0 JBC
↳1 JBC2FIG (⇐)
↳2 FIGraph
↳3 FIGtoITRSProof (⇐)
↳4 ITRS
↳5 ITRStoIDPProof (⇔)
↳6 IDP
↳7 UsableRulesProof (⇔)
↳8 IDP
↳9 IDPNonInfProof (⇐)
↳10 AND
↳11 IDP
↳12 IDependencyGraphProof (⇔)
↳13 TRUE
↳14 IDP
↳15 IDependencyGraphProof (⇔)
↳16 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaB11 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
while (x + y > 0) {
if (x > y) {
x--;
} else if (x == y) {
x--;
} else {
y--;
}
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i14[0] < i23[0] && i14[0] + i23[0] > 0 →* TRUE)∧(i23[0] →* i23[1])∧(i14[0] →* i14[1]))
(1) -> (0), if ((i14[1] →* i14[0])∧(i23[1] + -1 →* i23[0]))
(1) -> (2), if ((i14[1] →* i23[2])∧(i23[1] + -1 →* i23[2]))
(1) -> (4), if ((i14[1] →* i14[4])∧(i23[1] + -1 →* i23[4]))
(2) -> (3), if ((i23[2] →* i23[3])∧(i23[2] + i23[2] > 0 →* TRUE))
(3) -> (0), if ((i23[3] + -1 →* i14[0])∧(i23[3] →* i23[0]))
(3) -> (2), if ((i23[3] →* i23[2])∧(i23[3] + -1 →* i23[2]))
(3) -> (4), if ((i23[3] →* i23[4])∧(i23[3] + -1 →* i14[4]))
(4) -> (5), if ((i14[4] > i23[4] && i14[4] + i23[4] > 0 →* TRUE)∧(i23[4] →* i23[5])∧(i14[4] →* i14[5]))
(5) -> (0), if ((i23[5] →* i23[0])∧(i14[5] + -1 →* i14[0]))
(5) -> (2), if ((i14[5] + -1 →* i23[2])∧(i23[5] →* i23[2]))
(5) -> (4), if ((i23[5] →* i23[4])∧(i14[5] + -1 →* i14[4]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i14[0] < i23[0] && i14[0] + i23[0] > 0 →* TRUE)∧(i23[0] →* i23[1])∧(i14[0] →* i14[1]))
(1) -> (0), if ((i14[1] →* i14[0])∧(i23[1] + -1 →* i23[0]))
(1) -> (2), if ((i14[1] →* i23[2])∧(i23[1] + -1 →* i23[2]))
(1) -> (4), if ((i14[1] →* i14[4])∧(i23[1] + -1 →* i23[4]))
(2) -> (3), if ((i23[2] →* i23[3])∧(i23[2] + i23[2] > 0 →* TRUE))
(3) -> (0), if ((i23[3] + -1 →* i14[0])∧(i23[3] →* i23[0]))
(3) -> (2), if ((i23[3] →* i23[2])∧(i23[3] + -1 →* i23[2]))
(3) -> (4), if ((i23[3] →* i23[4])∧(i23[3] + -1 →* i14[4]))
(4) -> (5), if ((i14[4] > i23[4] && i14[4] + i23[4] > 0 →* TRUE)∧(i23[4] →* i23[5])∧(i14[4] →* i14[5]))
(5) -> (0), if ((i23[5] →* i23[0])∧(i14[5] + -1 →* i14[0]))
(5) -> (2), if ((i14[5] + -1 →* i23[2])∧(i23[5] →* i23[2]))
(5) -> (4), if ((i23[5] →* i23[4])∧(i14[5] + -1 →* i14[4]))
(1) (&&(<(i14[0], i23[0]), >(+(i14[0], i23[0]), 0))=TRUE∧i23[0]=i23[1]∧i14[0]=i14[1] ⇒ LOAD576(i14[0], i23[0])≥NonInfC∧LOAD576(i14[0], i23[0])≥COND_LOAD576(&&(<(i14[0], i23[0]), >(+(i14[0], i23[0]), 0)), i14[0], i23[0])∧(UIncreasing(COND_LOAD576(&&(<(i14[0], i23[0]), >(+(i14[0], i23[0]), 0)), i14[0], i23[0])), ≥))
(2) (<(i14[0], i23[0])=TRUE∧>(+(i14[0], i23[0]), 0)=TRUE ⇒ LOAD576(i14[0], i23[0])≥NonInfC∧LOAD576(i14[0], i23[0])≥COND_LOAD576(&&(<(i14[0], i23[0]), >(+(i14[0], i23[0]), 0)), i14[0], i23[0])∧(UIncreasing(COND_LOAD576(&&(<(i14[0], i23[0]), >(+(i14[0], i23[0]), 0)), i14[0], i23[0])), ≥))
(3) (i23[0] + [-1] + [-1]i14[0] ≥ 0∧i14[0] + [-1] + i23[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD576(&&(<(i14[0], i23[0]), >(+(i14[0], i23[0]), 0)), i14[0], i23[0])), ≥)∧[bni_11 + (-1)Bound*bni_11] + [bni_11]i14[0] + [bni_11]i23[0] ≥ 0∧[1 + (-1)bso_12] ≥ 0)
(4) (i23[0] + [-1] + [-1]i14[0] ≥ 0∧i14[0] + [-1] + i23[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD576(&&(<(i14[0], i23[0]), >(+(i14[0], i23[0]), 0)), i14[0], i23[0])), ≥)∧[bni_11 + (-1)Bound*bni_11] + [bni_11]i14[0] + [bni_11]i23[0] ≥ 0∧[1 + (-1)bso_12] ≥ 0)
(5) (i23[0] + [-1] + [-1]i14[0] ≥ 0∧i14[0] + [-1] + i23[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD576(&&(<(i14[0], i23[0]), >(+(i14[0], i23[0]), 0)), i14[0], i23[0])), ≥)∧[bni_11 + (-1)Bound*bni_11] + [bni_11]i14[0] + [bni_11]i23[0] ≥ 0∧[1 + (-1)bso_12] ≥ 0)
(6) (i23[0] ≥ 0∧[2]i14[0] + i23[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD576(&&(<(i14[0], i23[0]), >(+(i14[0], i23[0]), 0)), i14[0], i23[0])), ≥)∧[(2)bni_11 + (-1)Bound*bni_11] + [(2)bni_11]i14[0] + [bni_11]i23[0] ≥ 0∧[1 + (-1)bso_12] ≥ 0)
(7) (i23[0] ≥ 0∧[2]i14[0] + i23[0] ≥ 0∧i14[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD576(&&(<(i14[0], i23[0]), >(+(i14[0], i23[0]), 0)), i14[0], i23[0])), ≥)∧[(2)bni_11 + (-1)Bound*bni_11] + [(2)bni_11]i14[0] + [bni_11]i23[0] ≥ 0∧[1 + (-1)bso_12] ≥ 0)
(8) (i23[0] ≥ 0∧[-2]i14[0] + i23[0] ≥ 0∧i14[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD576(&&(<(i14[0], i23[0]), >(+(i14[0], i23[0]), 0)), i14[0], i23[0])), ≥)∧[(2)bni_11 + (-1)Bound*bni_11] + [(-2)bni_11]i14[0] + [bni_11]i23[0] ≥ 0∧[1 + (-1)bso_12] ≥ 0)
(9) ([2]i14[0] + i23[0] ≥ 0∧i23[0] ≥ 0∧i14[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD576(&&(<(i14[0], i23[0]), >(+(i14[0], i23[0]), 0)), i14[0], i23[0])), ≥)∧[(2)bni_11 + (-1)Bound*bni_11] + [bni_11]i23[0] ≥ 0∧[1 + (-1)bso_12] ≥ 0)
(10) (COND_LOAD576(TRUE, i14[1], i23[1])≥NonInfC∧COND_LOAD576(TRUE, i14[1], i23[1])≥LOAD576(i14[1], +(i23[1], -1))∧(UIncreasing(LOAD576(i14[1], +(i23[1], -1))), ≥))
(11) ((UIncreasing(LOAD576(i14[1], +(i23[1], -1))), ≥)∧[(-1)bso_14] ≥ 0)
(12) ((UIncreasing(LOAD576(i14[1], +(i23[1], -1))), ≥)∧[(-1)bso_14] ≥ 0)
(13) ((UIncreasing(LOAD576(i14[1], +(i23[1], -1))), ≥)∧[(-1)bso_14] ≥ 0)
(14) ((UIncreasing(LOAD576(i14[1], +(i23[1], -1))), ≥)∧0 = 0∧0 = 0∧[(-1)bso_14] ≥ 0)
(15) (i23[2]=i23[3]∧>(+(i23[2], i23[2]), 0)=TRUE ⇒ LOAD576(i23[2], i23[2])≥NonInfC∧LOAD576(i23[2], i23[2])≥COND_LOAD5761(>(+(i23[2], i23[2]), 0), i23[2], i23[2])∧(UIncreasing(COND_LOAD5761(>(+(i23[2], i23[2]), 0), i23[2], i23[2])), ≥))
(16) (>(+(i23[2], i23[2]), 0)=TRUE ⇒ LOAD576(i23[2], i23[2])≥NonInfC∧LOAD576(i23[2], i23[2])≥COND_LOAD5761(>(+(i23[2], i23[2]), 0), i23[2], i23[2])∧(UIncreasing(COND_LOAD5761(>(+(i23[2], i23[2]), 0), i23[2], i23[2])), ≥))
(17) ([2]i23[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD5761(>(+(i23[2], i23[2]), 0), i23[2], i23[2])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [(2)bni_15]i23[2] ≥ 0∧[1 + (-1)bso_16] ≥ 0)
(18) ([2]i23[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD5761(>(+(i23[2], i23[2]), 0), i23[2], i23[2])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [(2)bni_15]i23[2] ≥ 0∧[1 + (-1)bso_16] ≥ 0)
(19) ([2]i23[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD5761(>(+(i23[2], i23[2]), 0), i23[2], i23[2])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [(2)bni_15]i23[2] ≥ 0∧[1 + (-1)bso_16] ≥ 0)
(20) (COND_LOAD5761(TRUE, i23[3], i23[3])≥NonInfC∧COND_LOAD5761(TRUE, i23[3], i23[3])≥LOAD576(+(i23[3], -1), i23[3])∧(UIncreasing(LOAD576(+(i23[3], -1), i23[3])), ≥))
(21) ((UIncreasing(LOAD576(+(i23[3], -1), i23[3])), ≥)∧[(-1)bso_18] ≥ 0)
(22) ((UIncreasing(LOAD576(+(i23[3], -1), i23[3])), ≥)∧[(-1)bso_18] ≥ 0)
(23) ((UIncreasing(LOAD576(+(i23[3], -1), i23[3])), ≥)∧[(-1)bso_18] ≥ 0)
(24) ((UIncreasing(LOAD576(+(i23[3], -1), i23[3])), ≥)∧0 = 0∧[(-1)bso_18] ≥ 0)
(25) (&&(>(i14[4], i23[4]), >(+(i14[4], i23[4]), 0))=TRUE∧i23[4]=i23[5]∧i14[4]=i14[5] ⇒ LOAD576(i14[4], i23[4])≥NonInfC∧LOAD576(i14[4], i23[4])≥COND_LOAD5762(&&(>(i14[4], i23[4]), >(+(i14[4], i23[4]), 0)), i14[4], i23[4])∧(UIncreasing(COND_LOAD5762(&&(>(i14[4], i23[4]), >(+(i14[4], i23[4]), 0)), i14[4], i23[4])), ≥))
(26) (>(i14[4], i23[4])=TRUE∧>(+(i14[4], i23[4]), 0)=TRUE ⇒ LOAD576(i14[4], i23[4])≥NonInfC∧LOAD576(i14[4], i23[4])≥COND_LOAD5762(&&(>(i14[4], i23[4]), >(+(i14[4], i23[4]), 0)), i14[4], i23[4])∧(UIncreasing(COND_LOAD5762(&&(>(i14[4], i23[4]), >(+(i14[4], i23[4]), 0)), i14[4], i23[4])), ≥))
(27) (i14[4] + [-1] + [-1]i23[4] ≥ 0∧i14[4] + [-1] + i23[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD5762(&&(>(i14[4], i23[4]), >(+(i14[4], i23[4]), 0)), i14[4], i23[4])), ≥)∧[bni_19 + (-1)Bound*bni_19] + [bni_19]i14[4] + [bni_19]i23[4] ≥ 0∧[(-1)bso_20] ≥ 0)
(28) (i14[4] + [-1] + [-1]i23[4] ≥ 0∧i14[4] + [-1] + i23[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD5762(&&(>(i14[4], i23[4]), >(+(i14[4], i23[4]), 0)), i14[4], i23[4])), ≥)∧[bni_19 + (-1)Bound*bni_19] + [bni_19]i14[4] + [bni_19]i23[4] ≥ 0∧[(-1)bso_20] ≥ 0)
(29) (i14[4] + [-1] + [-1]i23[4] ≥ 0∧i14[4] + [-1] + i23[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD5762(&&(>(i14[4], i23[4]), >(+(i14[4], i23[4]), 0)), i14[4], i23[4])), ≥)∧[bni_19 + (-1)Bound*bni_19] + [bni_19]i14[4] + [bni_19]i23[4] ≥ 0∧[(-1)bso_20] ≥ 0)
(30) (i14[4] ≥ 0∧[2]i23[4] + i14[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD5762(&&(>(i14[4], i23[4]), >(+(i14[4], i23[4]), 0)), i14[4], i23[4])), ≥)∧[(2)bni_19 + (-1)Bound*bni_19] + [(2)bni_19]i23[4] + [bni_19]i14[4] ≥ 0∧[(-1)bso_20] ≥ 0)
(31) (i14[4] ≥ 0∧[2]i23[4] + i14[4] ≥ 0∧i23[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD5762(&&(>(i14[4], i23[4]), >(+(i14[4], i23[4]), 0)), i14[4], i23[4])), ≥)∧[(2)bni_19 + (-1)Bound*bni_19] + [(2)bni_19]i23[4] + [bni_19]i14[4] ≥ 0∧[(-1)bso_20] ≥ 0)
(32) (i14[4] ≥ 0∧[-2]i23[4] + i14[4] ≥ 0∧i23[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD5762(&&(>(i14[4], i23[4]), >(+(i14[4], i23[4]), 0)), i14[4], i23[4])), ≥)∧[(2)bni_19 + (-1)Bound*bni_19] + [(-2)bni_19]i23[4] + [bni_19]i14[4] ≥ 0∧[(-1)bso_20] ≥ 0)
(33) ([2]i23[4] + i14[4] ≥ 0∧i14[4] ≥ 0∧i23[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD5762(&&(>(i14[4], i23[4]), >(+(i14[4], i23[4]), 0)), i14[4], i23[4])), ≥)∧[(2)bni_19 + (-1)Bound*bni_19] + [bni_19]i14[4] ≥ 0∧[(-1)bso_20] ≥ 0)
(34) (COND_LOAD5762(TRUE, i14[5], i23[5])≥NonInfC∧COND_LOAD5762(TRUE, i14[5], i23[5])≥LOAD576(+(i14[5], -1), i23[5])∧(UIncreasing(LOAD576(+(i14[5], -1), i23[5])), ≥))
(35) ((UIncreasing(LOAD576(+(i14[5], -1), i23[5])), ≥)∧[1 + (-1)bso_22] ≥ 0)
(36) ((UIncreasing(LOAD576(+(i14[5], -1), i23[5])), ≥)∧[1 + (-1)bso_22] ≥ 0)
(37) ((UIncreasing(LOAD576(+(i14[5], -1), i23[5])), ≥)∧[1 + (-1)bso_22] ≥ 0)
(38) ((UIncreasing(LOAD576(+(i14[5], -1), i23[5])), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_22] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(LOAD576(x1, x2)) = [1] + x1 + x2
POL(COND_LOAD576(x1, x2, x3)) = x2 + x3
POL(&&(x1, x2)) = [-1]
POL(<(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(0) = 0
POL(-1) = [-1]
POL(COND_LOAD5761(x1, x2, x3)) = x3 + x2
POL(COND_LOAD5762(x1, x2, x3)) = [1] + x3 + x2
LOAD576(i14[0], i23[0]) → COND_LOAD576(&&(<(i14[0], i23[0]), >(+(i14[0], i23[0]), 0)), i14[0], i23[0])
LOAD576(i23[2], i23[2]) → COND_LOAD5761(>(+(i23[2], i23[2]), 0), i23[2], i23[2])
COND_LOAD5762(TRUE, i14[5], i23[5]) → LOAD576(+(i14[5], -1), i23[5])
LOAD576(i14[0], i23[0]) → COND_LOAD576(&&(<(i14[0], i23[0]), >(+(i14[0], i23[0]), 0)), i14[0], i23[0])
LOAD576(i23[2], i23[2]) → COND_LOAD5761(>(+(i23[2], i23[2]), 0), i23[2], i23[2])
LOAD576(i14[4], i23[4]) → COND_LOAD5762(&&(>(i14[4], i23[4]), >(+(i14[4], i23[4]), 0)), i14[4], i23[4])
COND_LOAD576(TRUE, i14[1], i23[1]) → LOAD576(i14[1], +(i23[1], -1))
COND_LOAD5761(TRUE, i23[3], i23[3]) → LOAD576(+(i23[3], -1), i23[3])
LOAD576(i14[4], i23[4]) → COND_LOAD5762(&&(>(i14[4], i23[4]), >(+(i14[4], i23[4]), 0)), i14[4], i23[4])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(1) -> (4), if ((i14[1] →* i14[4])∧(i23[1] + -1 →* i23[4]))
(3) -> (4), if ((i23[3] →* i23[4])∧(i23[3] + -1 →* i14[4]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer