(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: PastaB11
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/

public class PastaB11 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();

while (x + y > 0) {
if (x > y) {
x--;
} else if (x == y) {
x--;
} else {
y--;
}
}
}
}


public class Random {
static String[] args;
static int index = 0;

public static int random() {
String string = args[index];
index++;
return string.length();
}
}


(1) JBC2FIG (SOUND transformation)

Constructed FIGraph.

(2) Obligation:

FIGraph based on JBC Program:
Graph of 201 nodes with 1 SCC.

(3) FIGtoITRSProof (SOUND transformation)

Transformed FIGraph to ITRS rules

(4) Obligation:

ITRS problem:

The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean

The TRS R consists of the following rules:
Load576(i14, i23) → Cond_Load576(i14 < i23 && i14 + i23 > 0, i14, i23)
Cond_Load576(TRUE, i14, i23) → Load576(i14, i23 + -1)
Load576(i23, i23) → Cond_Load5761(i23 + i23 > 0, i23, i23)
Cond_Load5761(TRUE, i23, i23) → Load576(i23 + -1, i23)
Load576(i14, i23) → Cond_Load5762(i14 > i23 && i14 + i23 > 0, i14, i23)
Cond_Load5762(TRUE, i14, i23) → Load576(i14 + -1, i23)
The set Q consists of the following terms:
Load576(x0, x1)
Cond_Load576(TRUE, x0, x1)
Cond_Load5761(TRUE, x0, x0)
Cond_Load5762(TRUE, x0, x1)

(5) ITRStoIDPProof (EQUIVALENT transformation)

Added dependency pairs

(6) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


The ITRS R consists of the following rules:
Load576(i14, i23) → Cond_Load576(i14 < i23 && i14 + i23 > 0, i14, i23)
Cond_Load576(TRUE, i14, i23) → Load576(i14, i23 + -1)
Load576(i23, i23) → Cond_Load5761(i23 + i23 > 0, i23, i23)
Cond_Load5761(TRUE, i23, i23) → Load576(i23 + -1, i23)
Load576(i14, i23) → Cond_Load5762(i14 > i23 && i14 + i23 > 0, i14, i23)
Cond_Load5762(TRUE, i14, i23) → Load576(i14 + -1, i23)

The integer pair graph contains the following rules and edges:
(0): LOAD576(i14[0], i23[0]) → COND_LOAD576(i14[0] < i23[0] && i14[0] + i23[0] > 0, i14[0], i23[0])
(1): COND_LOAD576(TRUE, i14[1], i23[1]) → LOAD576(i14[1], i23[1] + -1)
(2): LOAD576(i23[2], i23[2]) → COND_LOAD5761(i23[2] + i23[2] > 0, i23[2], i23[2])
(3): COND_LOAD5761(TRUE, i23[3], i23[3]) → LOAD576(i23[3] + -1, i23[3])
(4): LOAD576(i14[4], i23[4]) → COND_LOAD5762(i14[4] > i23[4] && i14[4] + i23[4] > 0, i14[4], i23[4])
(5): COND_LOAD5762(TRUE, i14[5], i23[5]) → LOAD576(i14[5] + -1, i23[5])

(0) -> (1), if ((i14[0] < i23[0] && i14[0] + i23[0] > 0* TRUE)∧(i23[0]* i23[1])∧(i14[0]* i14[1]))


(1) -> (0), if ((i14[1]* i14[0])∧(i23[1] + -1* i23[0]))


(1) -> (2), if ((i14[1]* i23[2])∧(i23[1] + -1* i23[2]))


(1) -> (4), if ((i14[1]* i14[4])∧(i23[1] + -1* i23[4]))


(2) -> (3), if ((i23[2]* i23[3])∧(i23[2] + i23[2] > 0* TRUE))


(3) -> (0), if ((i23[3] + -1* i14[0])∧(i23[3]* i23[0]))


(3) -> (2), if ((i23[3]* i23[2])∧(i23[3] + -1* i23[2]))


(3) -> (4), if ((i23[3]* i23[4])∧(i23[3] + -1* i14[4]))


(4) -> (5), if ((i14[4] > i23[4] && i14[4] + i23[4] > 0* TRUE)∧(i23[4]* i23[5])∧(i14[4]* i14[5]))


(5) -> (0), if ((i23[5]* i23[0])∧(i14[5] + -1* i14[0]))


(5) -> (2), if ((i14[5] + -1* i23[2])∧(i23[5]* i23[2]))


(5) -> (4), if ((i23[5]* i23[4])∧(i14[5] + -1* i14[4]))



The set Q consists of the following terms:
Load576(x0, x1)
Cond_Load576(TRUE, x0, x1)
Cond_Load5761(TRUE, x0, x0)
Cond_Load5762(TRUE, x0, x1)

(7) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(8) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): LOAD576(i14[0], i23[0]) → COND_LOAD576(i14[0] < i23[0] && i14[0] + i23[0] > 0, i14[0], i23[0])
(1): COND_LOAD576(TRUE, i14[1], i23[1]) → LOAD576(i14[1], i23[1] + -1)
(2): LOAD576(i23[2], i23[2]) → COND_LOAD5761(i23[2] + i23[2] > 0, i23[2], i23[2])
(3): COND_LOAD5761(TRUE, i23[3], i23[3]) → LOAD576(i23[3] + -1, i23[3])
(4): LOAD576(i14[4], i23[4]) → COND_LOAD5762(i14[4] > i23[4] && i14[4] + i23[4] > 0, i14[4], i23[4])
(5): COND_LOAD5762(TRUE, i14[5], i23[5]) → LOAD576(i14[5] + -1, i23[5])

(0) -> (1), if ((i14[0] < i23[0] && i14[0] + i23[0] > 0* TRUE)∧(i23[0]* i23[1])∧(i14[0]* i14[1]))


(1) -> (0), if ((i14[1]* i14[0])∧(i23[1] + -1* i23[0]))


(1) -> (2), if ((i14[1]* i23[2])∧(i23[1] + -1* i23[2]))


(1) -> (4), if ((i14[1]* i14[4])∧(i23[1] + -1* i23[4]))


(2) -> (3), if ((i23[2]* i23[3])∧(i23[2] + i23[2] > 0* TRUE))


(3) -> (0), if ((i23[3] + -1* i14[0])∧(i23[3]* i23[0]))


(3) -> (2), if ((i23[3]* i23[2])∧(i23[3] + -1* i23[2]))


(3) -> (4), if ((i23[3]* i23[4])∧(i23[3] + -1* i14[4]))


(4) -> (5), if ((i14[4] > i23[4] && i14[4] + i23[4] > 0* TRUE)∧(i23[4]* i23[5])∧(i14[4]* i14[5]))


(5) -> (0), if ((i23[5]* i23[0])∧(i14[5] + -1* i14[0]))


(5) -> (2), if ((i14[5] + -1* i23[2])∧(i23[5]* i23[2]))


(5) -> (4), if ((i23[5]* i23[4])∧(i14[5] + -1* i14[4]))



The set Q consists of the following terms:
Load576(x0, x1)
Cond_Load576(TRUE, x0, x1)
Cond_Load5761(TRUE, x0, x0)
Cond_Load5762(TRUE, x0, x1)

(9) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair LOAD576(i14, i23) → COND_LOAD576(&&(<(i14, i23), >(+(i14, i23), 0)), i14, i23) the following chains were created:
  • We consider the chain LOAD576(i14[0], i23[0]) → COND_LOAD576(&&(<(i14[0], i23[0]), >(+(i14[0], i23[0]), 0)), i14[0], i23[0]), COND_LOAD576(TRUE, i14[1], i23[1]) → LOAD576(i14[1], +(i23[1], -1)) which results in the following constraint:

    (1)    (&&(<(i14[0], i23[0]), >(+(i14[0], i23[0]), 0))=TRUEi23[0]=i23[1]i14[0]=i14[1]LOAD576(i14[0], i23[0])≥NonInfC∧LOAD576(i14[0], i23[0])≥COND_LOAD576(&&(<(i14[0], i23[0]), >(+(i14[0], i23[0]), 0)), i14[0], i23[0])∧(UIncreasing(COND_LOAD576(&&(<(i14[0], i23[0]), >(+(i14[0], i23[0]), 0)), i14[0], i23[0])), ≥))



    We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (<(i14[0], i23[0])=TRUE>(+(i14[0], i23[0]), 0)=TRUELOAD576(i14[0], i23[0])≥NonInfC∧LOAD576(i14[0], i23[0])≥COND_LOAD576(&&(<(i14[0], i23[0]), >(+(i14[0], i23[0]), 0)), i14[0], i23[0])∧(UIncreasing(COND_LOAD576(&&(<(i14[0], i23[0]), >(+(i14[0], i23[0]), 0)), i14[0], i23[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (i23[0] + [-1] + [-1]i14[0] ≥ 0∧i14[0] + [-1] + i23[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD576(&&(<(i14[0], i23[0]), >(+(i14[0], i23[0]), 0)), i14[0], i23[0])), ≥)∧[bni_11 + (-1)Bound*bni_11] + [bni_11]i14[0] + [bni_11]i23[0] ≥ 0∧[1 + (-1)bso_12] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (i23[0] + [-1] + [-1]i14[0] ≥ 0∧i14[0] + [-1] + i23[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD576(&&(<(i14[0], i23[0]), >(+(i14[0], i23[0]), 0)), i14[0], i23[0])), ≥)∧[bni_11 + (-1)Bound*bni_11] + [bni_11]i14[0] + [bni_11]i23[0] ≥ 0∧[1 + (-1)bso_12] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (i23[0] + [-1] + [-1]i14[0] ≥ 0∧i14[0] + [-1] + i23[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD576(&&(<(i14[0], i23[0]), >(+(i14[0], i23[0]), 0)), i14[0], i23[0])), ≥)∧[bni_11 + (-1)Bound*bni_11] + [bni_11]i14[0] + [bni_11]i23[0] ≥ 0∧[1 + (-1)bso_12] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (i23[0] ≥ 0∧[2]i14[0] + i23[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD576(&&(<(i14[0], i23[0]), >(+(i14[0], i23[0]), 0)), i14[0], i23[0])), ≥)∧[(2)bni_11 + (-1)Bound*bni_11] + [(2)bni_11]i14[0] + [bni_11]i23[0] ≥ 0∧[1 + (-1)bso_12] ≥ 0)



    We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (7)    (i23[0] ≥ 0∧[2]i14[0] + i23[0] ≥ 0∧i14[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD576(&&(<(i14[0], i23[0]), >(+(i14[0], i23[0]), 0)), i14[0], i23[0])), ≥)∧[(2)bni_11 + (-1)Bound*bni_11] + [(2)bni_11]i14[0] + [bni_11]i23[0] ≥ 0∧[1 + (-1)bso_12] ≥ 0)


    (8)    (i23[0] ≥ 0∧[-2]i14[0] + i23[0] ≥ 0∧i14[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD576(&&(<(i14[0], i23[0]), >(+(i14[0], i23[0]), 0)), i14[0], i23[0])), ≥)∧[(2)bni_11 + (-1)Bound*bni_11] + [(-2)bni_11]i14[0] + [bni_11]i23[0] ≥ 0∧[1 + (-1)bso_12] ≥ 0)



    We simplified constraint (8) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (9)    ([2]i14[0] + i23[0] ≥ 0∧i23[0] ≥ 0∧i14[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD576(&&(<(i14[0], i23[0]), >(+(i14[0], i23[0]), 0)), i14[0], i23[0])), ≥)∧[(2)bni_11 + (-1)Bound*bni_11] + [bni_11]i23[0] ≥ 0∧[1 + (-1)bso_12] ≥ 0)







For Pair COND_LOAD576(TRUE, i14, i23) → LOAD576(i14, +(i23, -1)) the following chains were created:
  • We consider the chain COND_LOAD576(TRUE, i14[1], i23[1]) → LOAD576(i14[1], +(i23[1], -1)) which results in the following constraint:

    (10)    (COND_LOAD576(TRUE, i14[1], i23[1])≥NonInfC∧COND_LOAD576(TRUE, i14[1], i23[1])≥LOAD576(i14[1], +(i23[1], -1))∧(UIncreasing(LOAD576(i14[1], +(i23[1], -1))), ≥))



    We simplified constraint (10) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (11)    ((UIncreasing(LOAD576(i14[1], +(i23[1], -1))), ≥)∧[(-1)bso_14] ≥ 0)



    We simplified constraint (11) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (12)    ((UIncreasing(LOAD576(i14[1], +(i23[1], -1))), ≥)∧[(-1)bso_14] ≥ 0)



    We simplified constraint (12) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (13)    ((UIncreasing(LOAD576(i14[1], +(i23[1], -1))), ≥)∧[(-1)bso_14] ≥ 0)



    We simplified constraint (13) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (14)    ((UIncreasing(LOAD576(i14[1], +(i23[1], -1))), ≥)∧0 = 0∧0 = 0∧[(-1)bso_14] ≥ 0)







For Pair LOAD576(i23, i23) → COND_LOAD5761(>(+(i23, i23), 0), i23, i23) the following chains were created:
  • We consider the chain LOAD576(i23[2], i23[2]) → COND_LOAD5761(>(+(i23[2], i23[2]), 0), i23[2], i23[2]), COND_LOAD5761(TRUE, i23[3], i23[3]) → LOAD576(+(i23[3], -1), i23[3]) which results in the following constraint:

    (15)    (i23[2]=i23[3]>(+(i23[2], i23[2]), 0)=TRUELOAD576(i23[2], i23[2])≥NonInfC∧LOAD576(i23[2], i23[2])≥COND_LOAD5761(>(+(i23[2], i23[2]), 0), i23[2], i23[2])∧(UIncreasing(COND_LOAD5761(>(+(i23[2], i23[2]), 0), i23[2], i23[2])), ≥))



    We simplified constraint (15) using rule (IV) which results in the following new constraint:

    (16)    (>(+(i23[2], i23[2]), 0)=TRUELOAD576(i23[2], i23[2])≥NonInfC∧LOAD576(i23[2], i23[2])≥COND_LOAD5761(>(+(i23[2], i23[2]), 0), i23[2], i23[2])∧(UIncreasing(COND_LOAD5761(>(+(i23[2], i23[2]), 0), i23[2], i23[2])), ≥))



    We simplified constraint (16) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (17)    ([2]i23[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD5761(>(+(i23[2], i23[2]), 0), i23[2], i23[2])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [(2)bni_15]i23[2] ≥ 0∧[1 + (-1)bso_16] ≥ 0)



    We simplified constraint (17) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (18)    ([2]i23[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD5761(>(+(i23[2], i23[2]), 0), i23[2], i23[2])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [(2)bni_15]i23[2] ≥ 0∧[1 + (-1)bso_16] ≥ 0)



    We simplified constraint (18) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (19)    ([2]i23[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD5761(>(+(i23[2], i23[2]), 0), i23[2], i23[2])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [(2)bni_15]i23[2] ≥ 0∧[1 + (-1)bso_16] ≥ 0)







For Pair COND_LOAD5761(TRUE, i23, i23) → LOAD576(+(i23, -1), i23) the following chains were created:
  • We consider the chain COND_LOAD5761(TRUE, i23[3], i23[3]) → LOAD576(+(i23[3], -1), i23[3]) which results in the following constraint:

    (20)    (COND_LOAD5761(TRUE, i23[3], i23[3])≥NonInfC∧COND_LOAD5761(TRUE, i23[3], i23[3])≥LOAD576(+(i23[3], -1), i23[3])∧(UIncreasing(LOAD576(+(i23[3], -1), i23[3])), ≥))



    We simplified constraint (20) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (21)    ((UIncreasing(LOAD576(+(i23[3], -1), i23[3])), ≥)∧[(-1)bso_18] ≥ 0)



    We simplified constraint (21) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (22)    ((UIncreasing(LOAD576(+(i23[3], -1), i23[3])), ≥)∧[(-1)bso_18] ≥ 0)



    We simplified constraint (22) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (23)    ((UIncreasing(LOAD576(+(i23[3], -1), i23[3])), ≥)∧[(-1)bso_18] ≥ 0)



    We simplified constraint (23) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (24)    ((UIncreasing(LOAD576(+(i23[3], -1), i23[3])), ≥)∧0 = 0∧[(-1)bso_18] ≥ 0)







For Pair LOAD576(i14, i23) → COND_LOAD5762(&&(>(i14, i23), >(+(i14, i23), 0)), i14, i23) the following chains were created:
  • We consider the chain LOAD576(i14[4], i23[4]) → COND_LOAD5762(&&(>(i14[4], i23[4]), >(+(i14[4], i23[4]), 0)), i14[4], i23[4]), COND_LOAD5762(TRUE, i14[5], i23[5]) → LOAD576(+(i14[5], -1), i23[5]) which results in the following constraint:

    (25)    (&&(>(i14[4], i23[4]), >(+(i14[4], i23[4]), 0))=TRUEi23[4]=i23[5]i14[4]=i14[5]LOAD576(i14[4], i23[4])≥NonInfC∧LOAD576(i14[4], i23[4])≥COND_LOAD5762(&&(>(i14[4], i23[4]), >(+(i14[4], i23[4]), 0)), i14[4], i23[4])∧(UIncreasing(COND_LOAD5762(&&(>(i14[4], i23[4]), >(+(i14[4], i23[4]), 0)), i14[4], i23[4])), ≥))



    We simplified constraint (25) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (26)    (>(i14[4], i23[4])=TRUE>(+(i14[4], i23[4]), 0)=TRUELOAD576(i14[4], i23[4])≥NonInfC∧LOAD576(i14[4], i23[4])≥COND_LOAD5762(&&(>(i14[4], i23[4]), >(+(i14[4], i23[4]), 0)), i14[4], i23[4])∧(UIncreasing(COND_LOAD5762(&&(>(i14[4], i23[4]), >(+(i14[4], i23[4]), 0)), i14[4], i23[4])), ≥))



    We simplified constraint (26) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (27)    (i14[4] + [-1] + [-1]i23[4] ≥ 0∧i14[4] + [-1] + i23[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD5762(&&(>(i14[4], i23[4]), >(+(i14[4], i23[4]), 0)), i14[4], i23[4])), ≥)∧[bni_19 + (-1)Bound*bni_19] + [bni_19]i14[4] + [bni_19]i23[4] ≥ 0∧[(-1)bso_20] ≥ 0)



    We simplified constraint (27) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (28)    (i14[4] + [-1] + [-1]i23[4] ≥ 0∧i14[4] + [-1] + i23[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD5762(&&(>(i14[4], i23[4]), >(+(i14[4], i23[4]), 0)), i14[4], i23[4])), ≥)∧[bni_19 + (-1)Bound*bni_19] + [bni_19]i14[4] + [bni_19]i23[4] ≥ 0∧[(-1)bso_20] ≥ 0)



    We simplified constraint (28) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (29)    (i14[4] + [-1] + [-1]i23[4] ≥ 0∧i14[4] + [-1] + i23[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD5762(&&(>(i14[4], i23[4]), >(+(i14[4], i23[4]), 0)), i14[4], i23[4])), ≥)∧[bni_19 + (-1)Bound*bni_19] + [bni_19]i14[4] + [bni_19]i23[4] ≥ 0∧[(-1)bso_20] ≥ 0)



    We simplified constraint (29) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (30)    (i14[4] ≥ 0∧[2]i23[4] + i14[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD5762(&&(>(i14[4], i23[4]), >(+(i14[4], i23[4]), 0)), i14[4], i23[4])), ≥)∧[(2)bni_19 + (-1)Bound*bni_19] + [(2)bni_19]i23[4] + [bni_19]i14[4] ≥ 0∧[(-1)bso_20] ≥ 0)



    We simplified constraint (30) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (31)    (i14[4] ≥ 0∧[2]i23[4] + i14[4] ≥ 0∧i23[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD5762(&&(>(i14[4], i23[4]), >(+(i14[4], i23[4]), 0)), i14[4], i23[4])), ≥)∧[(2)bni_19 + (-1)Bound*bni_19] + [(2)bni_19]i23[4] + [bni_19]i14[4] ≥ 0∧[(-1)bso_20] ≥ 0)


    (32)    (i14[4] ≥ 0∧[-2]i23[4] + i14[4] ≥ 0∧i23[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD5762(&&(>(i14[4], i23[4]), >(+(i14[4], i23[4]), 0)), i14[4], i23[4])), ≥)∧[(2)bni_19 + (-1)Bound*bni_19] + [(-2)bni_19]i23[4] + [bni_19]i14[4] ≥ 0∧[(-1)bso_20] ≥ 0)



    We simplified constraint (32) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (33)    ([2]i23[4] + i14[4] ≥ 0∧i14[4] ≥ 0∧i23[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD5762(&&(>(i14[4], i23[4]), >(+(i14[4], i23[4]), 0)), i14[4], i23[4])), ≥)∧[(2)bni_19 + (-1)Bound*bni_19] + [bni_19]i14[4] ≥ 0∧[(-1)bso_20] ≥ 0)







For Pair COND_LOAD5762(TRUE, i14, i23) → LOAD576(+(i14, -1), i23) the following chains were created:
  • We consider the chain COND_LOAD5762(TRUE, i14[5], i23[5]) → LOAD576(+(i14[5], -1), i23[5]) which results in the following constraint:

    (34)    (COND_LOAD5762(TRUE, i14[5], i23[5])≥NonInfC∧COND_LOAD5762(TRUE, i14[5], i23[5])≥LOAD576(+(i14[5], -1), i23[5])∧(UIncreasing(LOAD576(+(i14[5], -1), i23[5])), ≥))



    We simplified constraint (34) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (35)    ((UIncreasing(LOAD576(+(i14[5], -1), i23[5])), ≥)∧[1 + (-1)bso_22] ≥ 0)



    We simplified constraint (35) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (36)    ((UIncreasing(LOAD576(+(i14[5], -1), i23[5])), ≥)∧[1 + (-1)bso_22] ≥ 0)



    We simplified constraint (36) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (37)    ((UIncreasing(LOAD576(+(i14[5], -1), i23[5])), ≥)∧[1 + (-1)bso_22] ≥ 0)



    We simplified constraint (37) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (38)    ((UIncreasing(LOAD576(+(i14[5], -1), i23[5])), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_22] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • LOAD576(i14, i23) → COND_LOAD576(&&(<(i14, i23), >(+(i14, i23), 0)), i14, i23)
    • (i23[0] ≥ 0∧[2]i14[0] + i23[0] ≥ 0∧i14[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD576(&&(<(i14[0], i23[0]), >(+(i14[0], i23[0]), 0)), i14[0], i23[0])), ≥)∧[(2)bni_11 + (-1)Bound*bni_11] + [(2)bni_11]i14[0] + [bni_11]i23[0] ≥ 0∧[1 + (-1)bso_12] ≥ 0)
    • ([2]i14[0] + i23[0] ≥ 0∧i23[0] ≥ 0∧i14[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD576(&&(<(i14[0], i23[0]), >(+(i14[0], i23[0]), 0)), i14[0], i23[0])), ≥)∧[(2)bni_11 + (-1)Bound*bni_11] + [bni_11]i23[0] ≥ 0∧[1 + (-1)bso_12] ≥ 0)

  • COND_LOAD576(TRUE, i14, i23) → LOAD576(i14, +(i23, -1))
    • ((UIncreasing(LOAD576(i14[1], +(i23[1], -1))), ≥)∧0 = 0∧0 = 0∧[(-1)bso_14] ≥ 0)

  • LOAD576(i23, i23) → COND_LOAD5761(>(+(i23, i23), 0), i23, i23)
    • ([2]i23[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD5761(>(+(i23[2], i23[2]), 0), i23[2], i23[2])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [(2)bni_15]i23[2] ≥ 0∧[1 + (-1)bso_16] ≥ 0)

  • COND_LOAD5761(TRUE, i23, i23) → LOAD576(+(i23, -1), i23)
    • ((UIncreasing(LOAD576(+(i23[3], -1), i23[3])), ≥)∧0 = 0∧[(-1)bso_18] ≥ 0)

  • LOAD576(i14, i23) → COND_LOAD5762(&&(>(i14, i23), >(+(i14, i23), 0)), i14, i23)
    • (i14[4] ≥ 0∧[2]i23[4] + i14[4] ≥ 0∧i23[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD5762(&&(>(i14[4], i23[4]), >(+(i14[4], i23[4]), 0)), i14[4], i23[4])), ≥)∧[(2)bni_19 + (-1)Bound*bni_19] + [(2)bni_19]i23[4] + [bni_19]i14[4] ≥ 0∧[(-1)bso_20] ≥ 0)
    • ([2]i23[4] + i14[4] ≥ 0∧i14[4] ≥ 0∧i23[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD5762(&&(>(i14[4], i23[4]), >(+(i14[4], i23[4]), 0)), i14[4], i23[4])), ≥)∧[(2)bni_19 + (-1)Bound*bni_19] + [bni_19]i14[4] ≥ 0∧[(-1)bso_20] ≥ 0)

  • COND_LOAD5762(TRUE, i14, i23) → LOAD576(+(i14, -1), i23)
    • ((UIncreasing(LOAD576(+(i14[5], -1), i23[5])), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_22] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(LOAD576(x1, x2)) = [1] + x1 + x2   
POL(COND_LOAD576(x1, x2, x3)) = x2 + x3   
POL(&&(x1, x2)) = [-1]   
POL(<(x1, x2)) = [-1]   
POL(>(x1, x2)) = [-1]   
POL(+(x1, x2)) = x1 + x2   
POL(0) = 0   
POL(-1) = [-1]   
POL(COND_LOAD5761(x1, x2, x3)) = x3 + x2   
POL(COND_LOAD5762(x1, x2, x3)) = [1] + x3 + x2   

The following pairs are in P>:

LOAD576(i14[0], i23[0]) → COND_LOAD576(&&(<(i14[0], i23[0]), >(+(i14[0], i23[0]), 0)), i14[0], i23[0])
LOAD576(i23[2], i23[2]) → COND_LOAD5761(>(+(i23[2], i23[2]), 0), i23[2], i23[2])
COND_LOAD5762(TRUE, i14[5], i23[5]) → LOAD576(+(i14[5], -1), i23[5])

The following pairs are in Pbound:

LOAD576(i14[0], i23[0]) → COND_LOAD576(&&(<(i14[0], i23[0]), >(+(i14[0], i23[0]), 0)), i14[0], i23[0])
LOAD576(i23[2], i23[2]) → COND_LOAD5761(>(+(i23[2], i23[2]), 0), i23[2], i23[2])
LOAD576(i14[4], i23[4]) → COND_LOAD5762(&&(>(i14[4], i23[4]), >(+(i14[4], i23[4]), 0)), i14[4], i23[4])

The following pairs are in P:

COND_LOAD576(TRUE, i14[1], i23[1]) → LOAD576(i14[1], +(i23[1], -1))
COND_LOAD5761(TRUE, i23[3], i23[3]) → LOAD576(+(i23[3], -1), i23[3])
LOAD576(i14[4], i23[4]) → COND_LOAD5762(&&(>(i14[4], i23[4]), >(+(i14[4], i23[4]), 0)), i14[4], i23[4])

There are no usable rules.

(10) Complex Obligation (AND)

(11) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_LOAD576(TRUE, i14[1], i23[1]) → LOAD576(i14[1], i23[1] + -1)
(3): COND_LOAD5761(TRUE, i23[3], i23[3]) → LOAD576(i23[3] + -1, i23[3])
(4): LOAD576(i14[4], i23[4]) → COND_LOAD5762(i14[4] > i23[4] && i14[4] + i23[4] > 0, i14[4], i23[4])

(1) -> (4), if ((i14[1]* i14[4])∧(i23[1] + -1* i23[4]))


(3) -> (4), if ((i23[3]* i23[4])∧(i23[3] + -1* i14[4]))



The set Q consists of the following terms:
Load576(x0, x1)
Cond_Load576(TRUE, x0, x1)
Cond_Load5761(TRUE, x0, x0)
Cond_Load5762(TRUE, x0, x1)

(12) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 3 less nodes.

(13) TRUE

(14) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_LOAD576(TRUE, i14[1], i23[1]) → LOAD576(i14[1], i23[1] + -1)
(3): COND_LOAD5761(TRUE, i23[3], i23[3]) → LOAD576(i23[3] + -1, i23[3])
(5): COND_LOAD5762(TRUE, i14[5], i23[5]) → LOAD576(i14[5] + -1, i23[5])


The set Q consists of the following terms:
Load576(x0, x1)
Cond_Load576(TRUE, x0, x1)
Cond_Load5761(TRUE, x0, x0)
Cond_Load5762(TRUE, x0, x1)

(15) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 3 less nodes.

(16) TRUE