0 JBC
↳1 JBC2FIG (⇐)
↳2 FIGraph
↳3 FIGtoITRSProof (⇐)
↳4 ITRS
↳5 ITRStoIDPProof (⇔)
↳6 IDP
↳7 UsableRulesProof (⇔)
↳8 IDP
↳9 IDPNonInfProof (⇐)
↳10 AND
↳11 IDP
↳12 IDependencyGraphProof (⇔)
↳13 TRUE
↳14 IDP
↳15 IDependencyGraphProof (⇔)
↳16 AND
↳17 IDP
↳18 IDPNonInfProof (⇐)
↳19 IDP
↳20 IDependencyGraphProof (⇔)
↳21 TRUE
↳22 IDP
↳23 IDPNonInfProof (⇐)
↳24 IDP
↳25 IDependencyGraphProof (⇔)
↳26 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaB16 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
while (x > 0) {
while (y > 0) {
y--;
}
x--;
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(0) -> (1), if ((i61[0] →* i61[1])∧(i61[0] > 0 →* TRUE)∧(i50[0] →* i50[1]))
(1) -> (0), if ((i61[1] + -1 →* i61[0])∧(i50[1] →* i50[0]))
(1) -> (4), if ((i50[1] →* i50[4])∧(i61[1] + -1 →* i62[4]))
(2) -> (3), if ((i61[2] →* i61[3])∧(i50[2] →* i50[3])∧(i61[2] > 0 && i50[2] > 0 →* TRUE))
(3) -> (0), if ((i61[3] + -1 →* i61[0])∧(i50[3] →* i50[0]))
(3) -> (4), if ((i61[3] + -1 →* i62[4])∧(i50[3] →* i50[4]))
(4) -> (5), if ((i62[4] <= 0 && i50[4] > 0 →* TRUE)∧(i50[4] →* i50[5])∧(i62[4] →* i62[5]))
(5) -> (2), if ((i62[5] →* i61[2])∧(i50[5] + -1 →* i50[2]))
(5) -> (6), if ((i50[5] + -1 →* i50[6])∧(i62[5] →* i62[6]))
(6) -> (7), if ((i62[6] →* i62[7])∧(i62[6] <= 0 && i50[6] > 0 →* TRUE)∧(i50[6] →* i50[7]))
(7) -> (2), if ((i50[7] + -1 →* i50[2])∧(i62[7] →* i61[2]))
(7) -> (6), if ((i50[7] + -1 →* i50[6])∧(i62[7] →* i62[6]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(0) -> (1), if ((i61[0] →* i61[1])∧(i61[0] > 0 →* TRUE)∧(i50[0] →* i50[1]))
(1) -> (0), if ((i61[1] + -1 →* i61[0])∧(i50[1] →* i50[0]))
(1) -> (4), if ((i50[1] →* i50[4])∧(i61[1] + -1 →* i62[4]))
(2) -> (3), if ((i61[2] →* i61[3])∧(i50[2] →* i50[3])∧(i61[2] > 0 && i50[2] > 0 →* TRUE))
(3) -> (0), if ((i61[3] + -1 →* i61[0])∧(i50[3] →* i50[0]))
(3) -> (4), if ((i61[3] + -1 →* i62[4])∧(i50[3] →* i50[4]))
(4) -> (5), if ((i62[4] <= 0 && i50[4] > 0 →* TRUE)∧(i50[4] →* i50[5])∧(i62[4] →* i62[5]))
(5) -> (2), if ((i62[5] →* i61[2])∧(i50[5] + -1 →* i50[2]))
(5) -> (6), if ((i50[5] + -1 →* i50[6])∧(i62[5] →* i62[6]))
(6) -> (7), if ((i62[6] →* i62[7])∧(i62[6] <= 0 && i50[6] > 0 →* TRUE)∧(i50[6] →* i50[7]))
(7) -> (2), if ((i50[7] + -1 →* i50[2])∧(i62[7] →* i61[2]))
(7) -> (6), if ((i50[7] + -1 →* i50[6])∧(i62[7] →* i62[6]))
(1) (i61[0]=i61[1]∧>(i61[0], 0)=TRUE∧i50[0]=i50[1] ⇒ LOAD683(i50[0], i61[0])≥NonInfC∧LOAD683(i50[0], i61[0])≥COND_LOAD683(>(i61[0], 0), i50[0], i61[0])∧(UIncreasing(COND_LOAD683(>(i61[0], 0), i50[0], i61[0])), ≥))
(2) (>(i61[0], 0)=TRUE ⇒ LOAD683(i50[0], i61[0])≥NonInfC∧LOAD683(i50[0], i61[0])≥COND_LOAD683(>(i61[0], 0), i50[0], i61[0])∧(UIncreasing(COND_LOAD683(>(i61[0], 0), i50[0], i61[0])), ≥))
(3) (i61[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD683(>(i61[0], 0), i50[0], i61[0])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [bni_15]i61[0] + [bni_15]i50[0] ≥ 0∧[1 + (-1)bso_16] ≥ 0)
(4) (i61[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD683(>(i61[0], 0), i50[0], i61[0])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [bni_15]i61[0] + [bni_15]i50[0] ≥ 0∧[1 + (-1)bso_16] ≥ 0)
(5) (i61[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD683(>(i61[0], 0), i50[0], i61[0])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [bni_15]i61[0] + [bni_15]i50[0] ≥ 0∧[1 + (-1)bso_16] ≥ 0)
(6) (i61[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD683(>(i61[0], 0), i50[0], i61[0])), ≥)∧[bni_15] = 0∧[bni_15 + (-1)Bound*bni_15] + [bni_15]i61[0] ≥ 0∧0 = 0∧[1 + (-1)bso_16] ≥ 0)
(7) (i61[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD683(>(i61[0], 0), i50[0], i61[0])), ≥)∧[bni_15] = 0∧[(2)bni_15 + (-1)Bound*bni_15] + [bni_15]i61[0] ≥ 0∧0 = 0∧[1 + (-1)bso_16] ≥ 0)
(8) (COND_LOAD683(TRUE, i50[1], i61[1])≥NonInfC∧COND_LOAD683(TRUE, i50[1], i61[1])≥LOAD683(i50[1], +(i61[1], -1))∧(UIncreasing(LOAD683(i50[1], +(i61[1], -1))), ≥))
(9) ((UIncreasing(LOAD683(i50[1], +(i61[1], -1))), ≥)∧[(-1)bso_18] ≥ 0)
(10) ((UIncreasing(LOAD683(i50[1], +(i61[1], -1))), ≥)∧[(-1)bso_18] ≥ 0)
(11) ((UIncreasing(LOAD683(i50[1], +(i61[1], -1))), ≥)∧[(-1)bso_18] ≥ 0)
(12) ((UIncreasing(LOAD683(i50[1], +(i61[1], -1))), ≥)∧0 = 0∧0 = 0∧[(-1)bso_18] ≥ 0)
(13) (i61[2]=i61[3]∧i50[2]=i50[3]∧&&(>(i61[2], 0), >(i50[2], 0))=TRUE ⇒ LOAD622(i50[2], i61[2])≥NonInfC∧LOAD622(i50[2], i61[2])≥COND_LOAD622(&&(>(i61[2], 0), >(i50[2], 0)), i50[2], i61[2])∧(UIncreasing(COND_LOAD622(&&(>(i61[2], 0), >(i50[2], 0)), i50[2], i61[2])), ≥))
(14) (>(i61[2], 0)=TRUE∧>(i50[2], 0)=TRUE ⇒ LOAD622(i50[2], i61[2])≥NonInfC∧LOAD622(i50[2], i61[2])≥COND_LOAD622(&&(>(i61[2], 0), >(i50[2], 0)), i50[2], i61[2])∧(UIncreasing(COND_LOAD622(&&(>(i61[2], 0), >(i50[2], 0)), i50[2], i61[2])), ≥))
(15) (i61[2] + [-1] ≥ 0∧i50[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD622(&&(>(i61[2], 0), >(i50[2], 0)), i50[2], i61[2])), ≥)∧[(2)bni_19 + (-1)Bound*bni_19] + [bni_19]i50[2] + [bni_19]i61[2] ≥ 0∧[1 + (-1)bso_20] ≥ 0)
(16) (i61[2] + [-1] ≥ 0∧i50[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD622(&&(>(i61[2], 0), >(i50[2], 0)), i50[2], i61[2])), ≥)∧[(2)bni_19 + (-1)Bound*bni_19] + [bni_19]i50[2] + [bni_19]i61[2] ≥ 0∧[1 + (-1)bso_20] ≥ 0)
(17) (i61[2] + [-1] ≥ 0∧i50[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD622(&&(>(i61[2], 0), >(i50[2], 0)), i50[2], i61[2])), ≥)∧[(2)bni_19 + (-1)Bound*bni_19] + [bni_19]i50[2] + [bni_19]i61[2] ≥ 0∧[1 + (-1)bso_20] ≥ 0)
(18) (i61[2] ≥ 0∧i50[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD622(&&(>(i61[2], 0), >(i50[2], 0)), i50[2], i61[2])), ≥)∧[(3)bni_19 + (-1)Bound*bni_19] + [bni_19]i50[2] + [bni_19]i61[2] ≥ 0∧[1 + (-1)bso_20] ≥ 0)
(19) (i61[2] ≥ 0∧i50[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD622(&&(>(i61[2], 0), >(i50[2], 0)), i50[2], i61[2])), ≥)∧[(4)bni_19 + (-1)Bound*bni_19] + [bni_19]i50[2] + [bni_19]i61[2] ≥ 0∧[1 + (-1)bso_20] ≥ 0)
(20) (COND_LOAD622(TRUE, i50[3], i61[3])≥NonInfC∧COND_LOAD622(TRUE, i50[3], i61[3])≥LOAD683(i50[3], +(i61[3], -1))∧(UIncreasing(LOAD683(i50[3], +(i61[3], -1))), ≥))
(21) ((UIncreasing(LOAD683(i50[3], +(i61[3], -1))), ≥)∧[1 + (-1)bso_22] ≥ 0)
(22) ((UIncreasing(LOAD683(i50[3], +(i61[3], -1))), ≥)∧[1 + (-1)bso_22] ≥ 0)
(23) ((UIncreasing(LOAD683(i50[3], +(i61[3], -1))), ≥)∧[1 + (-1)bso_22] ≥ 0)
(24) ((UIncreasing(LOAD683(i50[3], +(i61[3], -1))), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_22] ≥ 0)
(25) (&&(<=(i62[4], 0), >(i50[4], 0))=TRUE∧i50[4]=i50[5]∧i62[4]=i62[5] ⇒ LOAD683(i50[4], i62[4])≥NonInfC∧LOAD683(i50[4], i62[4])≥COND_LOAD6831(&&(<=(i62[4], 0), >(i50[4], 0)), i50[4], i62[4])∧(UIncreasing(COND_LOAD6831(&&(<=(i62[4], 0), >(i50[4], 0)), i50[4], i62[4])), ≥))
(26) (<=(i62[4], 0)=TRUE∧>(i50[4], 0)=TRUE ⇒ LOAD683(i50[4], i62[4])≥NonInfC∧LOAD683(i50[4], i62[4])≥COND_LOAD6831(&&(<=(i62[4], 0), >(i50[4], 0)), i50[4], i62[4])∧(UIncreasing(COND_LOAD6831(&&(<=(i62[4], 0), >(i50[4], 0)), i50[4], i62[4])), ≥))
(27) ([-1]i62[4] ≥ 0∧i50[4] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD6831(&&(<=(i62[4], 0), >(i50[4], 0)), i50[4], i62[4])), ≥)∧[bni_23 + (-1)Bound*bni_23] + [bni_23]i62[4] + [bni_23]i50[4] ≥ 0∧[(-1)bso_24] ≥ 0)
(28) ([-1]i62[4] ≥ 0∧i50[4] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD6831(&&(<=(i62[4], 0), >(i50[4], 0)), i50[4], i62[4])), ≥)∧[bni_23 + (-1)Bound*bni_23] + [bni_23]i62[4] + [bni_23]i50[4] ≥ 0∧[(-1)bso_24] ≥ 0)
(29) ([-1]i62[4] ≥ 0∧i50[4] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD6831(&&(<=(i62[4], 0), >(i50[4], 0)), i50[4], i62[4])), ≥)∧[bni_23 + (-1)Bound*bni_23] + [bni_23]i62[4] + [bni_23]i50[4] ≥ 0∧[(-1)bso_24] ≥ 0)
(30) (i62[4] ≥ 0∧i50[4] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD6831(&&(<=(i62[4], 0), >(i50[4], 0)), i50[4], i62[4])), ≥)∧[bni_23 + (-1)Bound*bni_23] + [(-1)bni_23]i62[4] + [bni_23]i50[4] ≥ 0∧[(-1)bso_24] ≥ 0)
(31) (i62[4] ≥ 0∧i50[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD6831(&&(<=(i62[4], 0), >(i50[4], 0)), i50[4], i62[4])), ≥)∧[(2)bni_23 + (-1)Bound*bni_23] + [(-1)bni_23]i62[4] + [bni_23]i50[4] ≥ 0∧[(-1)bso_24] ≥ 0)
(32) (COND_LOAD6831(TRUE, i50[5], i62[5])≥NonInfC∧COND_LOAD6831(TRUE, i50[5], i62[5])≥LOAD622(+(i50[5], -1), i62[5])∧(UIncreasing(LOAD622(+(i50[5], -1), i62[5])), ≥))
(33) ((UIncreasing(LOAD622(+(i50[5], -1), i62[5])), ≥)∧[(-1)bso_26] ≥ 0)
(34) ((UIncreasing(LOAD622(+(i50[5], -1), i62[5])), ≥)∧[(-1)bso_26] ≥ 0)
(35) ((UIncreasing(LOAD622(+(i50[5], -1), i62[5])), ≥)∧[(-1)bso_26] ≥ 0)
(36) ((UIncreasing(LOAD622(+(i50[5], -1), i62[5])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_26] ≥ 0)
(37) (i62[6]=i62[7]∧&&(<=(i62[6], 0), >(i50[6], 0))=TRUE∧i50[6]=i50[7] ⇒ LOAD622(i50[6], i62[6])≥NonInfC∧LOAD622(i50[6], i62[6])≥COND_LOAD6221(&&(<=(i62[6], 0), >(i50[6], 0)), i50[6], i62[6])∧(UIncreasing(COND_LOAD6221(&&(<=(i62[6], 0), >(i50[6], 0)), i50[6], i62[6])), ≥))
(38) (<=(i62[6], 0)=TRUE∧>(i50[6], 0)=TRUE ⇒ LOAD622(i50[6], i62[6])≥NonInfC∧LOAD622(i50[6], i62[6])≥COND_LOAD6221(&&(<=(i62[6], 0), >(i50[6], 0)), i50[6], i62[6])∧(UIncreasing(COND_LOAD6221(&&(<=(i62[6], 0), >(i50[6], 0)), i50[6], i62[6])), ≥))
(39) ([-1]i62[6] ≥ 0∧i50[6] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD6221(&&(<=(i62[6], 0), >(i50[6], 0)), i50[6], i62[6])), ≥)∧[(2)bni_27 + (-1)Bound*bni_27] + [bni_27]i50[6] + [bni_27]i62[6] ≥ 0∧[1 + (-1)bso_28] ≥ 0)
(40) ([-1]i62[6] ≥ 0∧i50[6] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD6221(&&(<=(i62[6], 0), >(i50[6], 0)), i50[6], i62[6])), ≥)∧[(2)bni_27 + (-1)Bound*bni_27] + [bni_27]i50[6] + [bni_27]i62[6] ≥ 0∧[1 + (-1)bso_28] ≥ 0)
(41) ([-1]i62[6] ≥ 0∧i50[6] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD6221(&&(<=(i62[6], 0), >(i50[6], 0)), i50[6], i62[6])), ≥)∧[(2)bni_27 + (-1)Bound*bni_27] + [bni_27]i50[6] + [bni_27]i62[6] ≥ 0∧[1 + (-1)bso_28] ≥ 0)
(42) (i62[6] ≥ 0∧i50[6] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD6221(&&(<=(i62[6], 0), >(i50[6], 0)), i50[6], i62[6])), ≥)∧[(2)bni_27 + (-1)Bound*bni_27] + [bni_27]i50[6] + [(-1)bni_27]i62[6] ≥ 0∧[1 + (-1)bso_28] ≥ 0)
(43) (i62[6] ≥ 0∧i50[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD6221(&&(<=(i62[6], 0), >(i50[6], 0)), i50[6], i62[6])), ≥)∧[(3)bni_27 + (-1)Bound*bni_27] + [bni_27]i50[6] + [(-1)bni_27]i62[6] ≥ 0∧[1 + (-1)bso_28] ≥ 0)
(44) (COND_LOAD6221(TRUE, i50[7], i62[7])≥NonInfC∧COND_LOAD6221(TRUE, i50[7], i62[7])≥LOAD622(+(i50[7], -1), i62[7])∧(UIncreasing(LOAD622(+(i50[7], -1), i62[7])), ≥))
(45) ((UIncreasing(LOAD622(+(i50[7], -1), i62[7])), ≥)∧[(-1)bso_30] ≥ 0)
(46) ((UIncreasing(LOAD622(+(i50[7], -1), i62[7])), ≥)∧[(-1)bso_30] ≥ 0)
(47) ((UIncreasing(LOAD622(+(i50[7], -1), i62[7])), ≥)∧[(-1)bso_30] ≥ 0)
(48) ((UIncreasing(LOAD622(+(i50[7], -1), i62[7])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_30] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(LOAD683(x1, x2)) = [1] + x2 + x1
POL(COND_LOAD683(x1, x2, x3)) = x3 + x2
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(LOAD622(x1, x2)) = [2] + x1 + x2
POL(COND_LOAD622(x1, x2, x3)) = [1] + x2 + x3
POL(&&(x1, x2)) = [-1]
POL(COND_LOAD6831(x1, x2, x3)) = [1] + x3 + x2
POL(<=(x1, x2)) = [-1]
POL(COND_LOAD6221(x1, x2, x3)) = [1] + x3 + x2
LOAD683(i50[0], i61[0]) → COND_LOAD683(>(i61[0], 0), i50[0], i61[0])
LOAD622(i50[2], i61[2]) → COND_LOAD622(&&(>(i61[2], 0), >(i50[2], 0)), i50[2], i61[2])
COND_LOAD622(TRUE, i50[3], i61[3]) → LOAD683(i50[3], +(i61[3], -1))
LOAD622(i50[6], i62[6]) → COND_LOAD6221(&&(<=(i62[6], 0), >(i50[6], 0)), i50[6], i62[6])
LOAD622(i50[2], i61[2]) → COND_LOAD622(&&(>(i61[2], 0), >(i50[2], 0)), i50[2], i61[2])
COND_LOAD683(TRUE, i50[1], i61[1]) → LOAD683(i50[1], +(i61[1], -1))
LOAD683(i50[4], i62[4]) → COND_LOAD6831(&&(<=(i62[4], 0), >(i50[4], 0)), i50[4], i62[4])
COND_LOAD6831(TRUE, i50[5], i62[5]) → LOAD622(+(i50[5], -1), i62[5])
COND_LOAD6221(TRUE, i50[7], i62[7]) → LOAD622(+(i50[7], -1), i62[7])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(1) -> (4), if ((i50[1] →* i50[4])∧(i61[1] + -1 →* i62[4]))
(4) -> (5), if ((i62[4] <= 0 && i50[4] > 0 →* TRUE)∧(i50[4] →* i50[5])∧(i62[4] →* i62[5]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(1) -> (0), if ((i61[1] + -1 →* i61[0])∧(i50[1] →* i50[0]))
(3) -> (0), if ((i61[3] + -1 →* i61[0])∧(i50[3] →* i50[0]))
(0) -> (1), if ((i61[0] →* i61[1])∧(i61[0] > 0 →* TRUE)∧(i50[0] →* i50[1]))
(1) -> (4), if ((i50[1] →* i50[4])∧(i61[1] + -1 →* i62[4]))
(3) -> (4), if ((i61[3] + -1 →* i62[4])∧(i50[3] →* i50[4]))
(4) -> (5), if ((i62[4] <= 0 && i50[4] > 0 →* TRUE)∧(i50[4] →* i50[5])∧(i62[4] →* i62[5]))
(5) -> (6), if ((i50[5] + -1 →* i50[6])∧(i62[5] →* i62[6]))
(7) -> (6), if ((i50[7] + -1 →* i50[6])∧(i62[7] →* i62[6]))
(6) -> (7), if ((i62[6] →* i62[7])∧(i62[6] <= 0 && i50[6] > 0 →* TRUE)∧(i50[6] →* i50[7]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(7) -> (6), if ((i50[7] + -1 →* i50[6])∧(i62[7] →* i62[6]))
(6) -> (7), if ((i62[6] →* i62[7])∧(i62[6] <= 0 && i50[6] > 0 →* TRUE)∧(i50[6] →* i50[7]))
(1) (COND_LOAD6221(TRUE, i50[7], i62[7])≥NonInfC∧COND_LOAD6221(TRUE, i50[7], i62[7])≥LOAD622(+(i50[7], -1), i62[7])∧(UIncreasing(LOAD622(+(i50[7], -1), i62[7])), ≥))
(2) ((UIncreasing(LOAD622(+(i50[7], -1), i62[7])), ≥)∧[(-1)bso_11] ≥ 0)
(3) ((UIncreasing(LOAD622(+(i50[7], -1), i62[7])), ≥)∧[(-1)bso_11] ≥ 0)
(4) ((UIncreasing(LOAD622(+(i50[7], -1), i62[7])), ≥)∧[(-1)bso_11] ≥ 0)
(5) ((UIncreasing(LOAD622(+(i50[7], -1), i62[7])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_11] ≥ 0)
(6) (i62[6]=i62[7]∧&&(<=(i62[6], 0), >(i50[6], 0))=TRUE∧i50[6]=i50[7] ⇒ LOAD622(i50[6], i62[6])≥NonInfC∧LOAD622(i50[6], i62[6])≥COND_LOAD6221(&&(<=(i62[6], 0), >(i50[6], 0)), i50[6], i62[6])∧(UIncreasing(COND_LOAD6221(&&(<=(i62[6], 0), >(i50[6], 0)), i50[6], i62[6])), ≥))
(7) (<=(i62[6], 0)=TRUE∧>(i50[6], 0)=TRUE ⇒ LOAD622(i50[6], i62[6])≥NonInfC∧LOAD622(i50[6], i62[6])≥COND_LOAD6221(&&(<=(i62[6], 0), >(i50[6], 0)), i50[6], i62[6])∧(UIncreasing(COND_LOAD6221(&&(<=(i62[6], 0), >(i50[6], 0)), i50[6], i62[6])), ≥))
(8) ([-1]i62[6] ≥ 0∧i50[6] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD6221(&&(<=(i62[6], 0), >(i50[6], 0)), i50[6], i62[6])), ≥)∧[bni_12 + (-1)Bound*bni_12] + [(2)bni_12]i50[6] + [(-1)bni_12]i62[6] ≥ 0∧[2 + (-1)bso_13] ≥ 0)
(9) ([-1]i62[6] ≥ 0∧i50[6] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD6221(&&(<=(i62[6], 0), >(i50[6], 0)), i50[6], i62[6])), ≥)∧[bni_12 + (-1)Bound*bni_12] + [(2)bni_12]i50[6] + [(-1)bni_12]i62[6] ≥ 0∧[2 + (-1)bso_13] ≥ 0)
(10) ([-1]i62[6] ≥ 0∧i50[6] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD6221(&&(<=(i62[6], 0), >(i50[6], 0)), i50[6], i62[6])), ≥)∧[bni_12 + (-1)Bound*bni_12] + [(2)bni_12]i50[6] + [(-1)bni_12]i62[6] ≥ 0∧[2 + (-1)bso_13] ≥ 0)
(11) (i62[6] ≥ 0∧i50[6] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD6221(&&(<=(i62[6], 0), >(i50[6], 0)), i50[6], i62[6])), ≥)∧[bni_12 + (-1)Bound*bni_12] + [(2)bni_12]i50[6] + [bni_12]i62[6] ≥ 0∧[2 + (-1)bso_13] ≥ 0)
(12) (i62[6] ≥ 0∧i50[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD6221(&&(<=(i62[6], 0), >(i50[6], 0)), i50[6], i62[6])), ≥)∧[(3)bni_12 + (-1)Bound*bni_12] + [(2)bni_12]i50[6] + [bni_12]i62[6] ≥ 0∧[2 + (-1)bso_13] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_LOAD6221(x1, x2, x3)) = [-1] + [-1]x3 + [2]x2
POL(LOAD622(x1, x2)) = [1] + [2]x1 + [-1]x2
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(&&(x1, x2)) = [-1]
POL(<=(x1, x2)) = [-1]
POL(0) = 0
POL(>(x1, x2)) = [2]
LOAD622(i50[6], i62[6]) → COND_LOAD6221(&&(<=(i62[6], 0), >(i50[6], 0)), i50[6], i62[6])
LOAD622(i50[6], i62[6]) → COND_LOAD6221(&&(<=(i62[6], 0), >(i50[6], 0)), i50[6], i62[6])
COND_LOAD6221(TRUE, i50[7], i62[7]) → LOAD622(+(i50[7], -1), i62[7])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(1) -> (0), if ((i61[1] + -1 →* i61[0])∧(i50[1] →* i50[0]))
(0) -> (1), if ((i61[0] →* i61[1])∧(i61[0] > 0 →* TRUE)∧(i50[0] →* i50[1]))
(1) (COND_LOAD683(TRUE, i50[1], i61[1])≥NonInfC∧COND_LOAD683(TRUE, i50[1], i61[1])≥LOAD683(i50[1], +(i61[1], -1))∧(UIncreasing(LOAD683(i50[1], +(i61[1], -1))), ≥))
(2) ((UIncreasing(LOAD683(i50[1], +(i61[1], -1))), ≥)∧[(-1)bso_8] ≥ 0)
(3) ((UIncreasing(LOAD683(i50[1], +(i61[1], -1))), ≥)∧[(-1)bso_8] ≥ 0)
(4) ((UIncreasing(LOAD683(i50[1], +(i61[1], -1))), ≥)∧[(-1)bso_8] ≥ 0)
(5) ((UIncreasing(LOAD683(i50[1], +(i61[1], -1))), ≥)∧0 = 0∧[(-1)bso_8] ≥ 0)
(6) (i61[0]=i61[1]∧>(i61[0], 0)=TRUE∧i50[0]=i50[1] ⇒ LOAD683(i50[0], i61[0])≥NonInfC∧LOAD683(i50[0], i61[0])≥COND_LOAD683(>(i61[0], 0), i50[0], i61[0])∧(UIncreasing(COND_LOAD683(>(i61[0], 0), i50[0], i61[0])), ≥))
(7) (>(i61[0], 0)=TRUE ⇒ LOAD683(i50[0], i61[0])≥NonInfC∧LOAD683(i50[0], i61[0])≥COND_LOAD683(>(i61[0], 0), i50[0], i61[0])∧(UIncreasing(COND_LOAD683(>(i61[0], 0), i50[0], i61[0])), ≥))
(8) (i61[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD683(>(i61[0], 0), i50[0], i61[0])), ≥)∧[bni_9 + (-1)Bound*bni_9] + [(2)bni_9]i61[0] ≥ 0∧[2 + (-1)bso_10] ≥ 0)
(9) (i61[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD683(>(i61[0], 0), i50[0], i61[0])), ≥)∧[bni_9 + (-1)Bound*bni_9] + [(2)bni_9]i61[0] ≥ 0∧[2 + (-1)bso_10] ≥ 0)
(10) (i61[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD683(>(i61[0], 0), i50[0], i61[0])), ≥)∧[bni_9 + (-1)Bound*bni_9] + [(2)bni_9]i61[0] ≥ 0∧[2 + (-1)bso_10] ≥ 0)
(11) (i61[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD683(>(i61[0], 0), i50[0], i61[0])), ≥)∧[(3)bni_9 + (-1)Bound*bni_9] + [(2)bni_9]i61[0] ≥ 0∧[2 + (-1)bso_10] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_LOAD683(x1, x2, x3)) = [-1] + [2]x3
POL(LOAD683(x1, x2)) = [1] + [2]x2
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
LOAD683(i50[0], i61[0]) → COND_LOAD683(>(i61[0], 0), i50[0], i61[0])
LOAD683(i50[0], i61[0]) → COND_LOAD683(>(i61[0], 0), i50[0], i61[0])
COND_LOAD683(TRUE, i50[1], i61[1]) → LOAD683(i50[1], +(i61[1], -1))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer