], -1), i56[1])), ≥))



    We simplified constraint (11) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (12)    (i23[0] + [-1] + [-1]i56[0] ≥ 0 ⇒ (UIncreasing(LOAD1082(i8[1], +(i23[1], -1), i56[1])), ≥)∧[(-1)bni_36 + (-1)Bound*bni_36] + [(-1)bni_36]i56[0] + [bni_36]i8[0] ≥ 0∧[(-1)bso_37] ≥ 0)



    We simplified constraint (12) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (13)    (i23[0] + [-1] + [-1]i56[0] ≥ 0 ⇒ (UIncreasing(LOAD1082(i8[1], +(i23[1], -1), i56[1])), ≥)∧[(-1)bni_36 + (-1)Bound*bni_36] + [(-1)bni_36]i56[0] + [bni_36]i8[0] ≥ 0∧[(-1)bso_37] ≥ 0)



    We simplified constraint (13) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (14)    (i23[0] + [-1] + [-1]i56[0] ≥ 0 ⇒ (UIncreasing(LOAD1082(i8[1], +(i23[1], -1), i56[1])), ≥)∧[(-1)bni_36 + (-1)Bound*bni_36] + [(-1)bni_36]i56[0] + [bni_36]i8[0] ≥ 0∧[(-1)bso_37] ≥ 0)



    We simplified constraint (14) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (15)    (i23[0] + [-1] + [-1]i56[0] ≥ 0 ⇒ (UIncreasing(LOAD1082(i8[1], +(i23[1], -1), i56[1])), ≥)∧[bni_36] = 0∧[(-1)bni_36 + (-1)Bound*bni_36] + [(-1)bni_36]i56[0] ≥ 0∧0 = 0∧[(-1)bso_37] ≥ 0)



    We simplified constraint (15) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (16)    (i23[0] ≥ 0 ⇒ (UIncreasing(LOAD1082(i8[1], +(i23[1], -1), i56[1])), ≥)∧[bni_36] = 0∧[(-1)bni_36 + (-1)Bound*bni_36] + [(-1)bni_36]i56[0] ≥ 0∧0 = 0∧[(-1)bso_37] ≥ 0)



    We simplified constraint (16) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (17)    (i23[0] ≥ 0∧i56[0] ≥ 0 ⇒ (UIncreasing(LOAD1082(i8[1], +(i23[1], -1), i56[1])), ≥)∧[bni_36] = 0∧[(-1)bni_36 + (-1)Bound*bni_36] + [(-1)bni_36]i56[0] ≥ 0∧0 = 0∧[(-1)bso_37] ≥ 0)


    (18)    (i23[0] ≥ 0∧i56[0] ≥ 0 ⇒ (UIncreasing(LOAD1082(i8[1], +(i23[1], -1), i56[1])), ≥)∧[bni_36] = 0∧[(-1)bni_36 + (-1)Bound*bni_36] + [bni_36]i56[0] ≥ 0∧0 = 0∧[(-1)bso_37] ≥ 0)



  • We consider the chain LOAD1082(i8[0], i23[0], i56[0]) → COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0]), COND_LOAD1082(TRUE, i8[1], i23[1], i56[1]) → LOAD1082(i8[1], +(i23[1], -1), i56[1]), LOAD1082(i8[4], i23[4], i56[4]) → COND_LOAD10821(<=(i23[4], i56[4]), i8[4], i23[4], i56[4]) which results in the following constraint:

    (19)    (i8[0]=i8[1]i56[0]=i56[1]>(i23[0], i56[0])=TRUEi23[0]=i23[1]+(i23[1], -1)=i23[4]i56[1]=i56[4]i8[1]=i8[4]COND_LOAD1082(TRUE, i8[1], i23[1], i56[1])≥NonInfC∧COND_LOAD1082(TRUE, i8[1], i23[1], i56[1])≥LOAD1082(i8[1], +(i23[1], -1), i56[1])∧(UIncreasing(LOAD1082(i8[1], +(i23[1], -1), i56[1])), ≥))



    We simplified constraint (19) using rules (III), (IV) which results in the following new constraint:

    (20)    (>(i23[0], i56[0])=TRUECOND_LOAD1082(TRUE, i8[0], i23[0], i56[0])≥NonInfC∧COND_LOAD1082(TRUE, i8[0], i23[0], i56[0])≥LOAD1082(i8[0], +(i23[0], -1), i56[0])∧(UIncreasing(LOAD1082(i8[1], +(i23[1], -1), i56[1])), ≥))



    We simplified constraint (20) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (21)    (i23[0] + [-1] + [-1]i56[0] ≥ 0 ⇒ (UIncreasing(LOAD1082(i8[1], +(i23[1], -1), i56[1])), ≥)∧[(-1)bni_36 + (-1)Bound*bni_36] + [(-1)bni_36]i56[0] + [bni_36]i8[0] ≥ 0∧[(-1)bso_37] ≥ 0)



    We simplified constraint (21) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (22)    (i23[0] + [-1] + [-1]i56[0] ≥ 0 ⇒ (UIncreasing(LOAD1082(i8[1], +(i23[1], -1), i56[1])), ≥)∧[(-1)bni_36 + (-1)Bound*bni_36] + [(-1)bni_36]i56[0] + [bni_36]i8[0] ≥ 0∧[(-1)bso_37] ≥ 0)



    We simplified constraint (22) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (23)    (i23[0] + [-1] + [-1]i56[0] ≥ 0 ⇒ (UIncreasing(LOAD1082(i8[1], +(i23[1], -1), i56[1])), ≥)∧[(-1)bni_36 + (-1)Bound*bni_36] + [(-1)bni_36]i56[0] + [bni_36]i8[0] ≥ 0∧[(-1)bso_37] ≥ 0)



    We simplified constraint (23) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (24)    (i23[0] + [-1] + [-1]i56[0] ≥ 0 ⇒ (UIncreasing(LOAD1082(i8[1], +(i23[1], -1), i56[1])), ≥)∧[bni_36] = 0∧[(-1)bni_36 + (-1)Bound*bni_36] + [(-1)bni_36]i56[0] ≥ 0∧0 = 0∧[(-1)bso_37] ≥ 0)



    We simplified constraint (24) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (25)    (i23[0] ≥ 0 ⇒ (UIncreasing(LOAD1082(i8[1], +(i23[1], -1), i56[1])), ≥)∧[bni_36] = 0∧[(-1)bni_36 + (-1)Bound*bni_36] + [(-1)bni_36]i56[0] ≥ 0∧0 = 0∧[(-1)bso_37] ≥ 0)



    We simplified constraint (25) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (26)    (i23[0] ≥ 0∧i56[0] ≥ 0 ⇒ (UIncreasing(LOAD1082(i8[1], +(i23[1], -1), i56[1])), ≥)∧[bni_36] = 0∧[(-1)bni_36 + (-1)Bound*bni_36] + [(-1)bni_36]i56[0] ≥ 0∧0 = 0∧[(-1)bso_37] ≥ 0)


    (27)    (i23[0] ≥ 0∧i56[0] ≥ 0 ⇒ (UIncreasing(LOAD1082(i8[1], +(i23[1], -1), i56[1])), ≥)∧[bni_36] = 0∧[(-1)bni_36 + (-1)Bound*bni_36] + [bni_36]i56[0] ≥ 0∧0 = 0∧[(-1)bso_37] ≥ 0)







For Pair LOAD1003(i8, i23, i56) → COND_LOAD1003(&&(>(i23, i56), >(i8, i56)), i8, i23, i56) the following chains were created:
  • We consider the chain LOAD1003(i8[2], i23[2], i56[2]) → COND_LOAD1003(&&(>(i23[2], i56[2]), >(i8[2], i56[2])), i8[2], i23[2], i56[2]), COND_LOAD1003(TRUE, i8[3], i23[3], i56[3]) → LOAD1082(i8[3], +(i23[3], -1), i56[3]) which results in the following constraint:

    (28)    (&&(>(i23[2], i56[2]), >(i8[2], i56[2]))=TRUEi23[2]=i23[3]i56[2]=i56[3]i8[2]=i8[3]LOAD1003(i8[2], i23[2], i56[2])≥NonInfC∧LOAD1003(i8[2], i23[2], i56[2])≥COND_LOAD1003(&&(>(i23[2], i56[2]), >(i8[2], i56[2])), i8[2], i23[2], i56[2])∧(UIncreasing(COND_LOAD1003(&&(>(i23[2], i56[2]), >(i8[2], i56[2])), i8[2], i23[2], i56[2])), ≥))



    We simplified constraint (28) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (29)    (>(i23[2], i56[2])=TRUE>(i8[2], i56[2])=TRUELOAD1003(i8[2], i23[2], i56[2])≥NonInfC∧LOAD1003(i8[2], i23[2], i56[2])≥COND_LOAD1003(&&(>(i23[2], i56[2]), >(i8[2], i56[2])), i8[2], i23[2], i56[2])∧(UIncreasing(COND_LOAD1003(&&(>(i23[2], i56[2]), >(i8[2], i56[2])), i8[2], i23[2], i56[2])), ≥))



    We simplified constraint (29) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (30)    (i23[2] + [-1] + [-1]i56[2] ≥ 0∧i8[2] + [-1] + [-1]i56[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD1003(&&(>(i23[2], i56[2]), >(i8[2], i56[2])), i8[2], i23[2], i56[2])), ≥)∧[(-1)bni_38 + (-1)Bound*bni_38] + [(-1)bni_38]i56[2] + [bni_38]i8[2] ≥ 0∧[(-1)bso_39] ≥ 0)



    We simplified constraint (30) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (31)    (i23[2] + [-1] + [-1]i56[2] ≥ 0∧i8[2] + [-1] + [-1]i56[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD1003(&&(>(i23[2], i56[2]), >(i8[2], i56[2])), i8[2], i23[2], i56[2])), ≥)∧[(-1)bni_38 + (-1)Bound*bni_38] + [(-1)bni_38]i56[2] + [bni_38]i8[2] ≥ 0∧[(-1)bso_39] ≥ 0)



    We simplified constraint (31) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (32)    (i23[2] + [-1] + [-1]i56[2] ≥ 0∧i8[2] + [-1] + [-1]i56[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD1003(&&(>(i23[2], i56[2]), >(i8[2], i56[2])), i8[2], i23[2], i56[2])), ≥)∧[(-1)bni_38 + (-1)Bound*bni_38] + [(-1)bni_38]i56[2] + [bni_38]i8[2] ≥ 0∧[(-1)bso_39] ≥ 0)



    We simplified constraint (32) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (33)    (i23[2] ≥ 0∧i8[2] + [-1] + [-1]i56[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD1003(&&(>(i23[2], i56[2]), >(i8[2], i56[2])), i8[2], i23[2], i56[2])), ≥)∧[(-1)bni_38 + (-1)Bound*bni_38] + [(-1)bni_38]i56[2] + [bni_38]i8[2] ≥ 0∧[(-1)bso_39] ≥ 0)



    We simplified constraint (33) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (34)    (i23[2] ≥ 0∧i56[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD1003(&&(>(i23[2], i56[2]), >(i8[2], i56[2])), i8[2], i23[2], i56[2])), ≥)∧[(-1)Bound*bni_38] + [bni_38]i56[2] ≥ 0∧[(-1)bso_39] ≥ 0)



    We simplified constraint (34) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (35)    (i23[2] ≥ 0∧i56[2] ≥ 0∧i8[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD1003(&&(>(i23[2], i56[2]), >(i8[2], i56[2])), i8[2], i23[2], i56[2])), ≥)∧[(-1)Bound*bni_38] + [bni_38]i56[2] ≥ 0∧[(-1)bso_39] ≥ 0)


    (36)    (i23[2] ≥ 0∧i56[2] ≥ 0∧i8[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD1003(&&(>(i23[2], i56[2]), >(i8[2], i56[2])), i8[2], i23[2], i56[2])), ≥)∧[(-1)Bound*bni_38] + [bni_38]i56[2] ≥ 0∧[(-1)bso_39] ≥ 0)







For Pair COND_LOAD1003(TRUE, i8, i23, i56) → LOAD1082(i8, +(i23, -1), i56) the following chains were created:
  • We consider the chain LOAD1003(i8[2], i23[2], i56[2]) → COND_LOAD1003(&&(>(i23[2], i56[2]), >(i8[2], i56[2])), i8[2], i23[2], i56[2]), COND_LOAD1003(TRUE, i8[3], i23[3], i56[3]) → LOAD1082(i8[3], +(i23[3], -1), i56[3]), LOAD1082(i8[0], i23[0], i56[0]) → COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0]) which results in the following constraint:

    (37)    (&&(>(i23[2], i56[2]), >(i8[2], i56[2]))=TRUEi23[2]=i23[3]i56[2]=i56[3]i8[2]=i8[3]i8[3]=i8[0]+(i23[3], -1)=i23[0]i56[3]=i56[0]COND_LOAD1003(TRUE, i8[3], i23[3], i56[3])≥NonInfC∧COND_LOAD1003(TRUE, i8[3], i23[3], i56[3])≥LOAD1082(i8[3], +(i23[3], -1), i56[3])∧(UIncreasing(LOAD1082(i8[3], +(i23[3], -1), i56[3])), ≥))



    We simplified constraint (37) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (38)    (>(i23[2], i56[2])=TRUE>(i8[2], i56[2])=TRUECOND_LOAD1003(TRUE, i8[2], i23[2], i56[2])≥NonInfC∧COND_LOAD1003(TRUE, i8[2], i23[2], i56[2])≥LOAD1082(i8[2], +(i23[2], -1), i56[2])∧(UIncreasing(LOAD1082(i8[3], +(i23[3], -1), i56[3])), ≥))



    We simplified constraint (38) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (39)    (i23[2] + [-1] + [-1]i56[2] ≥ 0∧i8[2] + [-1] + [-1]i56[2] ≥ 0 ⇒ (UIncreasing(LOAD1082(i8[3], +(i23[3], -1), i56[3])), ≥)∧[(-1)bni_40 + (-1)Bound*bni_40] + [(-1)bni_40]i56[2] + [bni_40]i8[2] ≥ 0∧[(-1)bso_41] ≥ 0)



    We simplified constraint (39) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (40)    (i23[2] + [-1] + [-1]i56[2] ≥ 0∧i8[2] + [-1] + [-1]i56[2] ≥ 0 ⇒ (UIncreasing(LOAD1082(i8[3], +(i23[3], -1), i56[3])), ≥)∧[(-1)bni_40 + (-1)Bound*bni_40] + [(-1)bni_40]i56[2] + [bni_40]i8[2] ≥ 0∧[(-1)bso_41] ≥ 0)



    We simplified constraint (40) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (41)    (i23[2] + [-1] + [-1]i56[2] ≥ 0∧i8[2] + [-1] + [-1]i56[2] ≥ 0 ⇒ (UIncreasing(LOAD1082(i8[3], +(i23[3], -1), i56[3])), ≥)∧[(-1)bni_40 + (-1)Bound*bni_40] + [(-1)bni_40]i56[2] + [bni_40]i8[2] ≥ 0∧[(-1)bso_41] ≥ 0)



    We simplified constraint (41) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (42)    (i23[2] ≥ 0∧i8[2] + [-1] + [-1]i56[2] ≥ 0 ⇒ (UIncreasing(LOAD1082(i8[3], +(i23[3], -1), i56[3])), ≥)∧[(-1)bni_40 + (-1)Bound*bni_40] + [(-1)bni_40]i56[2] + [bni_40]i8[2] ≥ 0∧[(-1)bso_41] ≥ 0)



    We simplified constraint (42) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (43)    (i23[2] ≥ 0∧i56[2] ≥ 0 ⇒ (UIncreasing(LOAD1082(i8[3], +(i23[3], -1), i56[3])), ≥)∧[(-1)Bound*bni_40] + [bni_40]i56[2] ≥ 0∧[(-1)bso_41] ≥ 0)



    We simplified constraint (43) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (44)    (i23[2] ≥ 0∧i56[2] ≥ 0∧i8[2] ≥ 0 ⇒ (UIncreasing(LOAD1082(i8[3], +(i23[3], -1), i56[3])), ≥)∧[(-1)Bound*bni_40] + [bni_40]i56[2] ≥ 0∧[(-1)bso_41] ≥ 0)


    (45)    (i23[2] ≥ 0∧i56[2] ≥ 0∧i8[2] ≥ 0 ⇒ (UIncreasing(LOAD1082(i8[3], +(i23[3], -1), i56[3])), ≥)∧[(-1)Bound*bni_40] + [bni_40]i56[2] ≥ 0∧[(-1)bso_41] ≥ 0)



  • We consider the chain LOAD1003(i8[2], i23[2], i56[2]) → COND_LOAD1003(&&(>(i23[2], i56[2]), >(i8[2], i56[2])), i8[2], i23[2], i56[2]), COND_LOAD1003(TRUE, i8[3], i23[3], i56[3]) → LOAD1082(i8[3], +(i23[3], -1), i56[3]), LOAD1082(i8[4], i23[4], i56[4]) → COND_LOAD10821(<=(i23[4], i56[4]), i8[4], i23[4], i56[4]) which results in the following constraint:

    (46)    (&&(>(i23[2], i56[2]), >(i8[2], i56[2]))=TRUEi23[2]=i23[3]i56[2]=i56[3]i8[2]=i8[3]+(i23[3], -1)=i23[4]i56[3]=i56[4]i8[3]=i8[4]COND_LOAD1003(TRUE, i8[3], i23[3], i56[3])≥NonInfC∧COND_LOAD1003(TRUE, i8[3], i23[3], i56[3])≥LOAD1082(i8[3], +(i23[3], -1), i56[3])∧(UIncreasing(LOAD1082(i8[3], +(i23[3], -1), i56[3])), ≥))



    We simplified constraint (46) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (47)    (>(i23[2], i56[2])=TRUE>(i8[2], i56[2])=TRUECOND_LOAD1003(TRUE, i8[2], i23[2], i56[2])≥NonInfC∧COND_LOAD1003(TRUE, i8[2], i23[2], i56[2])≥LOAD1082(i8[2], +(i23[2], -1), i56[2])∧(UIncreasing(LOAD1082(i8[3], +(i23[3], -1), i56[3])), ≥))



    We simplified constraint (47) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (48)    (i23[2] + [-1] + [-1]i56[2] ≥ 0∧i8[2] + [-1] + [-1]i56[2] ≥ 0 ⇒ (UIncreasing(LOAD1082(i8[3], +(i23[3], -1), i56[3])), ≥)∧[(-1)bni_40 + (-1)Bound*bni_40] + [(-1)bni_40]i56[2] + [bni_40]i8[2] ≥ 0∧[(-1)bso_41] ≥ 0)



    We simplified constraint (48) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (49)    (i23[2] + [-1] + [-1]i56[2] ≥ 0∧i8[2] + [-1] + [-1]i56[2] ≥ 0 ⇒ (UIncreasing(LOAD1082(i8[3], +(i23[3], -1), i56[3])), ≥)∧[(-1)bni_40 + (-1)Bound*bni_40] + [(-1)bni_40]i56[2] + [bni_40]i8[2] ≥ 0∧[(-1)bso_41] ≥ 0)



    We simplified constraint (49) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (50)    (i23[2] + [-1] + [-1]i56[2] ≥ 0∧i8[2] + [-1] + [-1]i56[2] ≥ 0 ⇒ (UIncreasing(LOAD1082(i8[3], +(i23[3], -1), i56[3])), ≥)∧[(-1)bni_40 + (-1)Bound*bni_40] + [(-1)bni_40]i56[2] + [bni_40]i8[2] ≥ 0∧[(-1)bso_41] ≥ 0)



    We simplified constraint (50) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (51)    (i23[2] ≥ 0∧i8[2] + [-1] + [-1]i56[2] ≥ 0 ⇒ (UIncreasing(LOAD1082(i8[3], +(i23[3], -1), i56[3])), ≥)∧[(-1)bni_40 + (-1)Bound*bni_40] + [(-1)bni_40]i56[2] + [bni_40]i8[2] ≥ 0∧[(-1)bso_41] ≥ 0)



    We simplified constraint (51) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (52)    (i23[2] ≥ 0∧i56[2] ≥ 0 ⇒ (UIncreasing(LOAD1082(i8[3], +(i23[3], -1), i56[3])), ≥)∧[(-1)Bound*bni_40] + [bni_40]i56[2] ≥ 0∧[(-1)bso_41] ≥ 0)



    We simplified constraint (52) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (53)    (i23[2] ≥ 0∧i56[2] ≥ 0∧i8[2] ≥ 0 ⇒ (UIncreasing(LOAD1082(i8[3], +(i23[3], -1), i56[3])), ≥)∧[(-1)Bound*bni_40] + [bni_40]i56[2] ≥ 0∧[(-1)bso_41] ≥ 0)


    (54)    (i23[2] ≥ 0∧i56[2] ≥ 0∧i8[2] ≥ 0 ⇒ (UIncreasing(LOAD1082(i8[3], +(i23[3], -1), i56[3])), ≥)∧[(-1)Bound*bni_40] + [bni_40]i56[2] ≥ 0∧[(-1)bso_41] ≥ 0)







For Pair LOAD1082(i8, i23, i56) → COND_LOAD10821(<=(i23, i56), i8, i23, i56) the following chains were created:
  • We consider the chain LOAD1082(i8[4], i23[4], i56[4]) → COND_LOAD10821(<=(i23[4], i56[4]), i8[4], i23[4], i56[4]), COND_LOAD10821(TRUE, i8[5], i23[5], i56[5]) → LOAD1003(+(i8[5], -1), i23[5], i56[5]) which results in the following constraint:

    (55)    (i8[4]=i8[5]<=(i23[4], i56[4])=TRUEi56[4]=i56[5]i23[4]=i23[5]LOAD1082(i8[4], i23[4], i56[4])≥NonInfC∧LOAD1082(i8[4], i23[4], i56[4])≥COND_LOAD10821(<=(i23[4], i56[4]), i8[4], i23[4], i56[4])∧(UIncreasing(COND_LOAD10821(<=(i23[4], i56[4]), i8[4], i23[4], i56[4])), ≥))



    We simplified constraint (55) using rule (IV) which results in the following new constraint:

    (56)    (<=(i23[4], i56[4])=TRUELOAD1082(i8[4], i23[4], i56[4])≥NonInfC∧LOAD1082(i8[4], i23[4], i56[4])≥COND_LOAD10821(<=(i23[4], i56[4]), i8[4], i23[4], i56[4])∧(UIncreasing(COND_LOAD10821(<=(i23[4], i56[4]), i8[4], i23[4], i56[4])), ≥))



    We simplified constraint (56) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (57)    (i56[4] + [-1]i23[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD10821(<=(i23[4], i56[4]), i8[4], i23[4], i56[4])), ≥)∧[(-1)bni_42 + (-1)Bound*bni_42] + [(-1)bni_42]i56[4] + [bni_42]i8[4] ≥ 0∧[(-1)bso_43] ≥ 0)



    We simplified constraint (57) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (58)    (i56[4] + [-1]i23[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD10821(<=(i23[4], i56[4]), i8[4], i23[4], i56[4])), ≥)∧[(-1)bni_42 + (-1)Bound*bni_42] + [(-1)bni_42]i56[4] + [bni_42]i8[4] ≥ 0∧[(-1)bso_43] ≥ 0)



    We simplified constraint (58) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (59)    (i56[4] + [-1]i23[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD10821(<=(i23[4], i56[4]), i8[4], i23[4], i56[4])), ≥)∧[(-1)bni_42 + (-1)Bound*bni_42] + [(-1)bni_42]i56[4] + [bni_42]i8[4] ≥ 0∧[(-1)bso_43] ≥ 0)



    We simplified constraint (59) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (60)    (i56[4] + [-1]i23[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD10821(<=(i23[4], i56[4]), i8[4], i23[4], i56[4])), ≥)∧[bni_42] = 0∧[(-1)bni_42 + (-1)Bound*bni_42] + [(-1)bni_42]i56[4] ≥ 0∧0 = 0∧[(-1)bso_43] ≥ 0)



    We simplified constraint (60) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (61)    (i56[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD10821(<=(i23[4], i56[4]), i8[4], i23[4], i56[4])), ≥)∧[bni_42] = 0∧[(-1)bni_42 + (-1)Bound*bni_42] + [(-1)bni_42]i23[4] + [(-1)bni_42]i56[4] ≥ 0∧0 = 0∧[(-1)bso_43] ≥ 0)



    We simplified constraint (61) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (62)    (i56[4] ≥ 0∧i23[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD10821(<=(i23[4], i56[4]), i8[4], i23[4], i56[4])), ≥)∧[bni_42] = 0∧[(-1)bni_42 + (-1)Bound*bni_42] + [(-1)bni_42]i23[4] + [(-1)bni_42]i56[4] ≥ 0∧0 = 0∧[(-1)bso_43] ≥ 0)


    (63)    (i56[4] ≥ 0∧i23[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD10821(<=(i23[4], i56[4]), i8[4], i23[4], i56[4])), ≥)∧[bni_42] = 0∧[(-1)bni_42 + (-1)Bound*bni_42] + [bni_42]i23[4] + [(-1)bni_42]i56[4] ≥ 0∧0 = 0∧[(-1)bso_43] ≥ 0)







For Pair COND_LOAD10821(TRUE, i8, i23, i56) → LOAD1003(+(i8, -1), i23, i56) the following chains were created:
  • We consider the chain LOAD1082(i8[4], i23[4], i56[4]) → COND_LOAD10821(<=(i23[4], i56[4]), i8[4], i23[4], i56[4]), COND_LOAD10821(TRUE, i8[5], i23[5], i56[5]) → LOAD1003(+(i8[5], -1), i23[5], i56[5]), LOAD1003(i8[2], i23[2], i56[2]) → COND_LOAD1003(&&(>(i23[2], i56[2]), >(i8[2], i56[2])), i8[2], i23[2], i56[2]) which results in the following constraint:

    (64)    (i8[4]=i8[5]<=(i23[4], i56[4])=TRUEi56[4]=i56[5]i23[4]=i23[5]i56[5]=i56[2]i23[5]=i23[2]+(i8[5], -1)=i8[2]COND_LOAD10821(TRUE, i8[5], i23[5], i56[5])≥NonInfC∧COND_LOAD10821(TRUE, i8[5], i23[5], i56[5])≥LOAD1003(+(i8[5], -1), i23[5], i56[5])∧(UIncreasing(LOAD1003(+(i8[5], -1), i23[5], i56[5])), ≥))



    We simplified constraint (64) using rules (III), (IV) which results in the following new constraint:

    (65)    (<=(i23[4], i56[4])=TRUECOND_LOAD10821(TRUE, i8[4], i23[4], i56[4])≥NonInfC∧COND_LOAD10821(TRUE, i8[4], i23[4], i56[4])≥LOAD1003(+(i8[4], -1), i23[4], i56[4])∧(UIncreasing(LOAD1003(+(i8[5], -1), i23[5], i56[5])), ≥))



    We simplified constraint (65) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (66)    (i56[4] + [-1]i23[4] ≥ 0 ⇒ (UIncreasing(LOAD1003(+(i8[5], -1), i23[5], i56[5])), ≥)∧[(-1)bni_44 + (-1)Bound*bni_44] + [(-1)bni_44]i56[4] + [bni_44]i8[4] ≥ 0∧[1 + (-1)bso_45] ≥ 0)



    We simplified constraint (66) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (67)    (i56[4] + [-1]i23[4] ≥ 0 ⇒ (UIncreasing(LOAD1003(+(i8[5], -1), i23[5], i56[5])), ≥)∧[(-1)bni_44 + (-1)Bound*bni_44] + [(-1)bni_44]i56[4] + [bni_44]i8[4] ≥ 0∧[1 + (-1)bso_45] ≥ 0)



    We simplified constraint (67) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (68)    (i56[4] + [-1]i23[4] ≥ 0 ⇒ (UIncreasing(LOAD1003(+(i8[5], -1), i23[5], i56[5])), ≥)∧[(-1)bni_44 + (-1)Bound*bni_44] + [(-1)bni_44]i56[4] + [bni_44]i8[4] ≥ 0∧[1 + (-1)bso_45] ≥ 0)



    We simplified constraint (68) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (69)    (i56[4] + [-1]i23[4] ≥ 0 ⇒ (UIncreasing(LOAD1003(+(i8[5], -1), i23[5], i56[5])), ≥)∧[bni_44] = 0∧[(-1)bni_44 + (-1)Bound*bni_44] + [(-1)bni_44]i56[4] ≥ 0∧0 = 0∧[1 + (-1)bso_45] ≥ 0)



    We simplified constraint (69) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (70)    (i56[4] ≥ 0 ⇒ (UIncreasing(LOAD1003(+(i8[5], -1), i23[5], i56[5])), ≥)∧[bni_44] = 0∧[(-1)bni_44 + (-1)Bound*bni_44] + [(-1)bni_44]i23[4] + [(-1)bni_44]i56[4] ≥ 0∧0 = 0∧[1 + (-1)bso_45] ≥ 0)



    We simplified constraint (70) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (71)    (i56[4] ≥ 0∧i23[4] ≥ 0 ⇒ (UIncreasing(LOAD1003(+(i8[5], -1), i23[5], i56[5])), ≥)∧[bni_44] = 0∧[(-1)bni_44 + (-1)Bound*bni_44] + [bni_44]i23[4] + [(-1)bni_44]i56[4] ≥ 0∧0 = 0∧[1 + (-1)bso_45] ≥ 0)


    (72)    (i56[4] ≥ 0∧i23[4] ≥ 0 ⇒ (UIncreasing(LOAD1003(+(i8[5], -1), i23[5], i56[5])), ≥)∧[bni_44] = 0∧[(-1)bni_44 + (-1)Bound*bni_44] + [(-1)bni_44]i23[4] + [(-1)bni_44]i56[4] ≥ 0∧0 = 0∧[1 + (-1)bso_45] ≥ 0)



  • We consider the chain LOAD1082(i8[4], i23[4], i56[4]) → COND_LOAD10821(<=(i23[4], i56[4]), i8[4], i23[4], i56[4]), COND_LOAD10821(TRUE, i8[5], i23[5], i56[5]) → LOAD1003(+(i8[5], -1), i23[5], i56[5]), LOAD1003(i8[6], i23[6], i56[6]) → COND_LOAD10031(&&(<=(i23[6], i56[6]), >(i8[6], i56[6])), i8[6], i23[6], i56[6]) which results in the following constraint:

    (73)    (i8[4]=i8[5]<=(i23[4], i56[4])=TRUEi56[4]=i56[5]i23[4]=i23[5]i23[5]=i23[6]+(i8[5], -1)=i8[6]i56[5]=i56[6]COND_LOAD10821(TRUE, i8[5], i23[5], i56[5])≥NonInfC∧COND_LOAD10821(TRUE, i8[5], i23[5], i56[5])≥LOAD1003(+(i8[5], -1), i23[5], i56[5])∧(UIncreasing(LOAD1003(+(i8[5], -1), i23[5], i56[5])), ≥))



    We simplified constraint (73) using rules (III), (IV) which results in the following new constraint:

    (74)    (<=(i23[4], i56[4])=TRUECOND_LOAD10821(TRUE, i8[4], i23[4], i56[4])≥NonInfC∧COND_LOAD10821(TRUE, i8[4], i23[4], i56[4])≥LOAD1003(+(i8[4], -1), i23[4], i56[4])∧(UIncreasing(LOAD1003(+(i8[5], -1), i23[5], i56[5])), ≥))



    We simplified constraint (74) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (75)    (i56[4] + [-1]i23[4] ≥ 0 ⇒ (UIncreasing(LOAD1003(+(i8[5], -1), i23[5], i56[5])), ≥)∧[(-1)bni_44 + (-1)Bound*bni_44] + [(-1)bni_44]i56[4] + [bni_44]i8[4] ≥ 0∧[1 + (-1)bso_45] ≥ 0)



    We simplified constraint (75) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (76)    (i56[4] + [-1]i23[4] ≥ 0 ⇒ (UIncreasing(LOAD1003(+(i8[5], -1), i23[5], i56[5])), ≥)∧[(-1)bni_44 + (-1)Bound*bni_44] + [(-1)bni_44]i56[4] + [bni_44]i8[4] ≥ 0∧[1 + (-1)bso_45] ≥ 0)



    We simplified constraint (76) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (77)    (i56[4] + [-1]i23[4] ≥ 0 ⇒ (UIncreasing(LOAD1003(+(i8[5], -1), i23[5], i56[5])), ≥)∧[(-1)bni_44 + (-1)Bound*bni_44] + [(-1)bni_44]i56[4] + [bni_44]i8[4] ≥ 0∧[1 + (-1)bso_45] ≥ 0)



    We simplified constraint (77) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (78)    (i56[4] + [-1]i23[4] ≥ 0 ⇒ (UIncreasing(LOAD1003(+(i8[5], -1), i23[5], i56[5])), ≥)∧[bni_44] = 0∧[(-1)bni_44 + (-1)Bound*bni_44] + [(-1)bni_44]i56[4] ≥ 0∧0 = 0∧[1 + (-1)bso_45] ≥ 0)



    We simplified constraint (78) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (79)    (i56[4] ≥ 0 ⇒ (UIncreasing(LOAD1003(+(i8[5], -1), i23[5], i56[5])), ≥)∧[bni_44] = 0∧[(-1)bni_44 + (-1)Bound*bni_44] + [(-1)bni_44]i23[4] + [(-1)bni_44]i56[4] ≥ 0∧0 = 0∧[1 + (-1)bso_45] ≥ 0)



    We simplified constraint (79) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (80)    (i56[4] ≥ 0∧i23[4] ≥ 0 ⇒ (UIncreasing(LOAD1003(+(i8[5], -1), i23[5], i56[5])), ≥)∧[bni_44] = 0∧[(-1)bni_44 + (-1)Bound*bni_44] + [bni_44]i23[4] + [(-1)bni_44]i56[4] ≥ 0∧0 = 0∧[1 + (-1)bso_45] ≥ 0)


    (81)    (i56[4] ≥ 0∧i23[4] ≥ 0 ⇒ (UIncreasing(LOAD1003(+(i8[5], -1), i23[5], i56[5])), ≥)∧[bni_44] = 0∧[(-1)bni_44 + (-1)Bound*bni_44] + [(-1)bni_44]i23[4] + [(-1)bni_44]i56[4] ≥ 0∧0 = 0∧[1 + (-1)bso_45] ≥ 0)







For Pair LOAD1003(i8, i23, i56) → COND_LOAD10031(&&(<=(i23, i56), >(i8, i56)), i8, i23, i56) the following chains were created:
  • We consider the chain LOAD1003(i8[6], i23[6], i56[6]) → COND_LOAD10031(&&(<=(i23[6], i56[6]), >(i8[6], i56[6])), i8[6], i23[6], i56[6]), COND_LOAD10031(TRUE, i8[7], i23[7], i56[7]) → LOAD1003(+(i8[7], -1), i23[7], i56[7]) which results in the following constraint:

    (82)    (&&(<=(i23[6], i56[6]), >(i8[6], i56[6]))=TRUEi56[6]=i56[7]i23[6]=i23[7]i8[6]=i8[7]LOAD1003(i8[6], i23[6], i56[6])≥NonInfC∧LOAD1003(i8[6], i23[6], i56[6])≥COND_LOAD10031(&&(<=(i23[6], i56[6]), >(i8[6], i56[6])), i8[6], i23[6], i56[6])∧(UIncreasing(COND_LOAD10031(&&(<=(i23[6], i56[6]), >(i8[6], i56[6])), i8[6], i23[6], i56[6])), ≥))



    We simplified constraint (82) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (83)    (<=(i23[6], i56[6])=TRUE>(i8[6], i56[6])=TRUELOAD1003(i8[6], i23[6], i56[6])≥NonInfC∧LOAD1003(i8[6], i23[6], i56[6])≥COND_LOAD10031(&&(<=(i23[6], i56[6]), >(i8[6], i56[6])), i8[6], i23[6], i56[6])∧(UIncreasing(COND_LOAD10031(&&(<=(i23[6], i56[6]), >(i8[6], i56[6])), i8[6], i23[6], i56[6])), ≥))



    We simplified constraint (83) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (84)    (i56[6] + [-1]i23[6] ≥ 0∧i8[6] + [-1] + [-1]i56[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD10031(&&(<=(i23[6], i56[6]), >(i8[6], i56[6])), i8[6], i23[6], i56[6])), ≥)∧[(-1)bni_46 + (-1)Bound*bni_46] + [(-1)bni_46]i56[6] + [bni_46]i8[6] ≥ 0∧[(-1)bso_47] ≥ 0)



    We simplified constraint (84) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (85)    (i56[6] + [-1]i23[6] ≥ 0∧i8[6] + [-1] + [-1]i56[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD10031(&&(<=(i23[6], i56[6]), >(i8[6], i56[6])), i8[6], i23[6], i56[6])), ≥)∧[(-1)bni_46 + (-1)Bound*bni_46] + [(-1)bni_46]i56[6] + [bni_46]i8[6] ≥ 0∧[(-1)bso_47] ≥ 0)



    We simplified constraint (85) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (86)    (i56[6] + [-1]i23[6] ≥ 0∧i8[6] + [-1] + [-1]i56[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD10031(&&(<=(i23[6], i56[6]), >(i8[6], i56[6])), i8[6], i23[6], i56[6])), ≥)∧[(-1)bni_46 + (-1)Bound*bni_46] + [(-1)bni_46]i56[6] + [bni_46]i8[6] ≥ 0∧[(-1)bso_47] ≥ 0)



    We simplified constraint (86) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (87)    (i56[6] ≥ 0∧i8[6] + [-1] + [-1]i23[6] + [-1]i56[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD10031(&&(<=(i23[6], i56[6]), >(i8[6], i56[6])), i8[6], i23[6], i56[6])), ≥)∧[(-1)bni_46 + (-1)Bound*bni_46] + [(-1)bni_46]i23[6] + [(-1)bni_46]i56[6] + [bni_46]i8[6] ≥ 0∧[(-1)bso_47] ≥ 0)



    We simplified constraint (87) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (88)    (i56[6] ≥ 0∧i23[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD10031(&&(<=(i23[6], i56[6]), >(i8[6], i56[6])), i8[6], i23[6], i56[6])), ≥)∧[(-1)Bound*bni_46] + [bni_46]i23[6] ≥ 0∧[(-1)bso_47] ≥ 0)



    We simplified constraint (88) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (89)    (i56[6] ≥ 0∧i23[6] ≥ 0∧i8[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD10031(&&(<=(i23[6], i56[6]), >(i8[6], i56[6])), i8[6], i23[6], i56[6])), ≥)∧[(-1)Bound*bni_46] + [bni_46]i23[6] ≥ 0∧[(-1)bso_47] ≥ 0)


    (90)    (i56[6] ≥ 0∧i23[6] ≥ 0∧i8[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD10031(&&(<=(i23[6], i56[6]), >(i8[6], i56[6])), i8[6], i23[6], i56[6])), ≥)∧[(-1)Bound*bni_46] + [bni_46]i23[6] ≥ 0∧[(-1)bso_47] ≥ 0)







For Pair COND_LOAD10031(TRUE, i8, i23, i56) → LOAD1003(+(i8, -1), i23, i56) the following chains were created:
  • We consider the chain LOAD1003(i8[6], i23[6], i56[6]) → COND_LOAD10031(&&(<=(i23[6], i56[6]), >(i8[6], i56[6])), i8[6], i23[6], i56[6]), COND_LOAD10031(TRUE, i8[7], i23[7], i56[7]) → LOAD1003(+(i8[7], -1), i23[7], i56[7]), LOAD1003(i8[2], i23[2], i56[2]) → COND_LOAD1003(&&(>(i23[2], i56[2]), >(i8[2], i56[2])), i8[2], i23[2], i56[2]) which results in the following constraint:

    (91)    (&&(<=(i23[6], i56[6]), >(i8[6], i56[6]))=TRUEi56[6]=i56[7]i23[6]=i23[7]i8[6]=i8[7]i56[7]=i56[2]+(i8[7], -1)=i8[2]i23[7]=i23[2]COND_LOAD10031(TRUE, i8[7], i23[7], i56[7])≥NonInfC∧COND_LOAD10031(TRUE, i8[7], i23[7], i56[7])≥LOAD1003(+(i8[7], -1), i23[7], i56[7])∧(UIncreasing(LOAD1003(+(i8[7], -1), i23[7], i56[7])), ≥))



    We simplified constraint (91) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (92)    (<=(i23[6], i56[6])=TRUE>(i8[6], i56[6])=TRUECOND_LOAD10031(TRUE, i8[6], i23[6], i56[6])≥NonInfC∧COND_LOAD10031(TRUE, i8[6], i23[6], i56[6])≥LOAD1003(+(i8[6], -1), i23[6], i56[6])∧(UIncreasing(LOAD1003(+(i8[7], -1), i23[7], i56[7])), ≥))



    We simplified constraint (92) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (93)    (i56[6] + [-1]i23[6] ≥ 0∧i8[6] + [-1] + [-1]i56[6] ≥ 0 ⇒ (UIncreasing(LOAD1003(+(i8[7], -1), i23[7], i56[7])), ≥)∧[(-1)bni_48 + (-1)Bound*bni_48] + [(-1)bni_48]i56[6] + [bni_48]i8[6] ≥ 0∧[1 + (-1)bso_49] ≥ 0)



    We simplified constraint (93) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (94)    (i56[6] + [-1]i23[6] ≥ 0∧i8[6] + [-1] + [-1]i56[6] ≥ 0 ⇒ (UIncreasing(LOAD1003(+(i8[7], -1), i23[7], i56[7])), ≥)∧[(-1)bni_48 + (-1)Bound*bni_48] + [(-1)bni_48]i56[6] + [bni_48]i8[6] ≥ 0∧[1 + (-1)bso_49] ≥ 0)



    We simplified constraint (94) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (95)    (i56[6] + [-1]i23[6] ≥ 0∧i8[6] + [-1] + [-1]i56[6] ≥ 0 ⇒ (UIncreasing(LOAD1003(+(i8[7], -1), i23[7], i56[7])), ≥)∧[(-1)bni_48 + (-1)Bound*bni_48] + [(-1)bni_48]i56[6] + [bni_48]i8[6] ≥ 0∧[1 + (-1)bso_49] ≥ 0)



    We simplified constraint (95) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (96)    (i56[6] ≥ 0∧i8[6] + [-1] + [-1]i23[6] + [-1]i56[6] ≥ 0 ⇒ (UIncreasing(LOAD1003(+(i8[7], -1), i23[7], i56[7])), ≥)∧[(-1)bni_48 + (-1)Bound*bni_48] + [(-1)bni_48]i23[6] + [(-1)bni_48]i56[6] + [bni_48]i8[6] ≥ 0∧[1 + (-1)bso_49] ≥ 0)



    We simplified constraint (96) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (97)    (i56[6] ≥ 0∧i23[6] ≥ 0 ⇒ (UIncreasing(LOAD1003(+(i8[7], -1), i23[7], i56[7])), ≥)∧[(-1)Bound*bni_48] + [bni_48]i23[6] ≥ 0∧[1 + (-1)bso_49] ≥ 0)



    We simplified constraint (97) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (98)    (i56[6] ≥ 0∧i23[6] ≥ 0∧i8[6] ≥ 0 ⇒ (UIncreasing(LOAD1003(+(i8[7], -1), i23[7], i56[7])), ≥)∧[(-1)Bound*bni_48] + [bni_48]i23[6] ≥ 0∧[1 + (-1)bso_49] ≥ 0)


    (99)    (i56[6] ≥ 0∧i23[6] ≥ 0∧i8[6] ≥ 0 ⇒ (UIncreasing(LOAD1003(+(i8[7], -1), i23[7], i56[7])), ≥)∧[(-1)Bound*bni_48] + [bni_48]i23[6] ≥ 0∧[1 + (-1)bso_49] ≥ 0)



  • We consider the chain LOAD1003(i8[6], i23[6], i56[6]) → COND_LOAD10031(&&(<=(i23[6], i56[6]), >(i8[6], i56[6])), i8[6], i23[6], i56[6]), COND_LOAD10031(TRUE, i8[7], i23[7], i56[7]) → LOAD1003(+(i8[7], -1), i23[7], i56[7]), LOAD1003(i8[6], i23[6], i56[6]) → COND_LOAD10031(&&(<=(i23[6], i56[6]), >(i8[6], i56[6])), i8[6], i23[6], i56[6]) which results in the following constraint:

    (100)    (&&(<=(i23[6], i56[6]), >(i8[6], i56[6]))=TRUEi56[6]=i56[7]i23[6]=i23[7]i8[6]=i8[7]+(i8[7], -1)=i8[6]1i56[7]=i56[6]1i23[7]=i23[6]1COND_LOAD10031(TRUE, i8[7], i23[7], i56[7])≥NonInfC∧COND_LOAD10031(TRUE, i8[7], i23[7], i56[7])≥LOAD1003(+(i8[7], -1), i23[7], i56[7])∧(UIncreasing(LOAD1003(+(i8[7], -1), i23[7], i56[7])), ≥))



    We simplified constraint (100) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (101)    (<=(i23[6], i56[6])=TRUE>(i8[6], i56[6])=TRUECOND_LOAD10031(TRUE, i8[6], i23[6], i56[6])≥NonInfC∧COND_LOAD10031(TRUE, i8[6], i23[6], i56[6])≥LOAD1003(+(i8[6], -1), i23[6], i56[6])∧(UIncreasing(LOAD1003(+(i8[7], -1), i23[7], i56[7])), ≥))



    We simplified constraint (101) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (102)    (i56[6] + [-1]i23[6] ≥ 0∧i8[6] + [-1] + [-1]i56[6] ≥ 0 ⇒ (UIncreasing(LOAD1003(+(i8[7], -1), i23[7], i56[7])), ≥)∧[(-1)bni_48 + (-1)Bound*bni_48] + [(-1)bni_48]i56[6] + [bni_48]i8[6] ≥ 0∧[1 + (-1)bso_49] ≥ 0)



    We simplified constraint (102) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (103)    (i56[6] + [-1]i23[6] ≥ 0∧i8[6] + [-1] + [-1]i56[6] ≥ 0 ⇒ (UIncreasing(LOAD1003(+(i8[7], -1), i23[7], i56[7])), ≥)∧[(-1)bni_48 + (-1)Bound*bni_48] + [(-1)bni_48]i56[6] + [bni_48]i8[6] ≥ 0∧[1 + (-1)bso_49] ≥ 0)



    We simplified constraint (103) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (104)    (i56[6] + [-1]i23[6] ≥ 0∧i8[6] + [-1] + [-1]i56[6] ≥ 0 ⇒ (UIncreasing(LOAD1003(+(i8[7], -1), i23[7], i56[7])), ≥)∧[(-1)bni_48 + (-1)Bound*bni_48] + [(-1)bni_48]i56[6] + [bni_48]i8[6] ≥ 0∧[1 + (-1)bso_49] ≥ 0)



    We simplified constraint (104) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (105)    (i56[6] ≥ 0∧i8[6] + [-1] + [-1]i23[6] + [-1]i56[6] ≥ 0 ⇒ (UIncreasing(LOAD1003(+(i8[7], -1), i23[7], i56[7])), ≥)∧[(-1)bni_48 + (-1)Bound*bni_48] + [(-1)bni_48]i23[6] + [(-1)bni_48]i56[6] + [bni_48]i8[6] ≥ 0∧[1 + (-1)bso_49] ≥ 0)



    We simplified constraint (105) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (106)    (i56[6] ≥ 0∧i23[6] ≥ 0 ⇒ (UIncreasing(LOAD1003(+(i8[7], -1), i23[7], i56[7])), ≥)∧[(-1)Bound*bni_48] + [bni_48]i23[6] ≥ 0∧[1 + (-1)bso_49] ≥ 0)



    We simplified constraint (106) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (107)    (i56[6] ≥ 0∧i23[6] ≥ 0∧i8[6] ≥ 0 ⇒ (UIncreasing(LOAD1003(+(i8[7], -1), i23[7], i56[7])), ≥)∧[(-1)Bound*bni_48] + [bni_48]i23[6] ≥ 0∧[1 + (-1)bso_49] ≥ 0)


    (108)    (i56[6] ≥ 0∧i23[6] ≥ 0∧i8[6] ≥ 0 ⇒ (UIncreasing(LOAD1003(+(i8[7], -1), i23[7], i56[7])), ≥)∧[(-1)Bound*bni_48] + [bni_48]i23[6] ≥ 0∧[1 + (-1)bso_49] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • LOAD1082(i8, i23, i56) → COND_LOAD1082(>(i23, i56), i8, i23, i56)
    • (i23[0] ≥ 0∧i56[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0])), ≥)∧[bni_34] = 0∧[(-1)bni_34 + (-1)Bound*bni_34] + [(-1)bni_34]i56[0] ≥ 0∧0 = 0∧[(-1)bso_35] ≥ 0)
    • (i23[0] ≥ 0∧i56[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0])), ≥)∧[bni_34] = 0∧[(-1)bni_34 + (-1)Bound*bni_34] + [bni_34]i56[0] ≥ 0∧0 = 0∧[(-1)bso_35] ≥ 0)

  • COND_LOAD1082(TRUE, i8, i23, i56) → LOAD1082(i8, +(i23, -1), i56)
    • (i23[0] ≥ 0∧i56[0] ≥ 0 ⇒ (UIncreasing(LOAD1082(i8[1], +(i23[1], -1), i56[1])), ≥)∧[bni_36] = 0∧[(-1)bni_36 + (-1)Bound*bni_36] + [(-1)bni_36]i56[0] ≥ 0∧0 = 0∧[(-1)bso_37] ≥ 0)
    • (i23[0] ≥ 0∧i56[0] ≥ 0 ⇒ (UIncreasing(LOAD1082(i8[1], +(i23[1], -1), i56[1])), ≥)∧[bni_36] = 0∧[(-1)bni_36 + (-1)Bound*bni_36] + [bni_36]i56[0] ≥ 0∧0 = 0∧[(-1)bso_37] ≥ 0)
    • (i23[0] ≥ 0∧i56[0] ≥ 0 ⇒ (UIncreasing(LOAD1082(i8[1], +(i23[1], -1), i56[1])), ≥)∧[bni_36] = 0∧[(-1)bni_36 + (-1)Bound*bni_36] + [(-1)bni_36]i56[0] ≥ 0∧0 = 0∧[(-1)bso_37] ≥ 0)
    • (i23[0] ≥ 0∧i56[0] ≥ 0 ⇒ (UIncreasing(LOAD1082(i8[1], +(i23[1], -1), i56[1])), ≥)∧[bni_36] = 0∧[(-1)bni_36 + (-1)Bound*bni_36] + [bni_36]i56[0] ≥ 0∧0 = 0∧[(-1)bso_37] ≥ 0)

  • LOAD1003(i8, i23, i56) → COND_LOAD1003(&&(>(i23, i56), >(i8, i56)), i8, i23, i56)
    • (i23[2] ≥ 0∧i56[2] ≥ 0∧i8[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD1003(&&(>(i23[2], i56[2]), >(i8[2], i56[2])), i8[2], i23[2], i56[2])), ≥)∧[(-1)Bound*bni_38] + [bni_38]i56[2] ≥ 0∧[(-1)bso_39] ≥ 0)
    • (i23[2] ≥ 0∧i56[2] ≥ 0∧i8[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD1003(&&(>(i23[2], i56[2]), >(i8[2], i56[2])), i8[2], i23[2], i56[2])), ≥)∧[(-1)Bound*bni_38] + [bni_38]i56[2] ≥ 0∧[(-1)bso_39] ≥ 0)

  • COND_LOAD1003(TRUE, i8, i23, i56) → LOAD1082(i8, +(i23, -1), i56)
    • (i23[2] ≥ 0∧i56[2] ≥ 0∧i8[2] ≥ 0 ⇒ (UIncreasing(LOAD1082(i8[3], +(i23[3], -1), i56[3])), ≥)∧[(-1)Bound*bni_40] + [bni_40]i56[2] ≥ 0∧[(-1)bso_41] ≥ 0)
    • (i23[2] ≥ 0∧i56[2] ≥ 0∧i8[2] ≥ 0 ⇒ (UIncreasing(LOAD1082(i8[3], +(i23[3], -1), i56[3])), ≥)∧[(-1)Bound*bni_40] + [bni_40]i56[2] ≥ 0∧[(-1)bso_41] ≥ 0)
    • (i23[2] ≥ 0∧i56[2] ≥ 0∧i8[2] ≥ 0 ⇒ (UIncreasing(LOAD1082(i8[3], +(i23[3], -1), i56[3])), ≥)∧[(-1)Bound*bni_40] + [bni_40]i56[2] ≥ 0∧[(-1)bso_41] ≥ 0)
    • (i23[2] ≥ 0∧i56[2] ≥ 0∧i8[2] ≥ 0 ⇒ (UIncreasing(LOAD1082(i8[3], +(i23[3], -1), i56[3])), ≥)∧[(-1)Bound*bni_40] + [bni_40]i56[2] ≥ 0∧[(-1)bso_41] ≥ 0)

  • LOAD1082(i8, i23, i56) → COND_LOAD10821(<=(i23, i56), i8, i23, i56)
    • (i56[4] ≥ 0∧i23[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD10821(<=(i23[4], i56[4]), i8[4], i23[4], i56[4])), ≥)∧[bni_42] = 0∧[(-1)bni_42 + (-1)Bound*bni_42] + [(-1)bni_42]i23[4] + [(-1)bni_42]i56[4] ≥ 0∧0 = 0∧[(-1)bso_43] ≥ 0)
    • (i56[4] ≥ 0∧i23[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD10821(<=(i23[4], i56[4]), i8[4], i23[4], i56[4])), ≥)∧[bni_42] = 0∧[(-1)bni_42 + (-1)Bound*bni_42] + [bni_42]i23[4] + [(-1)bni_42]i56[4] ≥ 0∧0 = 0∧[(-1)bso_43] ≥ 0)

  • COND_LOAD10821(TRUE, i8, i23, i56) → LOAD1003(+(i8, -1), i23, i56)
    • (i56[4] ≥ 0∧i23[4] ≥ 0 ⇒ (UIncreasing(LOAD1003(+(i8[5], -1), i23[5], i56[5])), ≥)∧[bni_44] = 0∧[(-1)bni_44 + (-1)Bound*bni_44] + [bni_44]i23[4] + [(-1)bni_44]i56[4] ≥ 0∧0 = 0∧[1 + (-1)bso_45] ≥ 0)
    • (i56[4] ≥ 0∧i23[4] ≥ 0 ⇒ (UIncreasing(LOAD1003(+(i8[5], -1), i23[5], i56[5])), ≥)∧[bni_44] = 0∧[(-1)bni_44 + (-1)Bound*bni_44] + [(-1)bni_44]i23[4] + [(-1)bni_44]i56[4] ≥ 0∧0 = 0∧[1 + (-1)bso_45] ≥ 0)
    • (i56[4] ≥ 0∧i23[4] ≥ 0 ⇒ (UIncreasing(LOAD1003(+(i8[5], -1), i23[5], i56[5])), ≥)∧[bni_44] = 0∧[(-1)bni_44 + (-1)Bound*bni_44] + [bni_44]i23[4] + [(-1)bni_44]i56[4] ≥ 0∧0 = 0∧[1 + (-1)bso_45] ≥ 0)
    • (i56[4] ≥ 0∧i23[4] ≥ 0 ⇒ (UIncreasing(LOAD1003(+(i8[5], -1), i23[5], i56[5])), ≥)∧[bni_44] = 0∧[(-1)bni_44 + (-1)Bound*bni_44] + [(-1)bni_44]i23[4] + [(-1)bni_44]i56[4] ≥ 0∧0 = 0∧[1 + (-1)bso_45] ≥ 0)

  • LOAD1003(i8, i23, i56) → COND_LOAD10031(&&(<=(i23, i56), >(i8, i56)), i8, i23, i56)
    • (i56[6] ≥ 0∧i23[6] ≥ 0∧i8[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD10031(&&(<=(i23[6], i56[6]), >(i8[6], i56[6])), i8[6], i23[6], i56[6])), ≥)∧[(-1)Bound*bni_46] + [bni_46]i23[6] ≥ 0∧[(-1)bso_47] ≥ 0)
    • (i56[6] ≥ 0∧i23[6] ≥ 0∧i8[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD10031(&&(<=(i23[6], i56[6]), >(i8[6], i56[6])), i8[6], i23[6], i56[6])), ≥)∧[(-1)Bound*bni_46] + [bni_46]i23[6] ≥ 0∧[(-1)bso_47] ≥ 0)

  • COND_LOAD10031(TRUE, i8, i23, i56) → LOAD1003(+(i8, -1), i23, i56)
    • (i56[6] ≥ 0∧i23[6] ≥ 0∧i8[6] ≥ 0 ⇒ (UIncreasing(LOAD1003(+(i8[7], -1), i23[7], i56[7])), ≥)∧[(-1)Bound*bni_48] + [bni_48]i23[6] ≥ 0∧[1 + (-1)bso_49] ≥ 0)
    • (i56[6] ≥ 0∧i23[6] ≥ 0∧i8[6] ≥ 0 ⇒ (UIncreasing(LOAD1003(+(i8[7], -1), i23[7], i56[7])), ≥)∧[(-1)Bound*bni_48] + [bni_48]i23[6] ≥ 0∧[1 + (-1)bso_49] ≥ 0)
    • (i56[6] ≥ 0∧i23[6] ≥ 0∧i8[6] ≥ 0 ⇒ (UIncreasing(LOAD1003(+(i8[7], -1), i23[7], i56[7])), ≥)∧[(-1)Bound*bni_48] + [bni_48]i23[6] ≥ 0∧[1 + (-1)bso_49] ≥ 0)
    • (i56[6] ≥ 0∧i23[6] ≥ 0∧i8[6] ≥ 0 ⇒ (UIncreasing(LOAD1003(+(i8[7], -1), i23[7], i56[7])), ≥)∧[(-1)Bound*bni_48] + [bni_48]i23[6] ≥ 0∧[1 + (-1)bso_49] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = [3]   
POL(LOAD1082(x1, x2, x3)) = [-1] + [-1]x3 + x1   
POL(COND_LOAD1082(x1, x2, x3, x4)) = [-1] + [-1]x4 + x2   
POL(>(x1, x2)) = 0   
POL(+(x1, x2)) = x1 + x2   
POL(-1) = [-1]   
POL(LOAD1003(x1, x2, x3)) = [-1] + [-1]x3 + x1   
POL(COND_LOAD1003(x1, x2, x3, x4)) = [-1] + [-1]x4 + x2   
POL(&&(x1, x2)) = [-1]   
POL(COND_LOAD10821(x1, x2, x3, x4)) = [-1] + [-1]x4 + x2   
POL(<=(x1, x2)) = [-1]   
POL(COND_LOAD10031(x1, x2, x3, x4)) = [-1] + [-1]x4 + x2   

The following pairs are in P>:

COND_LOAD10821(TRUE, i8[5], i23[5], i56[5]) → LOAD1003(+(i8[5], -1), i23[5], i56[5])
COND_LOAD10031(TRUE, i8[7], i23[7], i56[7]) → LOAD1003(+(i8[7], -1), i23[7], i56[7])

The following pairs are in Pbound:

LOAD1003(i8[2], i23[2], i56[2]) → COND_LOAD1003(&&(>(i23[2], i56[2]), >(i8[2], i56[2])), i8[2], i23[2], i56[2])
COND_LOAD1003(TRUE, i8[3], i23[3], i56[3]) → LOAD1082(i8[3], +(i23[3], -1), i56[3])
LOAD1003(i8[6], i23[6], i56[6]) → COND_LOAD10031(&&(<=(i23[6], i56[6]), >(i8[6], i56[6])), i8[6], i23[6], i56[6])
COND_LOAD10031(TRUE, i8[7], i23[7], i56[7]) → LOAD1003(+(i8[7], -1), i23[7], i56[7])

The following pairs are in P:

LOAD1082(i8[0], i23[0], i56[0]) → COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0])
COND_LOAD1082(TRUE, i8[1], i23[1], i56[1]) → LOAD1082(i8[1], +(i23[1], -1), i56[1])
LOAD1003(i8[2], i23[2], i56[2]) → COND_LOAD1003(&&(>(i23[2], i56[2]), >(i8[2], i56[2])), i8[2], i23[2], i56[2])
COND_LOAD1003(TRUE, i8[3], i23[3], i56[3]) → LOAD1082(i8[3], +(i23[3], -1), i56[3])
LOAD1082(i8[4], i23[4], i56[4]) → COND_LOAD10821(<=(i23[4], i56[4]), i8[4], i23[4], i56[4])
LOAD1003(i8[6], i23[6], i56[6]) → COND_LOAD10031(&&(<=(i23[6], i56[6]), >(i8[6], i56[6])), i8[6], i23[6], i56[6])

At least the following rules have been oriented under context sensitive arithmetic replacement:

TRUE1&&(TRUE, TRUE)1
FALSE1&&(TRUE, FALSE)1
FALSE1&&(FALSE, TRUE)1
FALSE1&&(FALSE, FALSE)1

(10) Complex Obligation (AND)

(11) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


R is empty.

The integer pair graph contains the following rules and edges:
(0): LOAD1082(i8[0], i23[0], i56[0]) → COND_LOAD1082(i23[0] > i56[0], i8[0], i23[0], i56[0])
(1): COND_LOAD1082(TRUE, i8[1], i23[1], i56[1]) → LOAD1082(i8[1], i23[1] + -1, i56[1])
(2): LOAD1003(i8[2], i23[2], i56[2]) → COND_LOAD1003(i23[2] > i56[2] && i8[2] > i56[2], i8[2], i23[2], i56[2])
(3): COND_LOAD1003(TRUE, i8[3], i23[3], i56[3]) → LOAD1082(i8[3], i23[3] + -1, i56[3])
(4): LOAD1082(i8[4], i23[4], i56[4]) → COND_LOAD10821(i23[4] <= i56[4], i8[4], i23[4], i56[4])
(6): LOAD1003(i8[6], i23[6], i56[6]) → COND_LOAD10031(i23[6] <= i56[6] && i8[6] > i56[6], i8[6], i23[6], i56[6])

(1) -> (0), if ((i8[1]* i8[0])∧(i23[1] + -1* i23[0])∧(i56[1]* i56[0]))


(3) -> (0), if ((i8[3]* i8[0])∧(i23[3] + -1* i23[0])∧(i56[3]* i56[0]))


(0) -> (1), if ((i8[0]* i8[1])∧(i56[0]* i56[1])∧(i23[0] > i56[0]* TRUE)∧(i23[0]* i23[1]))


(2) -> (3), if ((i23[2] > i56[2] && i8[2] > i56[2]* TRUE)∧(i23[2]* i23[3])∧(i56[2]* i56[3])∧(i8[2]* i8[3]))


(1) -> (4), if ((i23[1] + -1* i23[4])∧(i56[1]* i56[4])∧(i8[1]* i8[4]))


(3) -> (4), if ((i23[3] + -1* i23[4])∧(i56[3]* i56[4])∧(i8[3]* i8[4]))



The set Q consists of the following terms:
Load1082(x0, x1, x2)
Cond_Load1082(TRUE, x0, x1, x2)
Load1003(x0, x1, x2)
Cond_Load1003(TRUE, x0, x1, x2)
Cond_Load10821(TRUE, x0, x1, x2)
Cond_Load10031(TRUE, x0, x1, x2)

(12) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 4 less nodes.

(13) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_LOAD1082(TRUE, i8[1], i23[1], i56[1]) → LOAD1082(i8[1], i23[1] + -1, i56[1])
(0): LOAD1082(i8[0], i23[0], i56[0]) → COND_LOAD1082(i23[0] > i56[0], i8[0], i23[0], i56[0])

(1) -> (0), if ((i8[1]* i8[0])∧(i23[1] + -1* i23[0])∧(i56[1]* i56[0]))


(0) -> (1), if ((i8[0]* i8[1])∧(i56[0]* i56[1])∧(i23[0] > i56[0]* TRUE)∧(i23[0]* i23[1]))



The set Q consists of the following terms:
Load1082(x0, x1, x2)
Cond_Load1082(TRUE, x0, x1, x2)
Load1003(x0, x1, x2)
Cond_Load1003(TRUE, x0, x1, x2)
Cond_Load10821(TRUE, x0, x1, x2)
Cond_Load10031(TRUE, x0, x1, x2)

(14) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair COND_LOAD1082(TRUE, i8[1], i23[1], i56[1]) → LOAD1082(i8[1], +(i23[1], -1), i56[1]) the following chains were created:
  • We consider the chain LOAD1082(i8[0], i23[0], i56[0]) → COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0]), COND_LOAD1082(TRUE, i8[1], i23[1], i56[1]) → LOAD1082(i8[1], +(i23[1], -1), i56[1]), LOAD1082(i8[0], i23[0], i56[0]) → COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0]) which results in the following constraint:

    (1)    (i8[0]=i8[1]i56[0]=i56[1]>(i23[0], i56[0])=TRUEi23[0]=i23[1]i8[1]=i8[0]1+(i23[1], -1)=i23[0]1i56[1]=i56[0]1COND_LOAD1082(TRUE, i8[1], i23[1], i56[1])≥NonInfC∧COND_LOAD1082(TRUE, i8[1], i23[1], i56[1])≥LOAD1082(i8[1], +(i23[1], -1), i56[1])∧(UIncreasing(LOAD1082(i8[1], +(i23[1], -1), i56[1])), ≥))



    We simplified constraint (1) using rules (III), (IV) which results in the following new constraint:

    (2)    (>(i23[0], i56[0])=TRUECOND_LOAD1082(TRUE, i8[0], i23[0], i56[0])≥NonInfC∧COND_LOAD1082(TRUE, i8[0], i23[0], i56[0])≥LOAD1082(i8[0], +(i23[0], -1), i56[0])∧(UIncreasing(LOAD1082(i8[1], +(i23[1], -1), i56[1])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (i23[0] + [-1] + [-1]i56[0] ≥ 0 ⇒ (UIncreasing(LOAD1082(i8[1], +(i23[1], -1), i56[1])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]i56[0] + [bni_13]i23[0] ≥ 0∧[1 + (-1)bso_14] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (i23[0] + [-1] + [-1]i56[0] ≥ 0 ⇒ (UIncreasing(LOAD1082(i8[1], +(i23[1], -1), i56[1])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]i56[0] + [bni_13]i23[0] ≥ 0∧[1 + (-1)bso_14] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (i23[0] + [-1] + [-1]i56[0] ≥ 0 ⇒ (UIncreasing(LOAD1082(i8[1], +(i23[1], -1), i56[1])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]i56[0] + [bni_13]i23[0] ≥ 0∧[1 + (-1)bso_14] ≥ 0)



    We simplified constraint (5) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (6)    (i23[0] + [-1] + [-1]i56[0] ≥ 0 ⇒ (UIncreasing(LOAD1082(i8[1], +(i23[1], -1), i56[1])), ≥)∧0 = 0∧[(-1)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]i56[0] + [bni_13]i23[0] ≥ 0∧0 = 0∧[1 + (-1)bso_14] ≥ 0)



    We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (7)    (i23[0] ≥ 0 ⇒ (UIncreasing(LOAD1082(i8[1], +(i23[1], -1), i56[1])), ≥)∧0 = 0∧[(-1)Bound*bni_13] + [bni_13]i23[0] ≥ 0∧0 = 0∧[1 + (-1)bso_14] ≥ 0)



    We simplified constraint (7) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (8)    (i23[0] ≥ 0∧i56[0] ≥ 0 ⇒ (UIncreasing(LOAD1082(i8[1], +(i23[1], -1), i56[1])), ≥)∧0 = 0∧[(-1)Bound*bni_13] + [bni_13]i23[0] ≥ 0∧0 = 0∧[1 + (-1)bso_14] ≥ 0)


    (9)    (i23[0] ≥ 0∧i56[0] ≥ 0 ⇒ (UIncreasing(LOAD1082(i8[1], +(i23[1], -1), i56[1])), ≥)∧0 = 0∧[(-1)Bound*bni_13] + [bni_13]i23[0] ≥ 0∧0 = 0∧[1 + (-1)bso_14] ≥ 0)







For Pair LOAD1082(i8[0], i23[0], i56[0]) → COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0]) the following chains were created:
  • We consider the chain LOAD1082(i8[0], i23[0], i56[0]) → COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0]), COND_LOAD1082(TRUE, i8[1], i23[1], i56[1]) → LOAD1082(i8[1], +(i23[1], -1), i56[1]) which results in the following constraint:

    (10)    (i8[0]=i8[1]i56[0]=i56[1]>(i23[0], i56[0])=TRUEi23[0]=i23[1]LOAD1082(i8[0], i23[0], i56[0])≥NonInfC∧LOAD1082(i8[0], i23[0], i56[0])≥COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0])∧(UIncreasing(COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0])), ≥))



    We simplified constraint (10) using rule (IV) which results in the following new constraint:

    (11)    (>(i23[0], i56[0])=TRUELOAD1082(i8[0], i23[0], i56[0])≥NonInfC∧LOAD1082(i8[0], i23[0], i56[0])≥COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0])∧(UIncreasing(COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0])), ≥))



    We simplified constraint (11) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (12)    (i23[0] + [-1] + [-1]i56[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]i56[0] + [bni_15]i23[0] ≥ 0∧[(-1)bso_16] ≥ 0)



    We simplified constraint (12) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (13)    (i23[0] + [-1] + [-1]i56[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]i56[0] + [bni_15]i23[0] ≥ 0∧[(-1)bso_16] ≥ 0)



    We simplified constraint (13) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (14)    (i23[0] + [-1] + [-1]i56[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]i56[0] + [bni_15]i23[0] ≥ 0∧[(-1)bso_16] ≥ 0)



    We simplified constraint (14) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (15)    (i23[0] + [-1] + [-1]i56[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0])), ≥)∧0 = 0∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]i56[0] + [bni_15]i23[0] ≥ 0∧0 = 0∧[(-1)bso_16] ≥ 0)



    We simplified constraint (15) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (16)    (i23[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0])), ≥)∧0 = 0∧[(-1)Bound*bni_15] + [bni_15]i23[0] ≥ 0∧0 = 0∧[(-1)bso_16] ≥ 0)



    We simplified constraint (16) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (17)    (i23[0] ≥ 0∧i56[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0])), ≥)∧0 = 0∧[(-1)Bound*bni_15] + [bni_15]i23[0] ≥ 0∧0 = 0∧[(-1)bso_16] ≥ 0)


    (18)    (i23[0] ≥ 0∧i56[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0])), ≥)∧0 = 0∧[(-1)Bound*bni_15] + [bni_15]i23[0] ≥ 0∧0 = 0∧[(-1)bso_16] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • COND_LOAD1082(TRUE, i8[1], i23[1], i56[1]) → LOAD1082(i8[1], +(i23[1], -1), i56[1])
    • (i23[0] ≥ 0∧i56[0] ≥ 0 ⇒ (UIncreasing(LOAD1082(i8[1], +(i23[1], -1), i56[1])), ≥)∧0 = 0∧[(-1)Bound*bni_13] + [bni_13]i23[0] ≥ 0∧0 = 0∧[1 + (-1)bso_14] ≥ 0)
    • (i23[0] ≥ 0∧i56[0] ≥ 0 ⇒ (UIncreasing(LOAD1082(i8[1], +(i23[1], -1), i56[1])), ≥)∧0 = 0∧[(-1)Bound*bni_13] + [bni_13]i23[0] ≥ 0∧0 = 0∧[1 + (-1)bso_14] ≥ 0)

  • LOAD1082(i8[0], i23[0], i56[0]) → COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0])
    • (i23[0] ≥ 0∧i56[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0])), ≥)∧0 = 0∧[(-1)Bound*bni_15] + [bni_15]i23[0] ≥ 0∧0 = 0∧[(-1)bso_16] ≥ 0)
    • (i23[0] ≥ 0∧i56[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0])), ≥)∧0 = 0∧[(-1)Bound*bni_15] + [bni_15]i23[0] ≥ 0∧0 = 0∧[(-1)bso_16] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(COND_LOAD1082(x1, x2, x3, x4)) = [-1] + [-1]x4 + x3   
POL(LOAD1082(x1, x2, x3)) = [-1] + [-1]x3 + x2   
POL(+(x1, x2)) = x1 + x2   
POL(-1) = [-1]   
POL(>(x1, x2)) = 0   

The following pairs are in P>:

COND_LOAD1082(TRUE, i8[1], i23[1], i56[1]) → LOAD1082(i8[1], +(i23[1], -1), i56[1])

The following pairs are in Pbound:

COND_LOAD1082(TRUE, i8[1], i23[1], i56[1]) → LOAD1082(i8[1], +(i23[1], -1), i56[1])
LOAD1082(i8[0], i23[0], i56[0]) → COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0])

The following pairs are in P:

LOAD1082(i8[0], i23[0], i56[0]) → COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0])

There are no usable rules.

(15) Complex Obligation (AND)

(16) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): LOAD1082(i8[0], i23[0], i56[0]) → COND_LOAD1082(i23[0] > i56[0], i8[0], i23[0], i56[0])


The set Q consists of the following terms:
Load1082(x0, x1, x2)
Cond_Load1082(TRUE, x0, x1, x2)
Load1003(x0, x1, x2)
Cond_Load1003(TRUE, x0, x1, x2)
Cond_Load10821(TRUE, x0, x1, x2)
Cond_Load10031(TRUE, x0, x1, x2)

(17) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(18) TRUE

(19) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:
none


R is empty.

The integer pair graph is empty.

The set Q consists of the following terms:
Load1082(x0, x1, x2)
Cond_Load1082(TRUE, x0, x1, x2)
Load1003(x0, x1, x2)
Cond_Load1003(TRUE, x0, x1, x2)
Cond_Load10821(TRUE, x0, x1, x2)
Cond_Load10031(TRUE, x0, x1, x2)

(20) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs.

(21) TRUE

(22) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): LOAD1082(i8[0], i23[0], i56[0]) → COND_LOAD1082(i23[0] > i56[0], i8[0], i23[0], i56[0])
(1): COND_LOAD1082(TRUE, i8[1], i23[1], i56[1]) → LOAD1082(i8[1], i23[1] + -1, i56[1])
(4): LOAD1082(i8[4], i23[4], i56[4]) → COND_LOAD10821(i23[4] <= i56[4], i8[4], i23[4], i56[4])
(5): COND_LOAD10821(TRUE, i8[5], i23[5], i56[5]) → LOAD1003(i8[5] + -1, i23[5], i56[5])

(1) -> (0), if ((i8[1]* i8[0])∧(i23[1] + -1* i23[0])∧(i56[1]* i56[0]))


(0) -> (1), if ((i8[0]* i8[1])∧(i56[0]* i56[1])∧(i23[0] > i56[0]* TRUE)∧(i23[0]* i23[1]))


(1) -> (4), if ((i23[1] + -1* i23[4])∧(i56[1]* i56[4])∧(i8[1]* i8[4]))


(4) -> (5), if ((i8[4]* i8[5])∧(i23[4] <= i56[4]* TRUE)∧(i56[4]* i56[5])∧(i23[4]* i23[5]))



The set Q consists of the following terms:
Load1082(x0, x1, x2)
Cond_Load1082(TRUE, x0, x1, x2)
Load1003(x0, x1, x2)
Cond_Load1003(TRUE, x0, x1, x2)
Cond_Load10821(TRUE, x0, x1, x2)
Cond_Load10031(TRUE, x0, x1, x2)

(23) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.

(24) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_LOAD1082(TRUE, i8[1], i23[1], i56[1]) → LOAD1082(i8[1], i23[1] + -1, i56[1])
(0): LOAD1082(i8[0], i23[0], i56[0]) → COND_LOAD1082(i23[0] > i56[0], i8[0], i23[0], i56[0])

(1) -> (0), if ((i8[1]* i8[0])∧(i23[1] + -1* i23[0])∧(i56[1]* i56[0]))


(0) -> (1), if ((i8[0]* i8[1])∧(i56[0]* i56[1])∧(i23[0] > i56[0]* TRUE)∧(i23[0]* i23[1]))



The set Q consists of the following terms:
Load1082(x0, x1, x2)
Cond_Load1082(TRUE, x0, x1, x2)
Load1003(x0, x1, x2)
Cond_Load1003(TRUE, x0, x1, x2)
Cond_Load10821(TRUE, x0, x1, x2)
Cond_Load10031(TRUE, x0, x1, x2)

(25) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair COND_LOAD1082(TRUE, i8[1], i23[1], i56[1]) → LOAD1082(i8[1], +(i23[1], -1), i56[1]) the following chains were created:
  • We consider the chain LOAD1082(i8[0], i23[0], i56[0]) → COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0]), COND_LOAD1082(TRUE, i8[1], i23[1], i56[1]) → LOAD1082(i8[1], +(i23[1], -1), i56[1]), LOAD1082(i8[0], i23[0], i56[0]) → COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0]) which results in the following constraint:

    (1)    (i8[0]=i8[1]i56[0]=i56[1]>(i23[0], i56[0])=TRUEi23[0]=i23[1]i8[1]=i8[0]1+(i23[1], -1)=i23[0]1i56[1]=i56[0]1COND_LOAD1082(TRUE, i8[1], i23[1], i56[1])≥NonInfC∧COND_LOAD1082(TRUE, i8[1], i23[1], i56[1])≥LOAD1082(i8[1], +(i23[1], -1), i56[1])∧(UIncreasing(LOAD1082(i8[1], +(i23[1], -1), i56[1])), ≥))



    We simplified constraint (1) using rules (III), (IV) which results in the following new constraint:

    (2)    (>(i23[0], i56[0])=TRUECOND_LOAD1082(TRUE, i8[0], i23[0], i56[0])≥NonInfC∧COND_LOAD1082(TRUE, i8[0], i23[0], i56[0])≥LOAD1082(i8[0], +(i23[0], -1), i56[0])∧(UIncreasing(LOAD1082(i8[1], +(i23[1], -1), i56[1])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (i23[0] + [-1] + [-1]i56[0] ≥ 0 ⇒ (UIncreasing(LOAD1082(i8[1], +(i23[1], -1), i56[1])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]i56[0] + [bni_13]i23[0] ≥ 0∧[1 + (-1)bso_14] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (i23[0] + [-1] + [-1]i56[0] ≥ 0 ⇒ (UIncreasing(LOAD1082(i8[1], +(i23[1], -1), i56[1])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]i56[0] + [bni_13]i23[0] ≥ 0∧[1 + (-1)bso_14] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (i23[0] + [-1] + [-1]i56[0] ≥ 0 ⇒ (UIncreasing(LOAD1082(i8[1], +(i23[1], -1), i56[1])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]i56[0] + [bni_13]i23[0] ≥ 0∧[1 + (-1)bso_14] ≥ 0)



    We simplified constraint (5) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (6)    (i23[0] + [-1] + [-1]i56[0] ≥ 0 ⇒ (UIncreasing(LOAD1082(i8[1], +(i23[1], -1), i56[1])), ≥)∧0 = 0∧[(-1)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]i56[0] + [bni_13]i23[0] ≥ 0∧0 = 0∧[1 + (-1)bso_14] ≥ 0)



    We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (7)    (i23[0] ≥ 0 ⇒ (UIncreasing(LOAD1082(i8[1], +(i23[1], -1), i56[1])), ≥)∧0 = 0∧[(-1)Bound*bni_13] + [bni_13]i23[0] ≥ 0∧0 = 0∧[1 + (-1)bso_14] ≥ 0)



    We simplified constraint (7) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (8)    (i23[0] ≥ 0∧i56[0] ≥ 0 ⇒ (UIncreasing(LOAD1082(i8[1], +(i23[1], -1), i56[1])), ≥)∧0 = 0∧[(-1)Bound*bni_13] + [bni_13]i23[0] ≥ 0∧0 = 0∧[1 + (-1)bso_14] ≥ 0)


    (9)    (i23[0] ≥ 0∧i56[0] ≥ 0 ⇒ (UIncreasing(LOAD1082(i8[1], +(i23[1], -1), i56[1])), ≥)∧0 = 0∧[(-1)Bound*bni_13] + [bni_13]i23[0] ≥ 0∧0 = 0∧[1 + (-1)bso_14] ≥ 0)







For Pair LOAD1082(i8[0], i23[0], i56[0]) → COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0]) the following chains were created:
  • We consider the chain LOAD1082(i8[0], i23[0], i56[0]) → COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0]), COND_LOAD1082(TRUE, i8[1], i23[1], i56[1]) → LOAD1082(i8[1], +(i23[1], -1), i56[1]) which results in the following constraint:

    (10)    (i8[0]=i8[1]i56[0]=i56[1]>(i23[0], i56[0])=TRUEi23[0]=i23[1]LOAD1082(i8[0], i23[0], i56[0])≥NonInfC∧LOAD1082(i8[0], i23[0], i56[0])≥COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0])∧(UIncreasing(COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0])), ≥))



    We simplified constraint (10) using rule (IV) which results in the following new constraint:

    (11)    (>(i23[0], i56[0])=TRUELOAD1082(i8[0], i23[0], i56[0])≥NonInfC∧LOAD1082(i8[0], i23[0], i56[0])≥COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0])∧(UIncreasing(COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0])), ≥))



    We simplified constraint (11) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (12)    (i23[0] + [-1] + [-1]i56[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]i56[0] + [bni_15]i23[0] ≥ 0∧[(-1)bso_16] ≥ 0)



    We simplified constraint (12) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (13)    (i23[0] + [-1] + [-1]i56[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]i56[0] + [bni_15]i23[0] ≥ 0∧[(-1)bso_16] ≥ 0)



    We simplified constraint (13) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (14)    (i23[0] + [-1] + [-1]i56[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]i56[0] + [bni_15]i23[0] ≥ 0∧[(-1)bso_16] ≥ 0)



    We simplified constraint (14) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (15)    (i23[0] + [-1] + [-1]i56[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0])), ≥)∧0 = 0∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]i56[0] + [bni_15]i23[0] ≥ 0∧0 = 0∧[(-1)bso_16] ≥ 0)



    We simplified constraint (15) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (16)    (i23[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0])), ≥)∧0 = 0∧[(-1)Bound*bni_15] + [bni_15]i23[0] ≥ 0∧0 = 0∧[(-1)bso_16] ≥ 0)



    We simplified constraint (16) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (17)    (i23[0] ≥ 0∧i56[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0])), ≥)∧0 = 0∧[(-1)Bound*bni_15] + [bni_15]i23[0] ≥ 0∧0 = 0∧[(-1)bso_16] ≥ 0)


    (18)    (i23[0] ≥ 0∧i56[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0])), ≥)∧0 = 0∧[(-1)Bound*bni_15] + [bni_15]i23[0] ≥ 0∧0 = 0∧[(-1)bso_16] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • COND_LOAD1082(TRUE, i8[1], i23[1], i56[1]) → LOAD1082(i8[1], +(i23[1], -1), i56[1])
    • (i23[0] ≥ 0∧i56[0] ≥ 0 ⇒ (UIncreasing(LOAD1082(i8[1], +(i23[1], -1), i56[1])), ≥)∧0 = 0∧[(-1)Bound*bni_13] + [bni_13]i23[0] ≥ 0∧0 = 0∧[1 + (-1)bso_14] ≥ 0)
    • (i23[0] ≥ 0∧i56[0] ≥ 0 ⇒ (UIncreasing(LOAD1082(i8[1], +(i23[1], -1), i56[1])), ≥)∧0 = 0∧[(-1)Bound*bni_13] + [bni_13]i23[0] ≥ 0∧0 = 0∧[1 + (-1)bso_14] ≥ 0)

  • LOAD1082(i8[0], i23[0], i56[0]) → COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0])
    • (i23[0] ≥ 0∧i56[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0])), ≥)∧0 = 0∧[(-1)Bound*bni_15] + [bni_15]i23[0] ≥ 0∧0 = 0∧[(-1)bso_16] ≥ 0)
    • (i23[0] ≥ 0∧i56[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0])), ≥)∧0 = 0∧[(-1)Bound*bni_15] + [bni_15]i23[0] ≥ 0∧0 = 0∧[(-1)bso_16] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(COND_LOAD1082(x1, x2, x3, x4)) = [-1] + [-1]x4 + x3   
POL(LOAD1082(x1, x2, x3)) = [-1] + [-1]x3 + x2   
POL(+(x1, x2)) = x1 + x2   
POL(-1) = [-1]   
POL(>(x1, x2)) = 0   

The following pairs are in P>:

COND_LOAD1082(TRUE, i8[1], i23[1], i56[1]) → LOAD1082(i8[1], +(i23[1], -1), i56[1])

The following pairs are in Pbound:

COND_LOAD1082(TRUE, i8[1], i23[1], i56[1]) → LOAD1082(i8[1], +(i23[1], -1), i56[1])
LOAD1082(i8[0], i23[0], i56[0]) → COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0])

The following pairs are in P:

LOAD1082(i8[0], i23[0], i56[0]) → COND_LOAD1082(>(i23[0], i56[0]), i8[0], i23[0], i56[0])

There are no usable rules.

(26) Complex Obligation (AND)

(27) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): LOAD1082(i8[0], i23[0], i56[0]) → COND_LOAD1082(i23[0] > i56[0], i8[0], i23[0], i56[0])


The set Q consists of the following terms:
Load1082(x0, x1, x2)
Cond_Load1082(TRUE, x0, x1, x2)
Load1003(x0, x1, x2)
Cond_Load1003(TRUE, x0, x1, x2)
Cond_Load10821(TRUE, x0, x1, x2)
Cond_Load10031(TRUE, x0, x1, x2)

(28) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(29) TRUE

(30) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:
none


R is empty.

The integer pair graph is empty.

The set Q consists of the following terms:
Load1082(x0, x1, x2)
Cond_Load1082(TRUE, x0, x1, x2)
Load1003(x0, x1, x2)
Cond_Load1003(TRUE, x0, x1, x2)
Cond_Load10821(TRUE, x0, x1, x2)
Cond_Load10031(TRUE, x0, x1, x2)

(31) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs.

(32) TRUE