0 JBC
↳1 JBC2FIG (⇐)
↳2 FIGraph
↳3 FIGtoITRSProof (⇐)
↳4 ITRS
↳5 ITRStoIDPProof (⇔)
↳6 IDP
↳7 UsableRulesProof (⇔)
↳8 IDP
↳9 IDPNonInfProof (⇐)
↳10 AND
↳11 IDP
↳12 IDependencyGraphProof (⇔)
↳13 IDP
↳14 IDPNonInfProof (⇐)
↳15 AND
↳16 IDP
↳17 IDependencyGraphProof (⇔)
↳18 TRUE
↳19 IDP
↳20 IDependencyGraphProof (⇔)
↳21 TRUE
↳22 IDP
↳23 IDependencyGraphProof (⇔)
↳24 IDP
↳25 IDPNonInfProof (⇐)
↳26 AND
↳27 IDP
↳28 IDependencyGraphProof (⇔)
↳29 TRUE
↳30 IDP
↳31 IDependencyGraphProof (⇔)
↳32 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaB14 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
while (x == y && x > 0) {
while (y > 0) {
x--;
y--;
}
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(0) -> (1), if ((i108[0] > 0 →* TRUE)∧(i108[0] →* i108[1]))
(1) -> (2), if ((i108[1] →* i139[2])∧(i108[1] →* i141[2]))
(1) -> (4), if ((i108[1] →* i139[4])∧(i108[1] →* 0))
(2) -> (3), if ((i139[2] →* i139[3])∧(i141[2] > 0 →* TRUE)∧(i141[2] →* i141[3]))
(3) -> (2), if ((i141[3] + -1 →* i141[2])∧(i139[3] + -1 →* i139[2]))
(3) -> (4), if ((i139[3] + -1 →* i139[4])∧(i141[3] + -1 →* 0))
(4) -> (0), if ((i139[4] →* i108[0]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(0) -> (1), if ((i108[0] > 0 →* TRUE)∧(i108[0] →* i108[1]))
(1) -> (2), if ((i108[1] →* i139[2])∧(i108[1] →* i141[2]))
(1) -> (4), if ((i108[1] →* i139[4])∧(i108[1] →* 0))
(2) -> (3), if ((i139[2] →* i139[3])∧(i141[2] > 0 →* TRUE)∧(i141[2] →* i141[3]))
(3) -> (2), if ((i141[3] + -1 →* i141[2])∧(i139[3] + -1 →* i139[2]))
(3) -> (4), if ((i139[3] + -1 →* i139[4])∧(i141[3] + -1 →* 0))
(4) -> (0), if ((i139[4] →* i108[0]))
(1) (>(i108[0], 0)=TRUE∧i108[0]=i108[1] ⇒ LOAD804(i108[0])≥NonInfC∧LOAD804(i108[0])≥COND_LOAD804(>(i108[0], 0), i108[0])∧(UIncreasing(COND_LOAD804(>(i108[0], 0), i108[0])), ≥))
(2) (>(i108[0], 0)=TRUE ⇒ LOAD804(i108[0])≥NonInfC∧LOAD804(i108[0])≥COND_LOAD804(>(i108[0], 0), i108[0])∧(UIncreasing(COND_LOAD804(>(i108[0], 0), i108[0])), ≥))
(3) (i108[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD804(>(i108[0], 0), i108[0])), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [bni_16]i108[0] ≥ 0∧[-1 + (-1)bso_17] + i108[0] ≥ 0)
(4) (i108[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD804(>(i108[0], 0), i108[0])), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [bni_16]i108[0] ≥ 0∧[-1 + (-1)bso_17] + i108[0] ≥ 0)
(5) (i108[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD804(>(i108[0], 0), i108[0])), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [bni_16]i108[0] ≥ 0∧[-1 + (-1)bso_17] + i108[0] ≥ 0)
(6) (i108[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD804(>(i108[0], 0), i108[0])), ≥)∧[(-1)Bound*bni_16] + [bni_16]i108[0] ≥ 0∧[(-1)bso_17] + i108[0] ≥ 0)
(7) (i108[1]=i139[2]∧i108[1]=i141[2] ⇒ COND_LOAD804(TRUE, i108[1])≥NonInfC∧COND_LOAD804(TRUE, i108[1])≥LOAD1161(i108[1], i108[1])∧(UIncreasing(LOAD1161(i108[1], i108[1])), ≥))
(8) (COND_LOAD804(TRUE, i108[1])≥NonInfC∧COND_LOAD804(TRUE, i108[1])≥LOAD1161(i108[1], i108[1])∧(UIncreasing(LOAD1161(i108[1], i108[1])), ≥))
(9) ((UIncreasing(LOAD1161(i108[1], i108[1])), ≥)∧[1 + (-1)bso_19] ≥ 0)
(10) ((UIncreasing(LOAD1161(i108[1], i108[1])), ≥)∧[1 + (-1)bso_19] ≥ 0)
(11) ((UIncreasing(LOAD1161(i108[1], i108[1])), ≥)∧[1 + (-1)bso_19] ≥ 0)
(12) ((UIncreasing(LOAD1161(i108[1], i108[1])), ≥)∧0 = 0∧[1 + (-1)bso_19] ≥ 0)
(13) (i108[1]=i139[4]∧i108[1]=0 ⇒ COND_LOAD804(TRUE, i108[1])≥NonInfC∧COND_LOAD804(TRUE, i108[1])≥LOAD1161(i108[1], i108[1])∧(UIncreasing(LOAD1161(i108[1], i108[1])), ≥))
(14) (COND_LOAD804(TRUE, 0)≥NonInfC∧COND_LOAD804(TRUE, 0)≥LOAD1161(0, 0)∧(UIncreasing(LOAD1161(i108[1], i108[1])), ≥))
(15) ((UIncreasing(LOAD1161(i108[1], i108[1])), ≥)∧[1 + (-1)bso_19] ≥ 0)
(16) ((UIncreasing(LOAD1161(i108[1], i108[1])), ≥)∧[1 + (-1)bso_19] ≥ 0)
(17) ((UIncreasing(LOAD1161(i108[1], i108[1])), ≥)∧[1 + (-1)bso_19] ≥ 0)
(18) (i139[2]=i139[3]∧>(i141[2], 0)=TRUE∧i141[2]=i141[3] ⇒ LOAD1161(i139[2], i141[2])≥NonInfC∧LOAD1161(i139[2], i141[2])≥COND_LOAD1161(>(i141[2], 0), i139[2], i141[2])∧(UIncreasing(COND_LOAD1161(>(i141[2], 0), i139[2], i141[2])), ≥))
(19) (>(i141[2], 0)=TRUE ⇒ LOAD1161(i139[2], i141[2])≥NonInfC∧LOAD1161(i139[2], i141[2])≥COND_LOAD1161(>(i141[2], 0), i139[2], i141[2])∧(UIncreasing(COND_LOAD1161(>(i141[2], 0), i139[2], i141[2])), ≥))
(20) (i141[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1161(>(i141[2], 0), i139[2], i141[2])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [(-1)bni_20]i141[2] + [bni_20]i139[2] ≥ 0∧[(-1)bso_21] ≥ 0)
(21) (i141[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1161(>(i141[2], 0), i139[2], i141[2])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [(-1)bni_20]i141[2] + [bni_20]i139[2] ≥ 0∧[(-1)bso_21] ≥ 0)
(22) (i141[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1161(>(i141[2], 0), i139[2], i141[2])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [(-1)bni_20]i141[2] + [bni_20]i139[2] ≥ 0∧[(-1)bso_21] ≥ 0)
(23) (i141[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1161(>(i141[2], 0), i139[2], i141[2])), ≥)∧[bni_20] = 0∧[(-1)bni_20 + (-1)Bound*bni_20] + [(-1)bni_20]i141[2] ≥ 0∧0 = 0∧[(-1)bso_21] ≥ 0)
(24) (i141[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD1161(>(i141[2], 0), i139[2], i141[2])), ≥)∧[bni_20] = 0∧[(-2)bni_20 + (-1)Bound*bni_20] + [(-1)bni_20]i141[2] ≥ 0∧0 = 0∧[(-1)bso_21] ≥ 0)
(25) (i139[2]=i139[3]∧>(i141[2], 0)=TRUE∧i141[2]=i141[3]∧+(i141[3], -1)=i141[2]1∧+(i139[3], -1)=i139[2]1 ⇒ COND_LOAD1161(TRUE, i139[3], i141[3])≥NonInfC∧COND_LOAD1161(TRUE, i139[3], i141[3])≥LOAD1161(+(i139[3], -1), +(i141[3], -1))∧(UIncreasing(LOAD1161(+(i139[3], -1), +(i141[3], -1))), ≥))
(26) (>(i141[2], 0)=TRUE ⇒ COND_LOAD1161(TRUE, i139[2], i141[2])≥NonInfC∧COND_LOAD1161(TRUE, i139[2], i141[2])≥LOAD1161(+(i139[2], -1), +(i141[2], -1))∧(UIncreasing(LOAD1161(+(i139[3], -1), +(i141[3], -1))), ≥))
(27) (i141[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD1161(+(i139[3], -1), +(i141[3], -1))), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]i141[2] + [bni_22]i139[2] ≥ 0∧[(-1)bso_23] ≥ 0)
(28) (i141[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD1161(+(i139[3], -1), +(i141[3], -1))), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]i141[2] + [bni_22]i139[2] ≥ 0∧[(-1)bso_23] ≥ 0)
(29) (i141[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD1161(+(i139[3], -1), +(i141[3], -1))), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]i141[2] + [bni_22]i139[2] ≥ 0∧[(-1)bso_23] ≥ 0)
(30) (i141[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD1161(+(i139[3], -1), +(i141[3], -1))), ≥)∧[bni_22] = 0∧[(-1)bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]i141[2] ≥ 0∧0 = 0∧[(-1)bso_23] ≥ 0)
(31) (i141[2] ≥ 0 ⇒ (UIncreasing(LOAD1161(+(i139[3], -1), +(i141[3], -1))), ≥)∧[bni_22] = 0∧[(-2)bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]i141[2] ≥ 0∧0 = 0∧[(-1)bso_23] ≥ 0)
(32) (i139[2]=i139[3]∧>(i141[2], 0)=TRUE∧i141[2]=i141[3]∧+(i139[3], -1)=i139[4]∧+(i141[3], -1)=0 ⇒ COND_LOAD1161(TRUE, i139[3], i141[3])≥NonInfC∧COND_LOAD1161(TRUE, i139[3], i141[3])≥LOAD1161(+(i139[3], -1), +(i141[3], -1))∧(UIncreasing(LOAD1161(+(i139[3], -1), +(i141[3], -1))), ≥))
(33) (>(i141[2], 0)=TRUE∧+(i141[2], -1)=0 ⇒ COND_LOAD1161(TRUE, i139[2], i141[2])≥NonInfC∧COND_LOAD1161(TRUE, i139[2], i141[2])≥LOAD1161(+(i139[2], -1), +(i141[2], -1))∧(UIncreasing(LOAD1161(+(i139[3], -1), +(i141[3], -1))), ≥))
(34) (i141[2] + [-1] ≥ 0∧i141[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD1161(+(i139[3], -1), +(i141[3], -1))), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]i141[2] + [bni_22]i139[2] ≥ 0∧[(-1)bso_23] ≥ 0)
(35) (i141[2] + [-1] ≥ 0∧i141[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD1161(+(i139[3], -1), +(i141[3], -1))), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]i141[2] + [bni_22]i139[2] ≥ 0∧[(-1)bso_23] ≥ 0)
(36) (i141[2] + [-1] ≥ 0∧i141[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD1161(+(i139[3], -1), +(i141[3], -1))), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]i141[2] + [bni_22]i139[2] ≥ 0∧[(-1)bso_23] ≥ 0)
(37) (i141[2] + [-1] ≥ 0∧i141[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD1161(+(i139[3], -1), +(i141[3], -1))), ≥)∧[bni_22] = 0∧[(-1)bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]i141[2] ≥ 0∧0 = 0∧[(-1)bso_23] ≥ 0)
(38) (i141[2] ≥ 0∧i141[2] ≥ 0 ⇒ (UIncreasing(LOAD1161(+(i139[3], -1), +(i141[3], -1))), ≥)∧[bni_22] = 0∧[(-2)bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]i141[2] ≥ 0∧0 = 0∧[(-1)bso_23] ≥ 0)
(39) (i139[4]=i108[0] ⇒ LOAD1161(i139[4], 0)≥NonInfC∧LOAD1161(i139[4], 0)≥LOAD804(i139[4])∧(UIncreasing(LOAD804(i139[4])), ≥))
(40) (LOAD1161(i139[4], 0)≥NonInfC∧LOAD1161(i139[4], 0)≥LOAD804(i139[4])∧(UIncreasing(LOAD804(i139[4])), ≥))
(41) ((UIncreasing(LOAD804(i139[4])), ≥)∧[(-1)bso_25] ≥ 0)
(42) ((UIncreasing(LOAD804(i139[4])), ≥)∧[(-1)bso_25] ≥ 0)
(43) ((UIncreasing(LOAD804(i139[4])), ≥)∧[(-1)bso_25] ≥ 0)
(44) ((UIncreasing(LOAD804(i139[4])), ≥)∧0 = 0∧[(-1)bso_25] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(LOAD804(x1)) = [-1] + x1
POL(COND_LOAD804(x1, x2)) = 0
POL(>(x1, x2)) = [1]
POL(0) = 0
POL(LOAD1161(x1, x2)) = [-1] + [-1]x2 + x1
POL(COND_LOAD1161(x1, x2, x3)) = [-1] + [-1]x3 + x2
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
COND_LOAD804(TRUE, i108[1]) → LOAD1161(i108[1], i108[1])
LOAD804(i108[0]) → COND_LOAD804(>(i108[0], 0), i108[0])
LOAD804(i108[0]) → COND_LOAD804(>(i108[0], 0), i108[0])
LOAD1161(i139[2], i141[2]) → COND_LOAD1161(>(i141[2], 0), i139[2], i141[2])
COND_LOAD1161(TRUE, i139[3], i141[3]) → LOAD1161(+(i139[3], -1), +(i141[3], -1))
LOAD1161(i139[4], 0) → LOAD804(i139[4])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(4) -> (0), if ((i139[4] →* i108[0]))
(3) -> (2), if ((i141[3] + -1 →* i141[2])∧(i139[3] + -1 →* i139[2]))
(2) -> (3), if ((i139[2] →* i139[3])∧(i141[2] > 0 →* TRUE)∧(i141[2] →* i141[3]))
(3) -> (4), if ((i139[3] + -1 →* i139[4])∧(i141[3] + -1 →* 0))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(3) -> (2), if ((i141[3] + -1 →* i141[2])∧(i139[3] + -1 →* i139[2]))
(2) -> (3), if ((i139[2] →* i139[3])∧(i141[2] > 0 →* TRUE)∧(i141[2] →* i141[3]))
(1) (i139[2]=i139[3]∧>(i141[2], 0)=TRUE∧i141[2]=i141[3]∧+(i141[3], -1)=i141[2]1∧+(i139[3], -1)=i139[2]1 ⇒ COND_LOAD1161(TRUE, i139[3], i141[3])≥NonInfC∧COND_LOAD1161(TRUE, i139[3], i141[3])≥LOAD1161(+(i139[3], -1), +(i141[3], -1))∧(UIncreasing(LOAD1161(+(i139[3], -1), +(i141[3], -1))), ≥))
(2) (>(i141[2], 0)=TRUE ⇒ COND_LOAD1161(TRUE, i139[2], i141[2])≥NonInfC∧COND_LOAD1161(TRUE, i139[2], i141[2])≥LOAD1161(+(i139[2], -1), +(i141[2], -1))∧(UIncreasing(LOAD1161(+(i139[3], -1), +(i141[3], -1))), ≥))
(3) (i141[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD1161(+(i139[3], -1), +(i141[3], -1))), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]i141[2] ≥ 0∧[1 + (-1)bso_12] ≥ 0)
(4) (i141[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD1161(+(i139[3], -1), +(i141[3], -1))), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]i141[2] ≥ 0∧[1 + (-1)bso_12] ≥ 0)
(5) (i141[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD1161(+(i139[3], -1), +(i141[3], -1))), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]i141[2] ≥ 0∧[1 + (-1)bso_12] ≥ 0)
(6) (i141[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD1161(+(i139[3], -1), +(i141[3], -1))), ≥)∧0 = 0∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]i141[2] ≥ 0∧0 = 0∧[1 + (-1)bso_12] ≥ 0)
(7) (i141[2] ≥ 0 ⇒ (UIncreasing(LOAD1161(+(i139[3], -1), +(i141[3], -1))), ≥)∧0 = 0∧[(-1)Bound*bni_11] + [bni_11]i141[2] ≥ 0∧0 = 0∧[1 + (-1)bso_12] ≥ 0)
(8) (i139[2]=i139[3]∧>(i141[2], 0)=TRUE∧i141[2]=i141[3] ⇒ LOAD1161(i139[2], i141[2])≥NonInfC∧LOAD1161(i139[2], i141[2])≥COND_LOAD1161(>(i141[2], 0), i139[2], i141[2])∧(UIncreasing(COND_LOAD1161(>(i141[2], 0), i139[2], i141[2])), ≥))
(9) (>(i141[2], 0)=TRUE ⇒ LOAD1161(i139[2], i141[2])≥NonInfC∧LOAD1161(i139[2], i141[2])≥COND_LOAD1161(>(i141[2], 0), i139[2], i141[2])∧(UIncreasing(COND_LOAD1161(>(i141[2], 0), i139[2], i141[2])), ≥))
(10) (i141[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1161(>(i141[2], 0), i139[2], i141[2])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]i141[2] ≥ 0∧[(-1)bso_14] ≥ 0)
(11) (i141[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1161(>(i141[2], 0), i139[2], i141[2])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]i141[2] ≥ 0∧[(-1)bso_14] ≥ 0)
(12) (i141[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1161(>(i141[2], 0), i139[2], i141[2])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]i141[2] ≥ 0∧[(-1)bso_14] ≥ 0)
(13) (i141[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1161(>(i141[2], 0), i139[2], i141[2])), ≥)∧0 = 0∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]i141[2] ≥ 0∧0 = 0∧[(-1)bso_14] ≥ 0)
(14) (i141[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD1161(>(i141[2], 0), i139[2], i141[2])), ≥)∧0 = 0∧[(-1)Bound*bni_13] + [bni_13]i141[2] ≥ 0∧0 = 0∧[(-1)bso_14] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_LOAD1161(x1, x2, x3)) = [-1] + x3
POL(LOAD1161(x1, x2)) = [-1] + x2
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(>(x1, x2)) = [2]
POL(0) = 0
COND_LOAD1161(TRUE, i139[3], i141[3]) → LOAD1161(+(i139[3], -1), +(i141[3], -1))
COND_LOAD1161(TRUE, i139[3], i141[3]) → LOAD1161(+(i139[3], -1), +(i141[3], -1))
LOAD1161(i139[2], i141[2]) → COND_LOAD1161(>(i141[2], 0), i139[2], i141[2])
LOAD1161(i139[2], i141[2]) → COND_LOAD1161(>(i141[2], 0), i139[2], i141[2])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(1) -> (2), if ((i108[1] →* i139[2])∧(i108[1] →* i141[2]))
(3) -> (2), if ((i141[3] + -1 →* i141[2])∧(i139[3] + -1 →* i139[2]))
(2) -> (3), if ((i139[2] →* i139[3])∧(i141[2] > 0 →* TRUE)∧(i141[2] →* i141[3]))
(1) -> (4), if ((i108[1] →* i139[4])∧(i108[1] →* 0))
(3) -> (4), if ((i139[3] + -1 →* i139[4])∧(i141[3] + -1 →* 0))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(3) -> (2), if ((i141[3] + -1 →* i141[2])∧(i139[3] + -1 →* i139[2]))
(2) -> (3), if ((i139[2] →* i139[3])∧(i141[2] > 0 →* TRUE)∧(i141[2] →* i141[3]))
(1) (i139[2]=i139[3]∧>(i141[2], 0)=TRUE∧i141[2]=i141[3]∧+(i141[3], -1)=i141[2]1∧+(i139[3], -1)=i139[2]1 ⇒ COND_LOAD1161(TRUE, i139[3], i141[3])≥NonInfC∧COND_LOAD1161(TRUE, i139[3], i141[3])≥LOAD1161(+(i139[3], -1), +(i141[3], -1))∧(UIncreasing(LOAD1161(+(i139[3], -1), +(i141[3], -1))), ≥))
(2) (>(i141[2], 0)=TRUE ⇒ COND_LOAD1161(TRUE, i139[2], i141[2])≥NonInfC∧COND_LOAD1161(TRUE, i139[2], i141[2])≥LOAD1161(+(i139[2], -1), +(i141[2], -1))∧(UIncreasing(LOAD1161(+(i139[3], -1), +(i141[3], -1))), ≥))
(3) (i141[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD1161(+(i139[3], -1), +(i141[3], -1))), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]i141[2] ≥ 0∧[1 + (-1)bso_12] ≥ 0)
(4) (i141[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD1161(+(i139[3], -1), +(i141[3], -1))), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]i141[2] ≥ 0∧[1 + (-1)bso_12] ≥ 0)
(5) (i141[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD1161(+(i139[3], -1), +(i141[3], -1))), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]i141[2] ≥ 0∧[1 + (-1)bso_12] ≥ 0)
(6) (i141[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD1161(+(i139[3], -1), +(i141[3], -1))), ≥)∧0 = 0∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]i141[2] ≥ 0∧0 = 0∧[1 + (-1)bso_12] ≥ 0)
(7) (i141[2] ≥ 0 ⇒ (UIncreasing(LOAD1161(+(i139[3], -1), +(i141[3], -1))), ≥)∧0 = 0∧[(-1)Bound*bni_11] + [bni_11]i141[2] ≥ 0∧0 = 0∧[1 + (-1)bso_12] ≥ 0)
(8) (i139[2]=i139[3]∧>(i141[2], 0)=TRUE∧i141[2]=i141[3] ⇒ LOAD1161(i139[2], i141[2])≥NonInfC∧LOAD1161(i139[2], i141[2])≥COND_LOAD1161(>(i141[2], 0), i139[2], i141[2])∧(UIncreasing(COND_LOAD1161(>(i141[2], 0), i139[2], i141[2])), ≥))
(9) (>(i141[2], 0)=TRUE ⇒ LOAD1161(i139[2], i141[2])≥NonInfC∧LOAD1161(i139[2], i141[2])≥COND_LOAD1161(>(i141[2], 0), i139[2], i141[2])∧(UIncreasing(COND_LOAD1161(>(i141[2], 0), i139[2], i141[2])), ≥))
(10) (i141[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1161(>(i141[2], 0), i139[2], i141[2])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]i141[2] ≥ 0∧[(-1)bso_14] ≥ 0)
(11) (i141[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1161(>(i141[2], 0), i139[2], i141[2])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]i141[2] ≥ 0∧[(-1)bso_14] ≥ 0)
(12) (i141[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1161(>(i141[2], 0), i139[2], i141[2])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]i141[2] ≥ 0∧[(-1)bso_14] ≥ 0)
(13) (i141[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1161(>(i141[2], 0), i139[2], i141[2])), ≥)∧0 = 0∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]i141[2] ≥ 0∧0 = 0∧[(-1)bso_14] ≥ 0)
(14) (i141[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD1161(>(i141[2], 0), i139[2], i141[2])), ≥)∧0 = 0∧[(-1)Bound*bni_13] + [bni_13]i141[2] ≥ 0∧0 = 0∧[(-1)bso_14] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_LOAD1161(x1, x2, x3)) = [-1] + x3
POL(LOAD1161(x1, x2)) = [-1] + x2
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(>(x1, x2)) = [2]
POL(0) = 0
COND_LOAD1161(TRUE, i139[3], i141[3]) → LOAD1161(+(i139[3], -1), +(i141[3], -1))
COND_LOAD1161(TRUE, i139[3], i141[3]) → LOAD1161(+(i139[3], -1), +(i141[3], -1))
LOAD1161(i139[2], i141[2]) → COND_LOAD1161(>(i141[2], 0), i139[2], i141[2])
LOAD1161(i139[2], i141[2]) → COND_LOAD1161(>(i141[2], 0), i139[2], i141[2])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |