0 JBC
↳1 JBC2FIG (⇐)
↳2 FIGraph
↳3 FIGtoITRSProof (⇐)
↳4 ITRS
↳5 ITRStoIDPProof (⇔)
↳6 IDP
↳7 UsableRulesProof (⇔)
↳8 IDP
↳9 IDPNonInfProof (⇐)
↳10 AND
↳11 IDP
↳12 IDependencyGraphProof (⇔)
↳13 TRUE
↳14 IDP
↳15 IDependencyGraphProof (⇔)
↳16 IDP
↳17 IDPNonInfProof (⇐)
↳18 IDP
↳19 IDependencyGraphProof (⇔)
↳20 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaB15 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
int z = Random.random();
while (x == y && x > z) {
while (y > z) {
x--;
y--;
}
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i20[0] <= i37[0] && i20[0] > i37[0] →* TRUE)∧(i20[0] →* i20[1])∧(i37[0] →* i37[1]))
(1) -> (0), if ((i37[1] →* i37[0])∧(i20[1] →* i20[0]))
(1) -> (4), if ((i37[1] →* i37[4])∧(i20[1] →* i20[4]))
(1) -> (8), if ((i37[1] →* i37[8])∧(i20[1] →* i20[8]))
(2) -> (3), if ((i37[2] →* i37[3])∧(i55[2] →* i55[3])∧(i20[2] →* i20[3])∧(i20[2] + -1 <= i37[2] →* TRUE))
(3) -> (0), if ((i37[3] →* i37[0])∧(i55[3] →* i20[0]))
(3) -> (4), if ((i37[3] →* i37[4])∧(i55[3] →* i20[4]))
(3) -> (8), if ((i55[3] →* i20[8])∧(i37[3] →* i37[8]))
(4) -> (5), if ((i20[4] →* i20[5])∧(i20[4] + -1 <= i37[4] && i20[4] > i37[4] →* TRUE)∧(i37[4] →* i37[5]))
(5) -> (0), if ((i37[5] →* i37[0])∧(i20[5] + -1 →* i20[0]))
(5) -> (4), if ((i20[5] + -1 →* i20[4])∧(i37[5] →* i37[4]))
(5) -> (8), if ((i37[5] →* i37[8])∧(i20[5] + -1 →* i20[8]))
(6) -> (7), if ((i55[6] →* i55[7])∧(i20[6] + -1 > i37[6] →* TRUE)∧(i37[6] →* i37[7])∧(i20[6] →* i20[7]))
(7) -> (2), if ((i55[7] + -1 →* i55[2])∧(i37[7] →* i37[2])∧(i20[7] + -1 →* i20[2]))
(7) -> (6), if ((i55[7] + -1 →* i55[6])∧(i20[7] + -1 →* i20[6])∧(i37[7] →* i37[6]))
(8) -> (9), if ((i20[8] + -1 > i37[8] && i20[8] > i37[8] →* TRUE)∧(i37[8] →* i37[9])∧(i20[8] →* i20[9]))
(9) -> (2), if ((i20[9] + -1 + -1 →* i55[2])∧(i37[9] →* i37[2])∧(i20[9] + -1 →* i20[2]))
(9) -> (6), if ((i20[9] + -1 + -1 →* i55[6])∧(i37[9] →* i37[6])∧(i20[9] + -1 →* i20[6]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i20[0] <= i37[0] && i20[0] > i37[0] →* TRUE)∧(i20[0] →* i20[1])∧(i37[0] →* i37[1]))
(1) -> (0), if ((i37[1] →* i37[0])∧(i20[1] →* i20[0]))
(1) -> (4), if ((i37[1] →* i37[4])∧(i20[1] →* i20[4]))
(1) -> (8), if ((i37[1] →* i37[8])∧(i20[1] →* i20[8]))
(2) -> (3), if ((i37[2] →* i37[3])∧(i55[2] →* i55[3])∧(i20[2] →* i20[3])∧(i20[2] + -1 <= i37[2] →* TRUE))
(3) -> (0), if ((i37[3] →* i37[0])∧(i55[3] →* i20[0]))
(3) -> (4), if ((i37[3] →* i37[4])∧(i55[3] →* i20[4]))
(3) -> (8), if ((i55[3] →* i20[8])∧(i37[3] →* i37[8]))
(4) -> (5), if ((i20[4] →* i20[5])∧(i20[4] + -1 <= i37[4] && i20[4] > i37[4] →* TRUE)∧(i37[4] →* i37[5]))
(5) -> (0), if ((i37[5] →* i37[0])∧(i20[5] + -1 →* i20[0]))
(5) -> (4), if ((i20[5] + -1 →* i20[4])∧(i37[5] →* i37[4]))
(5) -> (8), if ((i37[5] →* i37[8])∧(i20[5] + -1 →* i20[8]))
(6) -> (7), if ((i55[6] →* i55[7])∧(i20[6] + -1 > i37[6] →* TRUE)∧(i37[6] →* i37[7])∧(i20[6] →* i20[7]))
(7) -> (2), if ((i55[7] + -1 →* i55[2])∧(i37[7] →* i37[2])∧(i20[7] + -1 →* i20[2]))
(7) -> (6), if ((i55[7] + -1 →* i55[6])∧(i20[7] + -1 →* i20[6])∧(i37[7] →* i37[6]))
(8) -> (9), if ((i20[8] + -1 > i37[8] && i20[8] > i37[8] →* TRUE)∧(i37[8] →* i37[9])∧(i20[8] →* i20[9]))
(9) -> (2), if ((i20[9] + -1 + -1 →* i55[2])∧(i37[9] →* i37[2])∧(i20[9] + -1 →* i20[2]))
(9) -> (6), if ((i20[9] + -1 + -1 →* i55[6])∧(i37[9] →* i37[6])∧(i20[9] + -1 →* i20[6]))
(1) (&&(<=(i20[0], i37[0]), >(i20[0], i37[0]))=TRUE∧i20[0]=i20[1]∧i37[0]=i37[1] ⇒ LOAD848(i20[0], i37[0])≥NonInfC∧LOAD848(i20[0], i37[0])≥COND_LOAD848(&&(<=(i20[0], i37[0]), >(i20[0], i37[0])), i20[0], i37[0])∧(UIncreasing(COND_LOAD848(&&(<=(i20[0], i37[0]), >(i20[0], i37[0])), i20[0], i37[0])), ≥))
(2) (<=(i20[0], i37[0])=TRUE∧>(i20[0], i37[0])=TRUE ⇒ LOAD848(i20[0], i37[0])≥NonInfC∧LOAD848(i20[0], i37[0])≥COND_LOAD848(&&(<=(i20[0], i37[0]), >(i20[0], i37[0])), i20[0], i37[0])∧(UIncreasing(COND_LOAD848(&&(<=(i20[0], i37[0]), >(i20[0], i37[0])), i20[0], i37[0])), ≥))
(3) (i37[0] + [-1]i20[0] ≥ 0∧i20[0] + [-1] + [-1]i37[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD848(&&(<=(i20[0], i37[0]), >(i20[0], i37[0])), i20[0], i37[0])), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [(-1)bni_16]i37[0] + [bni_16]i20[0] ≥ 0∧[-2 + (-1)bso_17] ≥ 0)
(4) (i37[0] + [-1]i20[0] ≥ 0∧i20[0] + [-1] + [-1]i37[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD848(&&(<=(i20[0], i37[0]), >(i20[0], i37[0])), i20[0], i37[0])), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [(-1)bni_16]i37[0] + [bni_16]i20[0] ≥ 0∧[-2 + (-1)bso_17] ≥ 0)
(5) (i37[0] + [-1]i20[0] ≥ 0∧i20[0] + [-1] + [-1]i37[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD848(&&(<=(i20[0], i37[0]), >(i20[0], i37[0])), i20[0], i37[0])), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [(-1)bni_16]i37[0] + [bni_16]i20[0] ≥ 0∧[-2 + (-1)bso_17] ≥ 0)
(6) (i37[1]=i37[0]∧i20[1]=i20[0] ⇒ COND_LOAD848(TRUE, i20[1], i37[1])≥NonInfC∧COND_LOAD848(TRUE, i20[1], i37[1])≥LOAD848(i20[1], i37[1])∧(UIncreasing(LOAD848(i20[1], i37[1])), ≥))
(7) (COND_LOAD848(TRUE, i20[1], i37[1])≥NonInfC∧COND_LOAD848(TRUE, i20[1], i37[1])≥LOAD848(i20[1], i37[1])∧(UIncreasing(LOAD848(i20[1], i37[1])), ≥))
(8) ((UIncreasing(LOAD848(i20[1], i37[1])), ≥)∧[2 + (-1)bso_19] ≥ 0)
(9) ((UIncreasing(LOAD848(i20[1], i37[1])), ≥)∧[2 + (-1)bso_19] ≥ 0)
(10) ((UIncreasing(LOAD848(i20[1], i37[1])), ≥)∧[2 + (-1)bso_19] ≥ 0)
(11) ((UIncreasing(LOAD848(i20[1], i37[1])), ≥)∧0 = 0∧0 = 0∧[2 + (-1)bso_19] ≥ 0)
(12) (i37[1]=i37[4]∧i20[1]=i20[4] ⇒ COND_LOAD848(TRUE, i20[1], i37[1])≥NonInfC∧COND_LOAD848(TRUE, i20[1], i37[1])≥LOAD848(i20[1], i37[1])∧(UIncreasing(LOAD848(i20[1], i37[1])), ≥))
(13) (COND_LOAD848(TRUE, i20[1], i37[1])≥NonInfC∧COND_LOAD848(TRUE, i20[1], i37[1])≥LOAD848(i20[1], i37[1])∧(UIncreasing(LOAD848(i20[1], i37[1])), ≥))
(14) ((UIncreasing(LOAD848(i20[1], i37[1])), ≥)∧[2 + (-1)bso_19] ≥ 0)
(15) ((UIncreasing(LOAD848(i20[1], i37[1])), ≥)∧[2 + (-1)bso_19] ≥ 0)
(16) ((UIncreasing(LOAD848(i20[1], i37[1])), ≥)∧[2 + (-1)bso_19] ≥ 0)
(17) ((UIncreasing(LOAD848(i20[1], i37[1])), ≥)∧0 = 0∧0 = 0∧[2 + (-1)bso_19] ≥ 0)
(18) (i37[1]=i37[8]∧i20[1]=i20[8] ⇒ COND_LOAD848(TRUE, i20[1], i37[1])≥NonInfC∧COND_LOAD848(TRUE, i20[1], i37[1])≥LOAD848(i20[1], i37[1])∧(UIncreasing(LOAD848(i20[1], i37[1])), ≥))
(19) (COND_LOAD848(TRUE, i20[1], i37[1])≥NonInfC∧COND_LOAD848(TRUE, i20[1], i37[1])≥LOAD848(i20[1], i37[1])∧(UIncreasing(LOAD848(i20[1], i37[1])), ≥))
(20) ((UIncreasing(LOAD848(i20[1], i37[1])), ≥)∧[2 + (-1)bso_19] ≥ 0)
(21) ((UIncreasing(LOAD848(i20[1], i37[1])), ≥)∧[2 + (-1)bso_19] ≥ 0)
(22) ((UIncreasing(LOAD848(i20[1], i37[1])), ≥)∧[2 + (-1)bso_19] ≥ 0)
(23) ((UIncreasing(LOAD848(i20[1], i37[1])), ≥)∧0 = 0∧0 = 0∧[2 + (-1)bso_19] ≥ 0)
(24) (i37[2]=i37[3]∧i55[2]=i55[3]∧i20[2]=i20[3]∧<=(+(i20[2], -1), i37[2])=TRUE ⇒ INC1074(i55[2], i20[2], i37[2])≥NonInfC∧INC1074(i55[2], i20[2], i37[2])≥COND_INC1074(<=(+(i20[2], -1), i37[2]), i55[2], i20[2], i37[2])∧(UIncreasing(COND_INC1074(<=(+(i20[2], -1), i37[2]), i55[2], i20[2], i37[2])), ≥))
(25) (<=(+(i20[2], -1), i37[2])=TRUE ⇒ INC1074(i55[2], i20[2], i37[2])≥NonInfC∧INC1074(i55[2], i20[2], i37[2])≥COND_INC1074(<=(+(i20[2], -1), i37[2]), i55[2], i20[2], i37[2])∧(UIncreasing(COND_INC1074(<=(+(i20[2], -1), i37[2]), i55[2], i20[2], i37[2])), ≥))
(26) (i37[2] + [1] + [-1]i20[2] ≥ 0 ⇒ (UIncreasing(COND_INC1074(<=(+(i20[2], -1), i37[2]), i55[2], i20[2], i37[2])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [(-1)bni_20]i37[2] + [bni_20]i55[2] ≥ 0∧[(-1)bso_21] ≥ 0)
(27) (i37[2] + [1] + [-1]i20[2] ≥ 0 ⇒ (UIncreasing(COND_INC1074(<=(+(i20[2], -1), i37[2]), i55[2], i20[2], i37[2])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [(-1)bni_20]i37[2] + [bni_20]i55[2] ≥ 0∧[(-1)bso_21] ≥ 0)
(28) (i37[2] + [1] + [-1]i20[2] ≥ 0 ⇒ (UIncreasing(COND_INC1074(<=(+(i20[2], -1), i37[2]), i55[2], i20[2], i37[2])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [(-1)bni_20]i37[2] + [bni_20]i55[2] ≥ 0∧[(-1)bso_21] ≥ 0)
(29) (i37[2] + [1] + [-1]i20[2] ≥ 0 ⇒ (UIncreasing(COND_INC1074(<=(+(i20[2], -1), i37[2]), i55[2], i20[2], i37[2])), ≥)∧[bni_20] = 0∧[(-1)bni_20 + (-1)Bound*bni_20] + [(-1)bni_20]i37[2] ≥ 0∧0 = 0∧[(-1)bso_21] ≥ 0)
(30) (i20[2] ≥ 0 ⇒ (UIncreasing(COND_INC1074(<=(+(i20[2], -1), i37[2]), i55[2], i20[2], i37[2])), ≥)∧[bni_20] = 0∧[(-1)bni_20 + (-1)Bound*bni_20] + [(-1)bni_20]i37[2] ≥ 0∧0 = 0∧[(-1)bso_21] ≥ 0)
(31) (i20[2] ≥ 0∧i37[2] ≥ 0 ⇒ (UIncreasing(COND_INC1074(<=(+(i20[2], -1), i37[2]), i55[2], i20[2], i37[2])), ≥)∧[bni_20] = 0∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]i37[2] ≥ 0∧0 = 0∧[(-1)bso_21] ≥ 0)
(32) (i20[2] ≥ 0∧i37[2] ≥ 0 ⇒ (UIncreasing(COND_INC1074(<=(+(i20[2], -1), i37[2]), i55[2], i20[2], i37[2])), ≥)∧[bni_20] = 0∧[(-1)bni_20 + (-1)Bound*bni_20] + [(-1)bni_20]i37[2] ≥ 0∧0 = 0∧[(-1)bso_21] ≥ 0)
(33) (i37[3]=i37[0]∧i55[3]=i20[0] ⇒ COND_INC1074(TRUE, i55[3], i20[3], i37[3])≥NonInfC∧COND_INC1074(TRUE, i55[3], i20[3], i37[3])≥LOAD848(i55[3], i37[3])∧(UIncreasing(LOAD848(i55[3], i37[3])), ≥))
(34) (COND_INC1074(TRUE, i55[3], i20[3], i37[3])≥NonInfC∧COND_INC1074(TRUE, i55[3], i20[3], i37[3])≥LOAD848(i55[3], i37[3])∧(UIncreasing(LOAD848(i55[3], i37[3])), ≥))
(35) ((UIncreasing(LOAD848(i55[3], i37[3])), ≥)∧[(-1)bso_23] ≥ 0)
(36) ((UIncreasing(LOAD848(i55[3], i37[3])), ≥)∧[(-1)bso_23] ≥ 0)
(37) ((UIncreasing(LOAD848(i55[3], i37[3])), ≥)∧[(-1)bso_23] ≥ 0)
(38) ((UIncreasing(LOAD848(i55[3], i37[3])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_23] ≥ 0)
(39) (i37[3]=i37[4]∧i55[3]=i20[4] ⇒ COND_INC1074(TRUE, i55[3], i20[3], i37[3])≥NonInfC∧COND_INC1074(TRUE, i55[3], i20[3], i37[3])≥LOAD848(i55[3], i37[3])∧(UIncreasing(LOAD848(i55[3], i37[3])), ≥))
(40) (COND_INC1074(TRUE, i55[3], i20[3], i37[3])≥NonInfC∧COND_INC1074(TRUE, i55[3], i20[3], i37[3])≥LOAD848(i55[3], i37[3])∧(UIncreasing(LOAD848(i55[3], i37[3])), ≥))
(41) ((UIncreasing(LOAD848(i55[3], i37[3])), ≥)∧[(-1)bso_23] ≥ 0)
(42) ((UIncreasing(LOAD848(i55[3], i37[3])), ≥)∧[(-1)bso_23] ≥ 0)
(43) ((UIncreasing(LOAD848(i55[3], i37[3])), ≥)∧[(-1)bso_23] ≥ 0)
(44) ((UIncreasing(LOAD848(i55[3], i37[3])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_23] ≥ 0)
(45) (i55[3]=i20[8]∧i37[3]=i37[8] ⇒ COND_INC1074(TRUE, i55[3], i20[3], i37[3])≥NonInfC∧COND_INC1074(TRUE, i55[3], i20[3], i37[3])≥LOAD848(i55[3], i37[3])∧(UIncreasing(LOAD848(i55[3], i37[3])), ≥))
(46) (COND_INC1074(TRUE, i55[3], i20[3], i37[3])≥NonInfC∧COND_INC1074(TRUE, i55[3], i20[3], i37[3])≥LOAD848(i55[3], i37[3])∧(UIncreasing(LOAD848(i55[3], i37[3])), ≥))
(47) ((UIncreasing(LOAD848(i55[3], i37[3])), ≥)∧[(-1)bso_23] ≥ 0)
(48) ((UIncreasing(LOAD848(i55[3], i37[3])), ≥)∧[(-1)bso_23] ≥ 0)
(49) ((UIncreasing(LOAD848(i55[3], i37[3])), ≥)∧[(-1)bso_23] ≥ 0)
(50) ((UIncreasing(LOAD848(i55[3], i37[3])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_23] ≥ 0)
(51) (i20[4]=i20[5]∧&&(<=(+(i20[4], -1), i37[4]), >(i20[4], i37[4]))=TRUE∧i37[4]=i37[5] ⇒ LOAD848(i20[4], i37[4])≥NonInfC∧LOAD848(i20[4], i37[4])≥COND_LOAD8481(&&(<=(+(i20[4], -1), i37[4]), >(i20[4], i37[4])), i20[4], i37[4])∧(UIncreasing(COND_LOAD8481(&&(<=(+(i20[4], -1), i37[4]), >(i20[4], i37[4])), i20[4], i37[4])), ≥))
(52) (<=(+(i20[4], -1), i37[4])=TRUE∧>(i20[4], i37[4])=TRUE ⇒ LOAD848(i20[4], i37[4])≥NonInfC∧LOAD848(i20[4], i37[4])≥COND_LOAD8481(&&(<=(+(i20[4], -1), i37[4]), >(i20[4], i37[4])), i20[4], i37[4])∧(UIncreasing(COND_LOAD8481(&&(<=(+(i20[4], -1), i37[4]), >(i20[4], i37[4])), i20[4], i37[4])), ≥))
(53) (i37[4] + [1] + [-1]i20[4] ≥ 0∧i20[4] + [-1] + [-1]i37[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD8481(&&(<=(+(i20[4], -1), i37[4]), >(i20[4], i37[4])), i20[4], i37[4])), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [(-1)bni_24]i37[4] + [bni_24]i20[4] ≥ 0∧[(-1)bso_25] ≥ 0)
(54) (i37[4] + [1] + [-1]i20[4] ≥ 0∧i20[4] + [-1] + [-1]i37[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD8481(&&(<=(+(i20[4], -1), i37[4]), >(i20[4], i37[4])), i20[4], i37[4])), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [(-1)bni_24]i37[4] + [bni_24]i20[4] ≥ 0∧[(-1)bso_25] ≥ 0)
(55) (i37[4] + [1] + [-1]i20[4] ≥ 0∧i20[4] + [-1] + [-1]i37[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD8481(&&(<=(+(i20[4], -1), i37[4]), >(i20[4], i37[4])), i20[4], i37[4])), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [(-1)bni_24]i37[4] + [bni_24]i20[4] ≥ 0∧[(-1)bso_25] ≥ 0)
(56) ([-1]i37[4] ≥ 0∧i37[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD8481(&&(<=(+(i20[4], -1), i37[4]), >(i20[4], i37[4])), i20[4], i37[4])), ≥)∧[(-1)Bound*bni_24] + [bni_24]i37[4] ≥ 0∧[(-1)bso_25] ≥ 0)
(57) (0 ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(COND_LOAD8481(&&(<=(+(i20[4], -1), i37[4]), >(i20[4], i37[4])), i20[4], i37[4])), ≥)∧[(-1)Bound*bni_24] ≥ 0∧[(-1)bso_25] ≥ 0)
(58) (0 ≥ 0∧0 ≥ 0∧i20[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD8481(&&(<=(+(i20[4], -1), i37[4]), >(i20[4], i37[4])), i20[4], i37[4])), ≥)∧[(-1)Bound*bni_24] ≥ 0∧[(-1)bso_25] ≥ 0)
(59) (0 ≥ 0∧0 ≥ 0∧i20[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD8481(&&(<=(+(i20[4], -1), i37[4]), >(i20[4], i37[4])), i20[4], i37[4])), ≥)∧[(-1)Bound*bni_24] ≥ 0∧[(-1)bso_25] ≥ 0)
(60) (COND_LOAD8481(TRUE, i20[5], i37[5])≥NonInfC∧COND_LOAD8481(TRUE, i20[5], i37[5])≥LOAD848(+(i20[5], -1), i37[5])∧(UIncreasing(LOAD848(+(i20[5], -1), i37[5])), ≥))
(61) ((UIncreasing(LOAD848(+(i20[5], -1), i37[5])), ≥)∧[1 + (-1)bso_27] ≥ 0)
(62) ((UIncreasing(LOAD848(+(i20[5], -1), i37[5])), ≥)∧[1 + (-1)bso_27] ≥ 0)
(63) ((UIncreasing(LOAD848(+(i20[5], -1), i37[5])), ≥)∧[1 + (-1)bso_27] ≥ 0)
(64) ((UIncreasing(LOAD848(+(i20[5], -1), i37[5])), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_27] ≥ 0)
(65) (i55[6]=i55[7]∧>(+(i20[6], -1), i37[6])=TRUE∧i37[6]=i37[7]∧i20[6]=i20[7] ⇒ INC1074(i55[6], i20[6], i37[6])≥NonInfC∧INC1074(i55[6], i20[6], i37[6])≥COND_INC10741(>(+(i20[6], -1), i37[6]), i55[6], i20[6], i37[6])∧(UIncreasing(COND_INC10741(>(+(i20[6], -1), i37[6]), i55[6], i20[6], i37[6])), ≥))
(66) (>(+(i20[6], -1), i37[6])=TRUE ⇒ INC1074(i55[6], i20[6], i37[6])≥NonInfC∧INC1074(i55[6], i20[6], i37[6])≥COND_INC10741(>(+(i20[6], -1), i37[6]), i55[6], i20[6], i37[6])∧(UIncreasing(COND_INC10741(>(+(i20[6], -1), i37[6]), i55[6], i20[6], i37[6])), ≥))
(67) (i20[6] + [-2] + [-1]i37[6] ≥ 0 ⇒ (UIncreasing(COND_INC10741(>(+(i20[6], -1), i37[6]), i55[6], i20[6], i37[6])), ≥)∧[(-1)bni_28 + (-1)Bound*bni_28] + [(-1)bni_28]i37[6] + [bni_28]i55[6] ≥ 0∧[(-1)bso_29] ≥ 0)
(68) (i20[6] + [-2] + [-1]i37[6] ≥ 0 ⇒ (UIncreasing(COND_INC10741(>(+(i20[6], -1), i37[6]), i55[6], i20[6], i37[6])), ≥)∧[(-1)bni_28 + (-1)Bound*bni_28] + [(-1)bni_28]i37[6] + [bni_28]i55[6] ≥ 0∧[(-1)bso_29] ≥ 0)
(69) (i20[6] + [-2] + [-1]i37[6] ≥ 0 ⇒ (UIncreasing(COND_INC10741(>(+(i20[6], -1), i37[6]), i55[6], i20[6], i37[6])), ≥)∧[(-1)bni_28 + (-1)Bound*bni_28] + [(-1)bni_28]i37[6] + [bni_28]i55[6] ≥ 0∧[(-1)bso_29] ≥ 0)
(70) (i20[6] + [-2] + [-1]i37[6] ≥ 0 ⇒ (UIncreasing(COND_INC10741(>(+(i20[6], -1), i37[6]), i55[6], i20[6], i37[6])), ≥)∧[bni_28] = 0∧[(-1)bni_28 + (-1)Bound*bni_28] + [(-1)bni_28]i37[6] ≥ 0∧0 = 0∧[(-1)bso_29] ≥ 0)
(71) (i20[6] ≥ 0 ⇒ (UIncreasing(COND_INC10741(>(+(i20[6], -1), i37[6]), i55[6], i20[6], i37[6])), ≥)∧[bni_28] = 0∧[(-1)bni_28 + (-1)Bound*bni_28] + [(-1)bni_28]i37[6] ≥ 0∧0 = 0∧[(-1)bso_29] ≥ 0)
(72) (i20[6] ≥ 0∧i37[6] ≥ 0 ⇒ (UIncreasing(COND_INC10741(>(+(i20[6], -1), i37[6]), i55[6], i20[6], i37[6])), ≥)∧[bni_28] = 0∧[(-1)bni_28 + (-1)Bound*bni_28] + [(-1)bni_28]i37[6] ≥ 0∧0 = 0∧[(-1)bso_29] ≥ 0)
(73) (i20[6] ≥ 0∧i37[6] ≥ 0 ⇒ (UIncreasing(COND_INC10741(>(+(i20[6], -1), i37[6]), i55[6], i20[6], i37[6])), ≥)∧[bni_28] = 0∧[(-1)bni_28 + (-1)Bound*bni_28] + [bni_28]i37[6] ≥ 0∧0 = 0∧[(-1)bso_29] ≥ 0)
(74) (COND_INC10741(TRUE, i55[7], i20[7], i37[7])≥NonInfC∧COND_INC10741(TRUE, i55[7], i20[7], i37[7])≥INC1074(+(i55[7], -1), +(i20[7], -1), i37[7])∧(UIncreasing(INC1074(+(i55[7], -1), +(i20[7], -1), i37[7])), ≥))
(75) ((UIncreasing(INC1074(+(i55[7], -1), +(i20[7], -1), i37[7])), ≥)∧[1 + (-1)bso_31] ≥ 0)
(76) ((UIncreasing(INC1074(+(i55[7], -1), +(i20[7], -1), i37[7])), ≥)∧[1 + (-1)bso_31] ≥ 0)
(77) ((UIncreasing(INC1074(+(i55[7], -1), +(i20[7], -1), i37[7])), ≥)∧[1 + (-1)bso_31] ≥ 0)
(78) ((UIncreasing(INC1074(+(i55[7], -1), +(i20[7], -1), i37[7])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_31] ≥ 0)
(79) (&&(>(+(i20[8], -1), i37[8]), >(i20[8], i37[8]))=TRUE∧i37[8]=i37[9]∧i20[8]=i20[9] ⇒ LOAD848(i20[8], i37[8])≥NonInfC∧LOAD848(i20[8], i37[8])≥COND_LOAD8482(&&(>(+(i20[8], -1), i37[8]), >(i20[8], i37[8])), i20[8], i37[8])∧(UIncreasing(COND_LOAD8482(&&(>(+(i20[8], -1), i37[8]), >(i20[8], i37[8])), i20[8], i37[8])), ≥))
(80) (>(+(i20[8], -1), i37[8])=TRUE∧>(i20[8], i37[8])=TRUE ⇒ LOAD848(i20[8], i37[8])≥NonInfC∧LOAD848(i20[8], i37[8])≥COND_LOAD8482(&&(>(+(i20[8], -1), i37[8]), >(i20[8], i37[8])), i20[8], i37[8])∧(UIncreasing(COND_LOAD8482(&&(>(+(i20[8], -1), i37[8]), >(i20[8], i37[8])), i20[8], i37[8])), ≥))
(81) (i20[8] + [-2] + [-1]i37[8] ≥ 0∧i20[8] + [-1] + [-1]i37[8] ≥ 0 ⇒ (UIncreasing(COND_LOAD8482(&&(>(+(i20[8], -1), i37[8]), >(i20[8], i37[8])), i20[8], i37[8])), ≥)∧[(-1)bni_32 + (-1)Bound*bni_32] + [(-1)bni_32]i37[8] + [bni_32]i20[8] ≥ 0∧[(-1)bso_33] ≥ 0)
(82) (i20[8] + [-2] + [-1]i37[8] ≥ 0∧i20[8] + [-1] + [-1]i37[8] ≥ 0 ⇒ (UIncreasing(COND_LOAD8482(&&(>(+(i20[8], -1), i37[8]), >(i20[8], i37[8])), i20[8], i37[8])), ≥)∧[(-1)bni_32 + (-1)Bound*bni_32] + [(-1)bni_32]i37[8] + [bni_32]i20[8] ≥ 0∧[(-1)bso_33] ≥ 0)
(83) (i20[8] + [-2] + [-1]i37[8] ≥ 0∧i20[8] + [-1] + [-1]i37[8] ≥ 0 ⇒ (UIncreasing(COND_LOAD8482(&&(>(+(i20[8], -1), i37[8]), >(i20[8], i37[8])), i20[8], i37[8])), ≥)∧[(-1)bni_32 + (-1)Bound*bni_32] + [(-1)bni_32]i37[8] + [bni_32]i20[8] ≥ 0∧[(-1)bso_33] ≥ 0)
(84) (i20[8] ≥ 0∧[1] + i20[8] ≥ 0 ⇒ (UIncreasing(COND_LOAD8482(&&(>(+(i20[8], -1), i37[8]), >(i20[8], i37[8])), i20[8], i37[8])), ≥)∧[bni_32 + (-1)Bound*bni_32] + [bni_32]i20[8] ≥ 0∧[(-1)bso_33] ≥ 0)
(85) (i20[8] ≥ 0∧[1] + i20[8] ≥ 0∧i37[8] ≥ 0 ⇒ (UIncreasing(COND_LOAD8482(&&(>(+(i20[8], -1), i37[8]), >(i20[8], i37[8])), i20[8], i37[8])), ≥)∧[bni_32 + (-1)Bound*bni_32] + [bni_32]i20[8] ≥ 0∧[(-1)bso_33] ≥ 0)
(86) (i20[8] ≥ 0∧[1] + i20[8] ≥ 0∧i37[8] ≥ 0 ⇒ (UIncreasing(COND_LOAD8482(&&(>(+(i20[8], -1), i37[8]), >(i20[8], i37[8])), i20[8], i37[8])), ≥)∧[bni_32 + (-1)Bound*bni_32] + [bni_32]i20[8] ≥ 0∧[(-1)bso_33] ≥ 0)
(87) (COND_LOAD8482(TRUE, i20[9], i37[9])≥NonInfC∧COND_LOAD8482(TRUE, i20[9], i37[9])≥INC1074(+(+(i20[9], -1), -1), +(i20[9], -1), i37[9])∧(UIncreasing(INC1074(+(+(i20[9], -1), -1), +(i20[9], -1), i37[9])), ≥))
(88) ((UIncreasing(INC1074(+(+(i20[9], -1), -1), +(i20[9], -1), i37[9])), ≥)∧[2 + (-1)bso_35] ≥ 0)
(89) ((UIncreasing(INC1074(+(+(i20[9], -1), -1), +(i20[9], -1), i37[9])), ≥)∧[2 + (-1)bso_35] ≥ 0)
(90) ((UIncreasing(INC1074(+(+(i20[9], -1), -1), +(i20[9], -1), i37[9])), ≥)∧[2 + (-1)bso_35] ≥ 0)
(91) ((UIncreasing(INC1074(+(+(i20[9], -1), -1), +(i20[9], -1), i37[9])), ≥)∧0 = 0∧0 = 0∧[2 + (-1)bso_35] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(LOAD848(x1, x2)) = [-1] + [-1]x2 + x1
POL(COND_LOAD848(x1, x2, x3)) = [1] + [-1]x3 + x2
POL(&&(x1, x2)) = [-1]
POL(<=(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(INC1074(x1, x2, x3)) = [-1] + [-1]x3 + x1
POL(COND_INC1074(x1, x2, x3, x4)) = [-1] + [-1]x4 + x2
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(COND_LOAD8481(x1, x2, x3)) = [-1] + [-1]x3 + x2
POL(COND_INC10741(x1, x2, x3, x4)) = [-1] + [-1]x4 + x2
POL(COND_LOAD8482(x1, x2, x3)) = [-1] + [-1]x3 + x2
LOAD848(i20[0], i37[0]) → COND_LOAD848(&&(<=(i20[0], i37[0]), >(i20[0], i37[0])), i20[0], i37[0])
COND_LOAD848(TRUE, i20[1], i37[1]) → LOAD848(i20[1], i37[1])
COND_LOAD8481(TRUE, i20[5], i37[5]) → LOAD848(+(i20[5], -1), i37[5])
COND_INC10741(TRUE, i55[7], i20[7], i37[7]) → INC1074(+(i55[7], -1), +(i20[7], -1), i37[7])
COND_LOAD8482(TRUE, i20[9], i37[9]) → INC1074(+(+(i20[9], -1), -1), +(i20[9], -1), i37[9])
LOAD848(i20[0], i37[0]) → COND_LOAD848(&&(<=(i20[0], i37[0]), >(i20[0], i37[0])), i20[0], i37[0])
LOAD848(i20[4], i37[4]) → COND_LOAD8481(&&(<=(+(i20[4], -1), i37[4]), >(i20[4], i37[4])), i20[4], i37[4])
LOAD848(i20[8], i37[8]) → COND_LOAD8482(&&(>(+(i20[8], -1), i37[8]), >(i20[8], i37[8])), i20[8], i37[8])
INC1074(i55[2], i20[2], i37[2]) → COND_INC1074(<=(+(i20[2], -1), i37[2]), i55[2], i20[2], i37[2])
COND_INC1074(TRUE, i55[3], i20[3], i37[3]) → LOAD848(i55[3], i37[3])
LOAD848(i20[4], i37[4]) → COND_LOAD8481(&&(<=(+(i20[4], -1), i37[4]), >(i20[4], i37[4])), i20[4], i37[4])
INC1074(i55[6], i20[6], i37[6]) → COND_INC10741(>(+(i20[6], -1), i37[6]), i55[6], i20[6], i37[6])
LOAD848(i20[8], i37[8]) → COND_LOAD8482(&&(>(+(i20[8], -1), i37[8]), >(i20[8], i37[8])), i20[8], i37[8])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(2) -> (3), if ((i37[2] →* i37[3])∧(i55[2] →* i55[3])∧(i20[2] →* i20[3])∧(i20[2] + -1 <= i37[2] →* TRUE))
(3) -> (4), if ((i37[3] →* i37[4])∧(i55[3] →* i20[4]))
(3) -> (8), if ((i55[3] →* i20[8])∧(i37[3] →* i37[8]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(7) -> (2), if ((i55[7] + -1 →* i55[2])∧(i37[7] →* i37[2])∧(i20[7] + -1 →* i20[2]))
(9) -> (2), if ((i20[9] + -1 + -1 →* i55[2])∧(i37[9] →* i37[2])∧(i20[9] + -1 →* i20[2]))
(2) -> (3), if ((i37[2] →* i37[3])∧(i55[2] →* i55[3])∧(i20[2] →* i20[3])∧(i20[2] + -1 <= i37[2] →* TRUE))
(7) -> (6), if ((i55[7] + -1 →* i55[6])∧(i20[7] + -1 →* i20[6])∧(i37[7] →* i37[6]))
(9) -> (6), if ((i20[9] + -1 + -1 →* i55[6])∧(i37[9] →* i37[6])∧(i20[9] + -1 →* i20[6]))
(6) -> (7), if ((i55[6] →* i55[7])∧(i20[6] + -1 > i37[6] →* TRUE)∧(i37[6] →* i37[7])∧(i20[6] →* i20[7]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(7) -> (6), if ((i55[7] + -1 →* i55[6])∧(i20[7] + -1 →* i20[6])∧(i37[7] →* i37[6]))
(6) -> (7), if ((i55[6] →* i55[7])∧(i20[6] + -1 > i37[6] →* TRUE)∧(i37[6] →* i37[7])∧(i20[6] →* i20[7]))
(1) (COND_INC10741(TRUE, i55[7], i20[7], i37[7])≥NonInfC∧COND_INC10741(TRUE, i55[7], i20[7], i37[7])≥INC1074(+(i55[7], -1), +(i20[7], -1), i37[7])∧(UIncreasing(INC1074(+(i55[7], -1), +(i20[7], -1), i37[7])), ≥))
(2) ((UIncreasing(INC1074(+(i55[7], -1), +(i20[7], -1), i37[7])), ≥)∧[(-1)bso_8] ≥ 0)
(3) ((UIncreasing(INC1074(+(i55[7], -1), +(i20[7], -1), i37[7])), ≥)∧[(-1)bso_8] ≥ 0)
(4) ((UIncreasing(INC1074(+(i55[7], -1), +(i20[7], -1), i37[7])), ≥)∧[(-1)bso_8] ≥ 0)
(5) ((UIncreasing(INC1074(+(i55[7], -1), +(i20[7], -1), i37[7])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_8] ≥ 0)
(6) (i55[6]=i55[7]∧>(+(i20[6], -1), i37[6])=TRUE∧i37[6]=i37[7]∧i20[6]=i20[7] ⇒ INC1074(i55[6], i20[6], i37[6])≥NonInfC∧INC1074(i55[6], i20[6], i37[6])≥COND_INC10741(>(+(i20[6], -1), i37[6]), i55[6], i20[6], i37[6])∧(UIncreasing(COND_INC10741(>(+(i20[6], -1), i37[6]), i55[6], i20[6], i37[6])), ≥))
(7) (>(+(i20[6], -1), i37[6])=TRUE ⇒ INC1074(i55[6], i20[6], i37[6])≥NonInfC∧INC1074(i55[6], i20[6], i37[6])≥COND_INC10741(>(+(i20[6], -1), i37[6]), i55[6], i20[6], i37[6])∧(UIncreasing(COND_INC10741(>(+(i20[6], -1), i37[6]), i55[6], i20[6], i37[6])), ≥))
(8) (i20[6] + [-2] + [-1]i37[6] ≥ 0 ⇒ (UIncreasing(COND_INC10741(>(+(i20[6], -1), i37[6]), i55[6], i20[6], i37[6])), ≥)∧[(-1)Bound*bni_9] + [bni_9]i20[6] + [(-1)bni_9]i37[6] ≥ 0∧[1 + (-1)bso_10] ≥ 0)
(9) (i20[6] + [-2] + [-1]i37[6] ≥ 0 ⇒ (UIncreasing(COND_INC10741(>(+(i20[6], -1), i37[6]), i55[6], i20[6], i37[6])), ≥)∧[(-1)Bound*bni_9] + [bni_9]i20[6] + [(-1)bni_9]i37[6] ≥ 0∧[1 + (-1)bso_10] ≥ 0)
(10) (i20[6] + [-2] + [-1]i37[6] ≥ 0 ⇒ (UIncreasing(COND_INC10741(>(+(i20[6], -1), i37[6]), i55[6], i20[6], i37[6])), ≥)∧[(-1)Bound*bni_9] + [bni_9]i20[6] + [(-1)bni_9]i37[6] ≥ 0∧[1 + (-1)bso_10] ≥ 0)
(11) (i20[6] + [-2] + [-1]i37[6] ≥ 0 ⇒ (UIncreasing(COND_INC10741(>(+(i20[6], -1), i37[6]), i55[6], i20[6], i37[6])), ≥)∧0 = 0∧[(-1)Bound*bni_9] + [bni_9]i20[6] + [(-1)bni_9]i37[6] ≥ 0∧0 = 0∧[1 + (-1)bso_10] ≥ 0)
(12) (i20[6] ≥ 0 ⇒ (UIncreasing(COND_INC10741(>(+(i20[6], -1), i37[6]), i55[6], i20[6], i37[6])), ≥)∧0 = 0∧[(-1)Bound*bni_9 + (2)bni_9] + [bni_9]i20[6] ≥ 0∧0 = 0∧[1 + (-1)bso_10] ≥ 0)
(13) (i20[6] ≥ 0∧i37[6] ≥ 0 ⇒ (UIncreasing(COND_INC10741(>(+(i20[6], -1), i37[6]), i55[6], i20[6], i37[6])), ≥)∧0 = 0∧[(-1)Bound*bni_9 + (2)bni_9] + [bni_9]i20[6] ≥ 0∧0 = 0∧[1 + (-1)bso_10] ≥ 0)
(14) (i20[6] ≥ 0∧i37[6] ≥ 0 ⇒ (UIncreasing(COND_INC10741(>(+(i20[6], -1), i37[6]), i55[6], i20[6], i37[6])), ≥)∧0 = 0∧[(-1)Bound*bni_9 + (2)bni_9] + [bni_9]i20[6] ≥ 0∧0 = 0∧[1 + (-1)bso_10] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_INC10741(x1, x2, x3, x4)) = [-1] + [-1]x4 + x3
POL(INC1074(x1, x2, x3)) = x2 + [-1]x3
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(>(x1, x2)) = [-1]
INC1074(i55[6], i20[6], i37[6]) → COND_INC10741(>(+(i20[6], -1), i37[6]), i55[6], i20[6], i37[6])
INC1074(i55[6], i20[6], i37[6]) → COND_INC10741(>(+(i20[6], -1), i37[6]), i55[6], i20[6], i37[6])
COND_INC10741(TRUE, i55[7], i20[7], i37[7]) → INC1074(+(i55[7], -1), +(i20[7], -1), i37[7])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer