0 JBC
↳1 JBC2FIG (⇐)
↳2 FIGraph
↳3 FIGtoITRSProof (⇐)
↳4 ITRS
↳5 ITRStoIDPProof (⇔)
↳6 IDP
↳7 UsableRulesProof (⇔)
↳8 IDP
↳9 IDPNonInfProof (⇐)
↳10 AND
↳11 IDP
↳12 IDependencyGraphProof (⇔)
↳13 IDP
↳14 IDPNonInfProof (⇐)
↳15 AND
↳16 IDP
↳17 IDependencyGraphProof (⇔)
↳18 TRUE
↳19 IDP
↳20 IDependencyGraphProof (⇔)
↳21 TRUE
↳22 IDP
↳23 IDependencyGraphProof (⇔)
↳24 IDP
↳25 IDPNonInfProof (⇐)
↳26 AND
↳27 IDP
↳28 IDependencyGraphProof (⇔)
↳29 TRUE
↳30 IDP
↳31 IDependencyGraphProof (⇔)
↳32 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaB12 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
while (x > 0 || y > 0) {
if (x > 0) {
x--;
} else if (y > 0) {
y--;
} else {
continue;
}
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(0) -> (1), if ((i36[0] →* i36[1])∧(i49[0] →* i49[1])∧(i49[0] > 0 →* TRUE))
(1) -> (0), if ((i49[1] + -1 →* i49[0])∧(i36[1] →* i36[0]))
(1) -> (2), if ((i49[1] + -1 →* i50[2])∧(i36[1] →* i57[2]))
(2) -> (3), if ((i57[2] > 0 && i50[2] <= 0 →* TRUE)∧(i50[2] →* i50[3])∧(i57[2] →* i57[3]))
(3) -> (0), if ((i57[3] + -1 →* i36[0])∧(i50[3] →* i49[0]))
(3) -> (2), if ((i50[3] →* i50[2])∧(i57[3] + -1 →* i57[2]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(0) -> (1), if ((i36[0] →* i36[1])∧(i49[0] →* i49[1])∧(i49[0] > 0 →* TRUE))
(1) -> (0), if ((i49[1] + -1 →* i49[0])∧(i36[1] →* i36[0]))
(1) -> (2), if ((i49[1] + -1 →* i50[2])∧(i36[1] →* i57[2]))
(2) -> (3), if ((i57[2] > 0 && i50[2] <= 0 →* TRUE)∧(i50[2] →* i50[3])∧(i57[2] →* i57[3]))
(3) -> (0), if ((i57[3] + -1 →* i36[0])∧(i50[3] →* i49[0]))
(3) -> (2), if ((i50[3] →* i50[2])∧(i57[3] + -1 →* i57[2]))
(1) (i36[0]=i36[1]∧i49[0]=i49[1]∧>(i49[0], 0)=TRUE ⇒ LOAD635(i49[0], i36[0])≥NonInfC∧LOAD635(i49[0], i36[0])≥COND_LOAD635(>(i49[0], 0), i49[0], i36[0])∧(UIncreasing(COND_LOAD635(>(i49[0], 0), i49[0], i36[0])), ≥))
(2) (>(i49[0], 0)=TRUE ⇒ LOAD635(i49[0], i36[0])≥NonInfC∧LOAD635(i49[0], i36[0])≥COND_LOAD635(>(i49[0], 0), i49[0], i36[0])∧(UIncreasing(COND_LOAD635(>(i49[0], 0), i49[0], i36[0])), ≥))
(3) (i49[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD635(>(i49[0], 0), i49[0], i36[0])), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]i36[0] ≥ 0∧[(-1)bso_12] ≥ 0)
(4) (i49[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD635(>(i49[0], 0), i49[0], i36[0])), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]i36[0] ≥ 0∧[(-1)bso_12] ≥ 0)
(5) (i49[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD635(>(i49[0], 0), i49[0], i36[0])), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]i36[0] ≥ 0∧[(-1)bso_12] ≥ 0)
(6) (i49[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD635(>(i49[0], 0), i49[0], i36[0])), ≥)∧[bni_11] = 0∧[(-1)bni_11 + (-1)Bound*bni_11] ≥ 0∧0 = 0∧[(-1)bso_12] ≥ 0)
(7) (i49[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD635(>(i49[0], 0), i49[0], i36[0])), ≥)∧[bni_11] = 0∧[(-1)bni_11 + (-1)Bound*bni_11] ≥ 0∧0 = 0∧[(-1)bso_12] ≥ 0)
(8) (COND_LOAD635(TRUE, i49[1], i36[1])≥NonInfC∧COND_LOAD635(TRUE, i49[1], i36[1])≥LOAD635(+(i49[1], -1), i36[1])∧(UIncreasing(LOAD635(+(i49[1], -1), i36[1])), ≥))
(9) ((UIncreasing(LOAD635(+(i49[1], -1), i36[1])), ≥)∧[(-1)bso_14] ≥ 0)
(10) ((UIncreasing(LOAD635(+(i49[1], -1), i36[1])), ≥)∧[(-1)bso_14] ≥ 0)
(11) ((UIncreasing(LOAD635(+(i49[1], -1), i36[1])), ≥)∧[(-1)bso_14] ≥ 0)
(12) ((UIncreasing(LOAD635(+(i49[1], -1), i36[1])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_14] ≥ 0)
(13) (&&(>(i57[2], 0), <=(i50[2], 0))=TRUE∧i50[2]=i50[3]∧i57[2]=i57[3] ⇒ LOAD635(i50[2], i57[2])≥NonInfC∧LOAD635(i50[2], i57[2])≥COND_LOAD6351(&&(>(i57[2], 0), <=(i50[2], 0)), i50[2], i57[2])∧(UIncreasing(COND_LOAD6351(&&(>(i57[2], 0), <=(i50[2], 0)), i50[2], i57[2])), ≥))
(14) (>(i57[2], 0)=TRUE∧<=(i50[2], 0)=TRUE ⇒ LOAD635(i50[2], i57[2])≥NonInfC∧LOAD635(i50[2], i57[2])≥COND_LOAD6351(&&(>(i57[2], 0), <=(i50[2], 0)), i50[2], i57[2])∧(UIncreasing(COND_LOAD6351(&&(>(i57[2], 0), <=(i50[2], 0)), i50[2], i57[2])), ≥))
(15) (i57[2] + [-1] ≥ 0∧[-1]i50[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD6351(&&(>(i57[2], 0), <=(i50[2], 0)), i50[2], i57[2])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]i57[2] ≥ 0∧[(-1)bso_16] ≥ 0)
(16) (i57[2] + [-1] ≥ 0∧[-1]i50[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD6351(&&(>(i57[2], 0), <=(i50[2], 0)), i50[2], i57[2])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]i57[2] ≥ 0∧[(-1)bso_16] ≥ 0)
(17) (i57[2] + [-1] ≥ 0∧[-1]i50[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD6351(&&(>(i57[2], 0), <=(i50[2], 0)), i50[2], i57[2])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]i57[2] ≥ 0∧[(-1)bso_16] ≥ 0)
(18) (i57[2] ≥ 0∧[-1]i50[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD6351(&&(>(i57[2], 0), <=(i50[2], 0)), i50[2], i57[2])), ≥)∧[(-1)Bound*bni_15] + [bni_15]i57[2] ≥ 0∧[(-1)bso_16] ≥ 0)
(19) (i57[2] ≥ 0∧i50[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD6351(&&(>(i57[2], 0), <=(i50[2], 0)), i50[2], i57[2])), ≥)∧[(-1)Bound*bni_15] + [bni_15]i57[2] ≥ 0∧[(-1)bso_16] ≥ 0)
(20) (COND_LOAD6351(TRUE, i50[3], i57[3])≥NonInfC∧COND_LOAD6351(TRUE, i50[3], i57[3])≥LOAD635(i50[3], +(i57[3], -1))∧(UIncreasing(LOAD635(i50[3], +(i57[3], -1))), ≥))
(21) ((UIncreasing(LOAD635(i50[3], +(i57[3], -1))), ≥)∧[1 + (-1)bso_18] ≥ 0)
(22) ((UIncreasing(LOAD635(i50[3], +(i57[3], -1))), ≥)∧[1 + (-1)bso_18] ≥ 0)
(23) ((UIncreasing(LOAD635(i50[3], +(i57[3], -1))), ≥)∧[1 + (-1)bso_18] ≥ 0)
(24) ((UIncreasing(LOAD635(i50[3], +(i57[3], -1))), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_18] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(LOAD635(x1, x2)) = [-1] + x2
POL(COND_LOAD635(x1, x2, x3)) = [-1] + x3
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(COND_LOAD6351(x1, x2, x3)) = [-1] + x3
POL(&&(x1, x2)) = [-1]
POL(<=(x1, x2)) = [-1]
COND_LOAD6351(TRUE, i50[3], i57[3]) → LOAD635(i50[3], +(i57[3], -1))
LOAD635(i50[2], i57[2]) → COND_LOAD6351(&&(>(i57[2], 0), <=(i50[2], 0)), i50[2], i57[2])
LOAD635(i49[0], i36[0]) → COND_LOAD635(>(i49[0], 0), i49[0], i36[0])
COND_LOAD635(TRUE, i49[1], i36[1]) → LOAD635(+(i49[1], -1), i36[1])
LOAD635(i50[2], i57[2]) → COND_LOAD6351(&&(>(i57[2], 0), <=(i50[2], 0)), i50[2], i57[2])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(1) -> (0), if ((i49[1] + -1 →* i49[0])∧(i36[1] →* i36[0]))
(0) -> (1), if ((i36[0] →* i36[1])∧(i49[0] →* i49[1])∧(i49[0] > 0 →* TRUE))
(1) -> (2), if ((i49[1] + -1 →* i50[2])∧(i36[1] →* i57[2]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(1) -> (0), if ((i49[1] + -1 →* i49[0])∧(i36[1] →* i36[0]))
(0) -> (1), if ((i36[0] →* i36[1])∧(i49[0] →* i49[1])∧(i49[0] > 0 →* TRUE))
(1) (COND_LOAD635(TRUE, i49[1], i36[1])≥NonInfC∧COND_LOAD635(TRUE, i49[1], i36[1])≥LOAD635(+(i49[1], -1), i36[1])∧(UIncreasing(LOAD635(+(i49[1], -1), i36[1])), ≥))
(2) ((UIncreasing(LOAD635(+(i49[1], -1), i36[1])), ≥)∧[1 + (-1)bso_7] ≥ 0)
(3) ((UIncreasing(LOAD635(+(i49[1], -1), i36[1])), ≥)∧[1 + (-1)bso_7] ≥ 0)
(4) ((UIncreasing(LOAD635(+(i49[1], -1), i36[1])), ≥)∧[1 + (-1)bso_7] ≥ 0)
(5) ((UIncreasing(LOAD635(+(i49[1], -1), i36[1])), ≥)∧0 = 0∧[1 + (-1)bso_7] ≥ 0)
(6) (i36[0]=i36[1]∧i49[0]=i49[1]∧>(i49[0], 0)=TRUE ⇒ LOAD635(i49[0], i36[0])≥NonInfC∧LOAD635(i49[0], i36[0])≥COND_LOAD635(>(i49[0], 0), i49[0], i36[0])∧(UIncreasing(COND_LOAD635(>(i49[0], 0), i49[0], i36[0])), ≥))
(7) (>(i49[0], 0)=TRUE ⇒ LOAD635(i49[0], i36[0])≥NonInfC∧LOAD635(i49[0], i36[0])≥COND_LOAD635(>(i49[0], 0), i49[0], i36[0])∧(UIncreasing(COND_LOAD635(>(i49[0], 0), i49[0], i36[0])), ≥))
(8) (i49[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD635(>(i49[0], 0), i49[0], i36[0])), ≥)∧[bni_8 + (-1)Bound*bni_8] + [bni_8]i49[0] ≥ 0∧[(-1)bso_9] ≥ 0)
(9) (i49[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD635(>(i49[0], 0), i49[0], i36[0])), ≥)∧[bni_8 + (-1)Bound*bni_8] + [bni_8]i49[0] ≥ 0∧[(-1)bso_9] ≥ 0)
(10) (i49[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD635(>(i49[0], 0), i49[0], i36[0])), ≥)∧[bni_8 + (-1)Bound*bni_8] + [bni_8]i49[0] ≥ 0∧[(-1)bso_9] ≥ 0)
(11) (i49[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD635(>(i49[0], 0), i49[0], i36[0])), ≥)∧[(2)bni_8 + (-1)Bound*bni_8] + [bni_8]i49[0] ≥ 0∧[(-1)bso_9] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_LOAD635(x1, x2, x3)) = [1] + x2
POL(LOAD635(x1, x2)) = [1] + x1
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(>(x1, x2)) = [1]
POL(0) = 0
COND_LOAD635(TRUE, i49[1], i36[1]) → LOAD635(+(i49[1], -1), i36[1])
LOAD635(i49[0], i36[0]) → COND_LOAD635(>(i49[0], 0), i49[0], i36[0])
LOAD635(i49[0], i36[0]) → COND_LOAD635(>(i49[0], 0), i49[0], i36[0])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(1) -> (0), if ((i49[1] + -1 →* i49[0])∧(i36[1] →* i36[0]))
(3) -> (0), if ((i57[3] + -1 →* i36[0])∧(i50[3] →* i49[0]))
(0) -> (1), if ((i36[0] →* i36[1])∧(i49[0] →* i49[1])∧(i49[0] > 0 →* TRUE))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(1) -> (0), if ((i49[1] + -1 →* i49[0])∧(i36[1] →* i36[0]))
(0) -> (1), if ((i36[0] →* i36[1])∧(i49[0] →* i49[1])∧(i49[0] > 0 →* TRUE))
(1) (COND_LOAD635(TRUE, i49[1], i36[1])≥NonInfC∧COND_LOAD635(TRUE, i49[1], i36[1])≥LOAD635(+(i49[1], -1), i36[1])∧(UIncreasing(LOAD635(+(i49[1], -1), i36[1])), ≥))
(2) ((UIncreasing(LOAD635(+(i49[1], -1), i36[1])), ≥)∧[1 + (-1)bso_8] ≥ 0)
(3) ((UIncreasing(LOAD635(+(i49[1], -1), i36[1])), ≥)∧[1 + (-1)bso_8] ≥ 0)
(4) ((UIncreasing(LOAD635(+(i49[1], -1), i36[1])), ≥)∧[1 + (-1)bso_8] ≥ 0)
(5) ((UIncreasing(LOAD635(+(i49[1], -1), i36[1])), ≥)∧0 = 0∧[1 + (-1)bso_8] ≥ 0)
(6) (i36[0]=i36[1]∧i49[0]=i49[1]∧>(i49[0], 0)=TRUE ⇒ LOAD635(i49[0], i36[0])≥NonInfC∧LOAD635(i49[0], i36[0])≥COND_LOAD635(>(i49[0], 0), i49[0], i36[0])∧(UIncreasing(COND_LOAD635(>(i49[0], 0), i49[0], i36[0])), ≥))
(7) (>(i49[0], 0)=TRUE ⇒ LOAD635(i49[0], i36[0])≥NonInfC∧LOAD635(i49[0], i36[0])≥COND_LOAD635(>(i49[0], 0), i49[0], i36[0])∧(UIncreasing(COND_LOAD635(>(i49[0], 0), i49[0], i36[0])), ≥))
(8) (i49[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD635(>(i49[0], 0), i49[0], i36[0])), ≥)∧[bni_9 + (-1)Bound*bni_9] + [bni_9]i49[0] ≥ 0∧[(-1)bso_10] ≥ 0)
(9) (i49[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD635(>(i49[0], 0), i49[0], i36[0])), ≥)∧[bni_9 + (-1)Bound*bni_9] + [bni_9]i49[0] ≥ 0∧[(-1)bso_10] ≥ 0)
(10) (i49[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD635(>(i49[0], 0), i49[0], i36[0])), ≥)∧[bni_9 + (-1)Bound*bni_9] + [bni_9]i49[0] ≥ 0∧[(-1)bso_10] ≥ 0)
(11) (i49[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD635(>(i49[0], 0), i49[0], i36[0])), ≥)∧[(2)bni_9 + (-1)Bound*bni_9] + [bni_9]i49[0] ≥ 0∧[(-1)bso_10] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_LOAD635(x1, x2, x3)) = [1] + x2
POL(LOAD635(x1, x2)) = [1] + x1
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
COND_LOAD635(TRUE, i49[1], i36[1]) → LOAD635(+(i49[1], -1), i36[1])
LOAD635(i49[0], i36[0]) → COND_LOAD635(>(i49[0], 0), i49[0], i36[0])
LOAD635(i49[0], i36[0]) → COND_LOAD635(>(i49[0], 0), i49[0], i36[0])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer