(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: PastaB10
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/

public class PastaB10 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();

while (x + y > 0) {
if (x > 0) {
x--;
} else if (y > 0) {
y--;
} else {
continue;
}
}
}
}


public class Random {
static String[] args;
static int index = 0;

public static int random() {
String string = args[index];
index++;
return string.length();
}
}


(1) JBC2FIG (SOUND transformation)

Constructed FIGraph.

(2) Obligation:

FIGraph based on JBC Program:
Graph of 197 nodes with 1 SCC.

(3) FIGtoITRSProof (SOUND transformation)

Transformed FIGraph to ITRS rules

(4) Obligation:

ITRS problem:

The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean

The TRS R consists of the following rules:
Load974(i153, i120) → Cond_Load974(i153 > 0 && i153 + i120 > 0, i153, i120)
Cond_Load974(TRUE, i153, i120) → Load974(i153 + -1, i120)
Load974(i154, i161) → Cond_Load9741(i161 > 0 && i154 <= 0 && i154 + i161 > 0, i154, i161)
Cond_Load9741(TRUE, i154, i161) → Load974(i154, i161 + -1)
Load974(i154, i162) → Cond_Load9742(i162 <= 0 && i154 <= 0 && i154 + i162 > 0, i154, i162)
Cond_Load9742(TRUE, i154, i162) → Load974(i154, i162)
The set Q consists of the following terms:
Load974(x0, x1)
Cond_Load974(TRUE, x0, x1)
Cond_Load9741(TRUE, x0, x1)
Cond_Load9742(TRUE, x0, x1)

(5) ITRStoIDPProof (EQUIVALENT transformation)

Added dependency pairs

(6) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


The ITRS R consists of the following rules:
Load974(i153, i120) → Cond_Load974(i153 > 0 && i153 + i120 > 0, i153, i120)
Cond_Load974(TRUE, i153, i120) → Load974(i153 + -1, i120)
Load974(i154, i161) → Cond_Load9741(i161 > 0 && i154 <= 0 && i154 + i161 > 0, i154, i161)
Cond_Load9741(TRUE, i154, i161) → Load974(i154, i161 + -1)
Load974(i154, i162) → Cond_Load9742(i162 <= 0 && i154 <= 0 && i154 + i162 > 0, i154, i162)
Cond_Load9742(TRUE, i154, i162) → Load974(i154, i162)

The integer pair graph contains the following rules and edges:
(0): LOAD974(i153[0], i120[0]) → COND_LOAD974(i153[0] > 0 && i153[0] + i120[0] > 0, i153[0], i120[0])
(1): COND_LOAD974(TRUE, i153[1], i120[1]) → LOAD974(i153[1] + -1, i120[1])
(2): LOAD974(i154[2], i161[2]) → COND_LOAD9741(i161[2] > 0 && i154[2] <= 0 && i154[2] + i161[2] > 0, i154[2], i161[2])
(3): COND_LOAD9741(TRUE, i154[3], i161[3]) → LOAD974(i154[3], i161[3] + -1)
(4): LOAD974(i154[4], i162[4]) → COND_LOAD9742(i162[4] <= 0 && i154[4] <= 0 && i154[4] + i162[4] > 0, i154[4], i162[4])
(5): COND_LOAD9742(TRUE, i154[5], i162[5]) → LOAD974(i154[5], i162[5])

(0) -> (1), if ((i120[0]* i120[1])∧(i153[0] > 0 && i153[0] + i120[0] > 0* TRUE)∧(i153[0]* i153[1]))


(1) -> (0), if ((i120[1]* i120[0])∧(i153[1] + -1* i153[0]))


(1) -> (2), if ((i120[1]* i161[2])∧(i153[1] + -1* i154[2]))


(1) -> (4), if ((i153[1] + -1* i154[4])∧(i120[1]* i162[4]))


(2) -> (3), if ((i161[2] > 0 && i154[2] <= 0 && i154[2] + i161[2] > 0* TRUE)∧(i161[2]* i161[3])∧(i154[2]* i154[3]))


(3) -> (0), if ((i154[3]* i153[0])∧(i161[3] + -1* i120[0]))


(3) -> (2), if ((i154[3]* i154[2])∧(i161[3] + -1* i161[2]))


(3) -> (4), if ((i161[3] + -1* i162[4])∧(i154[3]* i154[4]))


(4) -> (5), if ((i162[4] <= 0 && i154[4] <= 0 && i154[4] + i162[4] > 0* TRUE)∧(i154[4]* i154[5])∧(i162[4]* i162[5]))


(5) -> (0), if ((i154[5]* i153[0])∧(i162[5]* i120[0]))


(5) -> (2), if ((i162[5]* i161[2])∧(i154[5]* i154[2]))


(5) -> (4), if ((i162[5]* i162[4])∧(i154[5]* i154[4]))



The set Q consists of the following terms:
Load974(x0, x1)
Cond_Load974(TRUE, x0, x1)
Cond_Load9741(TRUE, x0, x1)
Cond_Load9742(TRUE, x0, x1)

(7) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(8) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): LOAD974(i153[0], i120[0]) → COND_LOAD974(i153[0] > 0 && i153[0] + i120[0] > 0, i153[0], i120[0])
(1): COND_LOAD974(TRUE, i153[1], i120[1]) → LOAD974(i153[1] + -1, i120[1])
(2): LOAD974(i154[2], i161[2]) → COND_LOAD9741(i161[2] > 0 && i154[2] <= 0 && i154[2] + i161[2] > 0, i154[2], i161[2])
(3): COND_LOAD9741(TRUE, i154[3], i161[3]) → LOAD974(i154[3], i161[3] + -1)
(4): LOAD974(i154[4], i162[4]) → COND_LOAD9742(i162[4] <= 0 && i154[4] <= 0 && i154[4] + i162[4] > 0, i154[4], i162[4])
(5): COND_LOAD9742(TRUE, i154[5], i162[5]) → LOAD974(i154[5], i162[5])

(0) -> (1), if ((i120[0]* i120[1])∧(i153[0] > 0 && i153[0] + i120[0] > 0* TRUE)∧(i153[0]* i153[1]))


(1) -> (0), if ((i120[1]* i120[0])∧(i153[1] + -1* i153[0]))


(1) -> (2), if ((i120[1]* i161[2])∧(i153[1] + -1* i154[2]))


(1) -> (4), if ((i153[1] + -1* i154[4])∧(i120[1]* i162[4]))


(2) -> (3), if ((i161[2] > 0 && i154[2] <= 0 && i154[2] + i161[2] > 0* TRUE)∧(i161[2]* i161[3])∧(i154[2]* i154[3]))


(3) -> (0), if ((i154[3]* i153[0])∧(i161[3] + -1* i120[0]))


(3) -> (2), if ((i154[3]* i154[2])∧(i161[3] + -1* i161[2]))


(3) -> (4), if ((i161[3] + -1* i162[4])∧(i154[3]* i154[4]))


(4) -> (5), if ((i162[4] <= 0 && i154[4] <= 0 && i154[4] + i162[4] > 0* TRUE)∧(i154[4]* i154[5])∧(i162[4]* i162[5]))


(5) -> (0), if ((i154[5]* i153[0])∧(i162[5]* i120[0]))


(5) -> (2), if ((i162[5]* i161[2])∧(i154[5]* i154[2]))


(5) -> (4), if ((i162[5]* i162[4])∧(i154[5]* i154[4]))



The set Q consists of the following terms:
Load974(x0, x1)
Cond_Load974(TRUE, x0, x1)
Cond_Load9741(TRUE, x0, x1)
Cond_Load9742(TRUE, x0, x1)

(9) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair LOAD974(i153, i120) → COND_LOAD974(&&(>(i153, 0), >(+(i153, i120), 0)), i153, i120) the following chains were created:
  • We consider the chain LOAD974(i153[0], i120[0]) → COND_LOAD974(&&(>(i153[0], 0), >(+(i153[0], i120[0]), 0)), i153[0], i120[0]), COND_LOAD974(TRUE, i153[1], i120[1]) → LOAD974(+(i153[1], -1), i120[1]) which results in the following constraint:

    (1)    (i120[0]=i120[1]&&(>(i153[0], 0), >(+(i153[0], i120[0]), 0))=TRUEi153[0]=i153[1]LOAD974(i153[0], i120[0])≥NonInfC∧LOAD974(i153[0], i120[0])≥COND_LOAD974(&&(>(i153[0], 0), >(+(i153[0], i120[0]), 0)), i153[0], i120[0])∧(UIncreasing(COND_LOAD974(&&(>(i153[0], 0), >(+(i153[0], i120[0]), 0)), i153[0], i120[0])), ≥))



    We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (>(i153[0], 0)=TRUE>(+(i153[0], i120[0]), 0)=TRUELOAD974(i153[0], i120[0])≥NonInfC∧LOAD974(i153[0], i120[0])≥COND_LOAD974(&&(>(i153[0], 0), >(+(i153[0], i120[0]), 0)), i153[0], i120[0])∧(UIncreasing(COND_LOAD974(&&(>(i153[0], 0), >(+(i153[0], i120[0]), 0)), i153[0], i120[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (i153[0] + [-1] ≥ 0∧i153[0] + [-1] + i120[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD974(&&(>(i153[0], 0), >(+(i153[0], i120[0]), 0)), i153[0], i120[0])), ≥)∧[(-1)bni_12 + (-1)Bound*bni_12] + [bni_12]i153[0] ≥ 0∧[(-1)bso_13] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (i153[0] + [-1] ≥ 0∧i153[0] + [-1] + i120[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD974(&&(>(i153[0], 0), >(+(i153[0], i120[0]), 0)), i153[0], i120[0])), ≥)∧[(-1)bni_12 + (-1)Bound*bni_12] + [bni_12]i153[0] ≥ 0∧[(-1)bso_13] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (i153[0] + [-1] ≥ 0∧i153[0] + [-1] + i120[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD974(&&(>(i153[0], 0), >(+(i153[0], i120[0]), 0)), i153[0], i120[0])), ≥)∧[(-1)bni_12 + (-1)Bound*bni_12] + [bni_12]i153[0] ≥ 0∧[(-1)bso_13] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (i153[0] ≥ 0∧i153[0] + i120[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD974(&&(>(i153[0], 0), >(+(i153[0], i120[0]), 0)), i153[0], i120[0])), ≥)∧[(-1)Bound*bni_12] + [bni_12]i153[0] ≥ 0∧[(-1)bso_13] ≥ 0)



    We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (7)    (i153[0] ≥ 0∧i153[0] + i120[0] ≥ 0∧i120[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD974(&&(>(i153[0], 0), >(+(i153[0], i120[0]), 0)), i153[0], i120[0])), ≥)∧[(-1)Bound*bni_12] + [bni_12]i153[0] ≥ 0∧[(-1)bso_13] ≥ 0)


    (8)    (i153[0] ≥ 0∧i153[0] + [-1]i120[0] ≥ 0∧i120[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD974(&&(>(i153[0], 0), >(+(i153[0], i120[0]), 0)), i153[0], i120[0])), ≥)∧[(-1)Bound*bni_12] + [bni_12]i153[0] ≥ 0∧[(-1)bso_13] ≥ 0)



    We simplified constraint (8) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (9)    (i120[0] + i153[0] ≥ 0∧i153[0] ≥ 0∧i120[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD974(&&(>(i153[0], 0), >(+(i153[0], i120[0]), 0)), i153[0], i120[0])), ≥)∧[(-1)Bound*bni_12] + [bni_12]i120[0] + [bni_12]i153[0] ≥ 0∧[(-1)bso_13] ≥ 0)







For Pair COND_LOAD974(TRUE, i153, i120) → LOAD974(+(i153, -1), i120) the following chains were created:
  • We consider the chain COND_LOAD974(TRUE, i153[1], i120[1]) → LOAD974(+(i153[1], -1), i120[1]) which results in the following constraint:

    (10)    (COND_LOAD974(TRUE, i153[1], i120[1])≥NonInfC∧COND_LOAD974(TRUE, i153[1], i120[1])≥LOAD974(+(i153[1], -1), i120[1])∧(UIncreasing(LOAD974(+(i153[1], -1), i120[1])), ≥))



    We simplified constraint (10) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (11)    ((UIncreasing(LOAD974(+(i153[1], -1), i120[1])), ≥)∧[1 + (-1)bso_15] ≥ 0)



    We simplified constraint (11) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (12)    ((UIncreasing(LOAD974(+(i153[1], -1), i120[1])), ≥)∧[1 + (-1)bso_15] ≥ 0)



    We simplified constraint (12) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (13)    ((UIncreasing(LOAD974(+(i153[1], -1), i120[1])), ≥)∧[1 + (-1)bso_15] ≥ 0)



    We simplified constraint (13) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (14)    ((UIncreasing(LOAD974(+(i153[1], -1), i120[1])), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_15] ≥ 0)







For Pair LOAD974(i154, i161) → COND_LOAD9741(&&(&&(>(i161, 0), <=(i154, 0)), >(+(i154, i161), 0)), i154, i161) the following chains were created:
  • We consider the chain LOAD974(i154[2], i161[2]) → COND_LOAD9741(&&(&&(>(i161[2], 0), <=(i154[2], 0)), >(+(i154[2], i161[2]), 0)), i154[2], i161[2]), COND_LOAD9741(TRUE, i154[3], i161[3]) → LOAD974(i154[3], +(i161[3], -1)) which results in the following constraint:

    (15)    (&&(&&(>(i161[2], 0), <=(i154[2], 0)), >(+(i154[2], i161[2]), 0))=TRUEi161[2]=i161[3]i154[2]=i154[3]LOAD974(i154[2], i161[2])≥NonInfC∧LOAD974(i154[2], i161[2])≥COND_LOAD9741(&&(&&(>(i161[2], 0), <=(i154[2], 0)), >(+(i154[2], i161[2]), 0)), i154[2], i161[2])∧(UIncreasing(COND_LOAD9741(&&(&&(>(i161[2], 0), <=(i154[2], 0)), >(+(i154[2], i161[2]), 0)), i154[2], i161[2])), ≥))



    We simplified constraint (15) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (16)    (>(+(i154[2], i161[2]), 0)=TRUE>(i161[2], 0)=TRUE<=(i154[2], 0)=TRUELOAD974(i154[2], i161[2])≥NonInfC∧LOAD974(i154[2], i161[2])≥COND_LOAD9741(&&(&&(>(i161[2], 0), <=(i154[2], 0)), >(+(i154[2], i161[2]), 0)), i154[2], i161[2])∧(UIncreasing(COND_LOAD9741(&&(&&(>(i161[2], 0), <=(i154[2], 0)), >(+(i154[2], i161[2]), 0)), i154[2], i161[2])), ≥))



    We simplified constraint (16) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (17)    (i154[2] + [-1] + i161[2] ≥ 0∧i161[2] + [-1] ≥ 0∧[-1]i154[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD9741(&&(&&(>(i161[2], 0), <=(i154[2], 0)), >(+(i154[2], i161[2]), 0)), i154[2], i161[2])), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [bni_16]i154[2] ≥ 0∧[(-1)bso_17] ≥ 0)



    We simplified constraint (17) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (18)    (i154[2] + [-1] + i161[2] ≥ 0∧i161[2] + [-1] ≥ 0∧[-1]i154[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD9741(&&(&&(>(i161[2], 0), <=(i154[2], 0)), >(+(i154[2], i161[2]), 0)), i154[2], i161[2])), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [bni_16]i154[2] ≥ 0∧[(-1)bso_17] ≥ 0)



    We simplified constraint (18) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (19)    (i154[2] + [-1] + i161[2] ≥ 0∧i161[2] + [-1] ≥ 0∧[-1]i154[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD9741(&&(&&(>(i161[2], 0), <=(i154[2], 0)), >(+(i154[2], i161[2]), 0)), i154[2], i161[2])), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [bni_16]i154[2] ≥ 0∧[(-1)bso_17] ≥ 0)



    We simplified constraint (19) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (20)    ([-1]i154[2] + [-1] + i161[2] ≥ 0∧i161[2] + [-1] ≥ 0∧i154[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD9741(&&(&&(>(i161[2], 0), <=(i154[2], 0)), >(+(i154[2], i161[2]), 0)), i154[2], i161[2])), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [(-1)bni_16]i154[2] ≥ 0∧[(-1)bso_17] ≥ 0)



    We simplified constraint (20) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (21)    (i161[2] ≥ 0∧i154[2] + i161[2] ≥ 0∧i154[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD9741(&&(&&(>(i161[2], 0), <=(i154[2], 0)), >(+(i154[2], i161[2]), 0)), i154[2], i161[2])), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [(-1)bni_16]i154[2] ≥ 0∧[(-1)bso_17] ≥ 0)







For Pair COND_LOAD9741(TRUE, i154, i161) → LOAD974(i154, +(i161, -1)) the following chains were created:
  • We consider the chain COND_LOAD9741(TRUE, i154[3], i161[3]) → LOAD974(i154[3], +(i161[3], -1)) which results in the following constraint:

    (22)    (COND_LOAD9741(TRUE, i154[3], i161[3])≥NonInfC∧COND_LOAD9741(TRUE, i154[3], i161[3])≥LOAD974(i154[3], +(i161[3], -1))∧(UIncreasing(LOAD974(i154[3], +(i161[3], -1))), ≥))



    We simplified constraint (22) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (23)    ((UIncreasing(LOAD974(i154[3], +(i161[3], -1))), ≥)∧[(-1)bso_19] ≥ 0)



    We simplified constraint (23) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (24)    ((UIncreasing(LOAD974(i154[3], +(i161[3], -1))), ≥)∧[(-1)bso_19] ≥ 0)



    We simplified constraint (24) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (25)    ((UIncreasing(LOAD974(i154[3], +(i161[3], -1))), ≥)∧[(-1)bso_19] ≥ 0)



    We simplified constraint (25) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (26)    ((UIncreasing(LOAD974(i154[3], +(i161[3], -1))), ≥)∧0 = 0∧0 = 0∧[(-1)bso_19] ≥ 0)







For Pair LOAD974(i154, i162) → COND_LOAD9742(&&(&&(<=(i162, 0), <=(i154, 0)), >(+(i154, i162), 0)), i154, i162) the following chains were created:
  • We consider the chain LOAD974(i154[4], i162[4]) → COND_LOAD9742(&&(&&(<=(i162[4], 0), <=(i154[4], 0)), >(+(i154[4], i162[4]), 0)), i154[4], i162[4]), COND_LOAD9742(TRUE, i154[5], i162[5]) → LOAD974(i154[5], i162[5]) which results in the following constraint:

    (27)    (&&(&&(<=(i162[4], 0), <=(i154[4], 0)), >(+(i154[4], i162[4]), 0))=TRUEi154[4]=i154[5]i162[4]=i162[5]LOAD974(i154[4], i162[4])≥NonInfC∧LOAD974(i154[4], i162[4])≥COND_LOAD9742(&&(&&(<=(i162[4], 0), <=(i154[4], 0)), >(+(i154[4], i162[4]), 0)), i154[4], i162[4])∧(UIncreasing(COND_LOAD9742(&&(&&(<=(i162[4], 0), <=(i154[4], 0)), >(+(i154[4], i162[4]), 0)), i154[4], i162[4])), ≥))



    We simplified constraint (27) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (28)    (>(+(i154[4], i162[4]), 0)=TRUE<=(i162[4], 0)=TRUE<=(i154[4], 0)=TRUELOAD974(i154[4], i162[4])≥NonInfC∧LOAD974(i154[4], i162[4])≥COND_LOAD9742(&&(&&(<=(i162[4], 0), <=(i154[4], 0)), >(+(i154[4], i162[4]), 0)), i154[4], i162[4])∧(UIncreasing(COND_LOAD9742(&&(&&(<=(i162[4], 0), <=(i154[4], 0)), >(+(i154[4], i162[4]), 0)), i154[4], i162[4])), ≥))



    We simplified constraint (28) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (29)    (i154[4] + [-1] + i162[4] ≥ 0∧[-1]i162[4] ≥ 0∧[-1]i154[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD9742(&&(&&(<=(i162[4], 0), <=(i154[4], 0)), >(+(i154[4], i162[4]), 0)), i154[4], i162[4])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]i154[4] ≥ 0∧[-2 + (-1)bso_21] ≥ 0)



    We simplified constraint (29) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (30)    (i154[4] + [-1] + i162[4] ≥ 0∧[-1]i162[4] ≥ 0∧[-1]i154[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD9742(&&(&&(<=(i162[4], 0), <=(i154[4], 0)), >(+(i154[4], i162[4]), 0)), i154[4], i162[4])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]i154[4] ≥ 0∧[-2 + (-1)bso_21] ≥ 0)



    We simplified constraint (30) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (31)    (i154[4] + [-1] + i162[4] ≥ 0∧[-1]i162[4] ≥ 0∧[-1]i154[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD9742(&&(&&(<=(i162[4], 0), <=(i154[4], 0)), >(+(i154[4], i162[4]), 0)), i154[4], i162[4])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]i154[4] ≥ 0∧[-2 + (-1)bso_21] ≥ 0)



    We solved constraint (31) using rule (IDP_SMT_SPLIT).




For Pair COND_LOAD9742(TRUE, i154, i162) → LOAD974(i154, i162) the following chains were created:
  • We consider the chain COND_LOAD9742(TRUE, i154[5], i162[5]) → LOAD974(i154[5], i162[5]), LOAD974(i153[0], i120[0]) → COND_LOAD974(&&(>(i153[0], 0), >(+(i153[0], i120[0]), 0)), i153[0], i120[0]) which results in the following constraint:

    (32)    (i154[5]=i153[0]i162[5]=i120[0]COND_LOAD9742(TRUE, i154[5], i162[5])≥NonInfC∧COND_LOAD9742(TRUE, i154[5], i162[5])≥LOAD974(i154[5], i162[5])∧(UIncreasing(LOAD974(i154[5], i162[5])), ≥))



    We simplified constraint (32) using rule (IV) which results in the following new constraint:

    (33)    (COND_LOAD9742(TRUE, i154[5], i162[5])≥NonInfC∧COND_LOAD9742(TRUE, i154[5], i162[5])≥LOAD974(i154[5], i162[5])∧(UIncreasing(LOAD974(i154[5], i162[5])), ≥))



    We simplified constraint (33) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (34)    ((UIncreasing(LOAD974(i154[5], i162[5])), ≥)∧[2 + (-1)bso_23] ≥ 0)



    We simplified constraint (34) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (35)    ((UIncreasing(LOAD974(i154[5], i162[5])), ≥)∧[2 + (-1)bso_23] ≥ 0)



    We simplified constraint (35) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (36)    ((UIncreasing(LOAD974(i154[5], i162[5])), ≥)∧[2 + (-1)bso_23] ≥ 0)



    We simplified constraint (36) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (37)    ((UIncreasing(LOAD974(i154[5], i162[5])), ≥)∧0 = 0∧0 = 0∧[2 + (-1)bso_23] ≥ 0)



  • We consider the chain COND_LOAD9742(TRUE, i154[5], i162[5]) → LOAD974(i154[5], i162[5]), LOAD974(i154[2], i161[2]) → COND_LOAD9741(&&(&&(>(i161[2], 0), <=(i154[2], 0)), >(+(i154[2], i161[2]), 0)), i154[2], i161[2]) which results in the following constraint:

    (38)    (i162[5]=i161[2]i154[5]=i154[2]COND_LOAD9742(TRUE, i154[5], i162[5])≥NonInfC∧COND_LOAD9742(TRUE, i154[5], i162[5])≥LOAD974(i154[5], i162[5])∧(UIncreasing(LOAD974(i154[5], i162[5])), ≥))



    We simplified constraint (38) using rule (IV) which results in the following new constraint:

    (39)    (COND_LOAD9742(TRUE, i154[5], i162[5])≥NonInfC∧COND_LOAD9742(TRUE, i154[5], i162[5])≥LOAD974(i154[5], i162[5])∧(UIncreasing(LOAD974(i154[5], i162[5])), ≥))



    We simplified constraint (39) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (40)    ((UIncreasing(LOAD974(i154[5], i162[5])), ≥)∧[2 + (-1)bso_23] ≥ 0)



    We simplified constraint (40) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (41)    ((UIncreasing(LOAD974(i154[5], i162[5])), ≥)∧[2 + (-1)bso_23] ≥ 0)



    We simplified constraint (41) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (42)    ((UIncreasing(LOAD974(i154[5], i162[5])), ≥)∧[2 + (-1)bso_23] ≥ 0)



    We simplified constraint (42) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (43)    ((UIncreasing(LOAD974(i154[5], i162[5])), ≥)∧0 = 0∧0 = 0∧[2 + (-1)bso_23] ≥ 0)



  • We consider the chain COND_LOAD9742(TRUE, i154[5], i162[5]) → LOAD974(i154[5], i162[5]), LOAD974(i154[4], i162[4]) → COND_LOAD9742(&&(&&(<=(i162[4], 0), <=(i154[4], 0)), >(+(i154[4], i162[4]), 0)), i154[4], i162[4]) which results in the following constraint:

    (44)    (i162[5]=i162[4]i154[5]=i154[4]COND_LOAD9742(TRUE, i154[5], i162[5])≥NonInfC∧COND_LOAD9742(TRUE, i154[5], i162[5])≥LOAD974(i154[5], i162[5])∧(UIncreasing(LOAD974(i154[5], i162[5])), ≥))



    We simplified constraint (44) using rule (IV) which results in the following new constraint:

    (45)    (COND_LOAD9742(TRUE, i154[5], i162[5])≥NonInfC∧COND_LOAD9742(TRUE, i154[5], i162[5])≥LOAD974(i154[5], i162[5])∧(UIncreasing(LOAD974(i154[5], i162[5])), ≥))



    We simplified constraint (45) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (46)    ((UIncreasing(LOAD974(i154[5], i162[5])), ≥)∧[2 + (-1)bso_23] ≥ 0)



    We simplified constraint (46) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (47)    ((UIncreasing(LOAD974(i154[5], i162[5])), ≥)∧[2 + (-1)bso_23] ≥ 0)



    We simplified constraint (47) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (48)    ((UIncreasing(LOAD974(i154[5], i162[5])), ≥)∧[2 + (-1)bso_23] ≥ 0)



    We simplified constraint (48) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (49)    ((UIncreasing(LOAD974(i154[5], i162[5])), ≥)∧0 = 0∧0 = 0∧[2 + (-1)bso_23] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • LOAD974(i153, i120) → COND_LOAD974(&&(>(i153, 0), >(+(i153, i120), 0)), i153, i120)
    • (i153[0] ≥ 0∧i153[0] + i120[0] ≥ 0∧i120[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD974(&&(>(i153[0], 0), >(+(i153[0], i120[0]), 0)), i153[0], i120[0])), ≥)∧[(-1)Bound*bni_12] + [bni_12]i153[0] ≥ 0∧[(-1)bso_13] ≥ 0)
    • (i120[0] + i153[0] ≥ 0∧i153[0] ≥ 0∧i120[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD974(&&(>(i153[0], 0), >(+(i153[0], i120[0]), 0)), i153[0], i120[0])), ≥)∧[(-1)Bound*bni_12] + [bni_12]i120[0] + [bni_12]i153[0] ≥ 0∧[(-1)bso_13] ≥ 0)

  • COND_LOAD974(TRUE, i153, i120) → LOAD974(+(i153, -1), i120)
    • ((UIncreasing(LOAD974(+(i153[1], -1), i120[1])), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_15] ≥ 0)

  • LOAD974(i154, i161) → COND_LOAD9741(&&(&&(>(i161, 0), <=(i154, 0)), >(+(i154, i161), 0)), i154, i161)
    • (i161[2] ≥ 0∧i154[2] + i161[2] ≥ 0∧i154[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD9741(&&(&&(>(i161[2], 0), <=(i154[2], 0)), >(+(i154[2], i161[2]), 0)), i154[2], i161[2])), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [(-1)bni_16]i154[2] ≥ 0∧[(-1)bso_17] ≥ 0)

  • COND_LOAD9741(TRUE, i154, i161) → LOAD974(i154, +(i161, -1))
    • ((UIncreasing(LOAD974(i154[3], +(i161[3], -1))), ≥)∧0 = 0∧0 = 0∧[(-1)bso_19] ≥ 0)

  • LOAD974(i154, i162) → COND_LOAD9742(&&(&&(<=(i162, 0), <=(i154, 0)), >(+(i154, i162), 0)), i154, i162)

  • COND_LOAD9742(TRUE, i154, i162) → LOAD974(i154, i162)
    • ((UIncreasing(LOAD974(i154[5], i162[5])), ≥)∧0 = 0∧0 = 0∧[2 + (-1)bso_23] ≥ 0)
    • ((UIncreasing(LOAD974(i154[5], i162[5])), ≥)∧0 = 0∧0 = 0∧[2 + (-1)bso_23] ≥ 0)
    • ((UIncreasing(LOAD974(i154[5], i162[5])), ≥)∧0 = 0∧0 = 0∧[2 + (-1)bso_23] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(LOAD974(x1, x2)) = [-1] + x1   
POL(COND_LOAD974(x1, x2, x3)) = [-1] + x2   
POL(&&(x1, x2)) = [-1]   
POL(>(x1, x2)) = [-1]   
POL(0) = 0   
POL(+(x1, x2)) = x1 + x2   
POL(-1) = [-1]   
POL(COND_LOAD9741(x1, x2, x3)) = [-1] + x2   
POL(<=(x1, x2)) = [-1]   
POL(COND_LOAD9742(x1, x2, x3)) = [1] + x2   

The following pairs are in P>:

COND_LOAD974(TRUE, i153[1], i120[1]) → LOAD974(+(i153[1], -1), i120[1])
LOAD974(i154[4], i162[4]) → COND_LOAD9742(&&(&&(<=(i162[4], 0), <=(i154[4], 0)), >(+(i154[4], i162[4]), 0)), i154[4], i162[4])
COND_LOAD9742(TRUE, i154[5], i162[5]) → LOAD974(i154[5], i162[5])

The following pairs are in Pbound:

LOAD974(i153[0], i120[0]) → COND_LOAD974(&&(>(i153[0], 0), >(+(i153[0], i120[0]), 0)), i153[0], i120[0])
LOAD974(i154[4], i162[4]) → COND_LOAD9742(&&(&&(<=(i162[4], 0), <=(i154[4], 0)), >(+(i154[4], i162[4]), 0)), i154[4], i162[4])

The following pairs are in P:

LOAD974(i153[0], i120[0]) → COND_LOAD974(&&(>(i153[0], 0), >(+(i153[0], i120[0]), 0)), i153[0], i120[0])
LOAD974(i154[2], i161[2]) → COND_LOAD9741(&&(&&(>(i161[2], 0), <=(i154[2], 0)), >(+(i154[2], i161[2]), 0)), i154[2], i161[2])
COND_LOAD9741(TRUE, i154[3], i161[3]) → LOAD974(i154[3], +(i161[3], -1))

There are no usable rules.

(10) Complex Obligation (AND)

(11) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): LOAD974(i153[0], i120[0]) → COND_LOAD974(i153[0] > 0 && i153[0] + i120[0] > 0, i153[0], i120[0])
(2): LOAD974(i154[2], i161[2]) → COND_LOAD9741(i161[2] > 0 && i154[2] <= 0 && i154[2] + i161[2] > 0, i154[2], i161[2])
(3): COND_LOAD9741(TRUE, i154[3], i161[3]) → LOAD974(i154[3], i161[3] + -1)

(3) -> (0), if ((i154[3]* i153[0])∧(i161[3] + -1* i120[0]))


(3) -> (2), if ((i154[3]* i154[2])∧(i161[3] + -1* i161[2]))


(2) -> (3), if ((i161[2] > 0 && i154[2] <= 0 && i154[2] + i161[2] > 0* TRUE)∧(i161[2]* i161[3])∧(i154[2]* i154[3]))



The set Q consists of the following terms:
Load974(x0, x1)
Cond_Load974(TRUE, x0, x1)
Cond_Load9741(TRUE, x0, x1)
Cond_Load9742(TRUE, x0, x1)

(12) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(13) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


R is empty.

The integer pair graph contains the following rules and edges:
(3): COND_LOAD9741(TRUE, i154[3], i161[3]) → LOAD974(i154[3], i161[3] + -1)
(2): LOAD974(i154[2], i161[2]) → COND_LOAD9741(i161[2] > 0 && i154[2] <= 0 && i154[2] + i161[2] > 0, i154[2], i161[2])

(3) -> (2), if ((i154[3]* i154[2])∧(i161[3] + -1* i161[2]))


(2) -> (3), if ((i161[2] > 0 && i154[2] <= 0 && i154[2] + i161[2] > 0* TRUE)∧(i161[2]* i161[3])∧(i154[2]* i154[3]))



The set Q consists of the following terms:
Load974(x0, x1)
Cond_Load974(TRUE, x0, x1)
Cond_Load9741(TRUE, x0, x1)
Cond_Load9742(TRUE, x0, x1)

(14) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair COND_LOAD9741(TRUE, i154[3], i161[3]) → LOAD974(i154[3], +(i161[3], -1)) the following chains were created:
  • We consider the chain COND_LOAD9741(TRUE, i154[3], i161[3]) → LOAD974(i154[3], +(i161[3], -1)) which results in the following constraint:

    (1)    (COND_LOAD9741(TRUE, i154[3], i161[3])≥NonInfC∧COND_LOAD9741(TRUE, i154[3], i161[3])≥LOAD974(i154[3], +(i161[3], -1))∧(UIncreasing(LOAD974(i154[3], +(i161[3], -1))), ≥))



    We simplified constraint (1) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (2)    ((UIncreasing(LOAD974(i154[3], +(i161[3], -1))), ≥)∧[(-1)bso_9] ≥ 0)



    We simplified constraint (2) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (3)    ((UIncreasing(LOAD974(i154[3], +(i161[3], -1))), ≥)∧[(-1)bso_9] ≥ 0)



    We simplified constraint (3) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (4)    ((UIncreasing(LOAD974(i154[3], +(i161[3], -1))), ≥)∧[(-1)bso_9] ≥ 0)



    We simplified constraint (4) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (5)    ((UIncreasing(LOAD974(i154[3], +(i161[3], -1))), ≥)∧0 = 0∧0 = 0∧[(-1)bso_9] ≥ 0)







For Pair LOAD974(i154[2], i161[2]) → COND_LOAD9741(&&(&&(>(i161[2], 0), <=(i154[2], 0)), >(+(i154[2], i161[2]), 0)), i154[2], i161[2]) the following chains were created:
  • We consider the chain LOAD974(i154[2], i161[2]) → COND_LOAD9741(&&(&&(>(i161[2], 0), <=(i154[2], 0)), >(+(i154[2], i161[2]), 0)), i154[2], i161[2]), COND_LOAD9741(TRUE, i154[3], i161[3]) → LOAD974(i154[3], +(i161[3], -1)) which results in the following constraint:

    (6)    (&&(&&(>(i161[2], 0), <=(i154[2], 0)), >(+(i154[2], i161[2]), 0))=TRUEi161[2]=i161[3]i154[2]=i154[3]LOAD974(i154[2], i161[2])≥NonInfC∧LOAD974(i154[2], i161[2])≥COND_LOAD9741(&&(&&(>(i161[2], 0), <=(i154[2], 0)), >(+(i154[2], i161[2]), 0)), i154[2], i161[2])∧(UIncreasing(COND_LOAD9741(&&(&&(>(i161[2], 0), <=(i154[2], 0)), >(+(i154[2], i161[2]), 0)), i154[2], i161[2])), ≥))



    We simplified constraint (6) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (7)    (>(+(i154[2], i161[2]), 0)=TRUE>(i161[2], 0)=TRUE<=(i154[2], 0)=TRUELOAD974(i154[2], i161[2])≥NonInfC∧LOAD974(i154[2], i161[2])≥COND_LOAD9741(&&(&&(>(i161[2], 0), <=(i154[2], 0)), >(+(i154[2], i161[2]), 0)), i154[2], i161[2])∧(UIncreasing(COND_LOAD9741(&&(&&(>(i161[2], 0), <=(i154[2], 0)), >(+(i154[2], i161[2]), 0)), i154[2], i161[2])), ≥))



    We simplified constraint (7) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (8)    (i154[2] + [-1] + i161[2] ≥ 0∧i161[2] + [-1] ≥ 0∧[-1]i154[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD9741(&&(&&(>(i161[2], 0), <=(i154[2], 0)), >(+(i154[2], i161[2]), 0)), i154[2], i161[2])), ≥)∧[(2)bni_10 + (-1)Bound*bni_10] + [(2)bni_10]i161[2] + [(2)bni_10]i154[2] ≥ 0∧[2 + (-1)bso_11] ≥ 0)



    We simplified constraint (8) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (9)    (i154[2] + [-1] + i161[2] ≥ 0∧i161[2] + [-1] ≥ 0∧[-1]i154[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD9741(&&(&&(>(i161[2], 0), <=(i154[2], 0)), >(+(i154[2], i161[2]), 0)), i154[2], i161[2])), ≥)∧[(2)bni_10 + (-1)Bound*bni_10] + [(2)bni_10]i161[2] + [(2)bni_10]i154[2] ≥ 0∧[2 + (-1)bso_11] ≥ 0)



    We simplified constraint (9) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (10)    (i154[2] + [-1] + i161[2] ≥ 0∧i161[2] + [-1] ≥ 0∧[-1]i154[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD9741(&&(&&(>(i161[2], 0), <=(i154[2], 0)), >(+(i154[2], i161[2]), 0)), i154[2], i161[2])), ≥)∧[(2)bni_10 + (-1)Bound*bni_10] + [(2)bni_10]i161[2] + [(2)bni_10]i154[2] ≥ 0∧[2 + (-1)bso_11] ≥ 0)



    We simplified constraint (10) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (11)    ([-1]i154[2] + [-1] + i161[2] ≥ 0∧i161[2] + [-1] ≥ 0∧i154[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD9741(&&(&&(>(i161[2], 0), <=(i154[2], 0)), >(+(i154[2], i161[2]), 0)), i154[2], i161[2])), ≥)∧[(2)bni_10 + (-1)Bound*bni_10] + [(2)bni_10]i161[2] + [(-2)bni_10]i154[2] ≥ 0∧[2 + (-1)bso_11] ≥ 0)



    We simplified constraint (11) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (12)    (i161[2] ≥ 0∧i154[2] + i161[2] ≥ 0∧i154[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD9741(&&(&&(>(i161[2], 0), <=(i154[2], 0)), >(+(i154[2], i161[2]), 0)), i154[2], i161[2])), ≥)∧[(4)bni_10 + (-1)Bound*bni_10] + [(2)bni_10]i161[2] ≥ 0∧[2 + (-1)bso_11] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • COND_LOAD9741(TRUE, i154[3], i161[3]) → LOAD974(i154[3], +(i161[3], -1))
    • ((UIncreasing(LOAD974(i154[3], +(i161[3], -1))), ≥)∧0 = 0∧0 = 0∧[(-1)bso_9] ≥ 0)

  • LOAD974(i154[2], i161[2]) → COND_LOAD9741(&&(&&(>(i161[2], 0), <=(i154[2], 0)), >(+(i154[2], i161[2]), 0)), i154[2], i161[2])
    • (i161[2] ≥ 0∧i154[2] + i161[2] ≥ 0∧i154[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD9741(&&(&&(>(i161[2], 0), <=(i154[2], 0)), >(+(i154[2], i161[2]), 0)), i154[2], i161[2])), ≥)∧[(4)bni_10 + (-1)Bound*bni_10] + [(2)bni_10]i161[2] ≥ 0∧[2 + (-1)bso_11] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(COND_LOAD9741(x1, x2, x3)) = [2]x2 + [2]x3   
POL(LOAD974(x1, x2)) = [2] + [2]x2 + [2]x1   
POL(+(x1, x2)) = x1 + x2   
POL(-1) = [-1]   
POL(&&(x1, x2)) = [2]   
POL(>(x1, x2)) = [-1]   
POL(0) = 0   
POL(<=(x1, x2)) = [-1]   

The following pairs are in P>:

LOAD974(i154[2], i161[2]) → COND_LOAD9741(&&(&&(>(i161[2], 0), <=(i154[2], 0)), >(+(i154[2], i161[2]), 0)), i154[2], i161[2])

The following pairs are in Pbound:

LOAD974(i154[2], i161[2]) → COND_LOAD9741(&&(&&(>(i161[2], 0), <=(i154[2], 0)), >(+(i154[2], i161[2]), 0)), i154[2], i161[2])

The following pairs are in P:

COND_LOAD9741(TRUE, i154[3], i161[3]) → LOAD974(i154[3], +(i161[3], -1))

There are no usable rules.

(15) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(3): COND_LOAD9741(TRUE, i154[3], i161[3]) → LOAD974(i154[3], i161[3] + -1)


The set Q consists of the following terms:
Load974(x0, x1)
Cond_Load974(TRUE, x0, x1)
Cond_Load9741(TRUE, x0, x1)
Cond_Load9742(TRUE, x0, x1)

(16) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(17) TRUE

(18) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_LOAD974(TRUE, i153[1], i120[1]) → LOAD974(i153[1] + -1, i120[1])
(2): LOAD974(i154[2], i161[2]) → COND_LOAD9741(i161[2] > 0 && i154[2] <= 0 && i154[2] + i161[2] > 0, i154[2], i161[2])
(3): COND_LOAD9741(TRUE, i154[3], i161[3]) → LOAD974(i154[3], i161[3] + -1)
(5): COND_LOAD9742(TRUE, i154[5], i162[5]) → LOAD974(i154[5], i162[5])

(1) -> (2), if ((i120[1]* i161[2])∧(i153[1] + -1* i154[2]))


(3) -> (2), if ((i154[3]* i154[2])∧(i161[3] + -1* i161[2]))


(5) -> (2), if ((i162[5]* i161[2])∧(i154[5]* i154[2]))


(2) -> (3), if ((i161[2] > 0 && i154[2] <= 0 && i154[2] + i161[2] > 0* TRUE)∧(i161[2]* i161[3])∧(i154[2]* i154[3]))



The set Q consists of the following terms:
Load974(x0, x1)
Cond_Load974(TRUE, x0, x1)
Cond_Load9741(TRUE, x0, x1)
Cond_Load9742(TRUE, x0, x1)

(19) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.

(20) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


R is empty.

The integer pair graph contains the following rules and edges:
(3): COND_LOAD9741(TRUE, i154[3], i161[3]) → LOAD974(i154[3], i161[3] + -1)
(2): LOAD974(i154[2], i161[2]) → COND_LOAD9741(i161[2] > 0 && i154[2] <= 0 && i154[2] + i161[2] > 0, i154[2], i161[2])

(3) -> (2), if ((i154[3]* i154[2])∧(i161[3] + -1* i161[2]))


(2) -> (3), if ((i161[2] > 0 && i154[2] <= 0 && i154[2] + i161[2] > 0* TRUE)∧(i161[2]* i161[3])∧(i154[2]* i154[3]))



The set Q consists of the following terms:
Load974(x0, x1)
Cond_Load974(TRUE, x0, x1)
Cond_Load9741(TRUE, x0, x1)
Cond_Load9742(TRUE, x0, x1)

(21) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair COND_LOAD9741(TRUE, i154[3], i161[3]) → LOAD974(i154[3], +(i161[3], -1)) the following chains were created:
  • We consider the chain COND_LOAD9741(TRUE, i154[3], i161[3]) → LOAD974(i154[3], +(i161[3], -1)) which results in the following constraint:

    (1)    (COND_LOAD9741(TRUE, i154[3], i161[3])≥NonInfC∧COND_LOAD9741(TRUE, i154[3], i161[3])≥LOAD974(i154[3], +(i161[3], -1))∧(UIncreasing(LOAD974(i154[3], +(i161[3], -1))), ≥))



    We simplified constraint (1) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (2)    ((UIncreasing(LOAD974(i154[3], +(i161[3], -1))), ≥)∧[1 + (-1)bso_10] ≥ 0)



    We simplified constraint (2) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (3)    ((UIncreasing(LOAD974(i154[3], +(i161[3], -1))), ≥)∧[1 + (-1)bso_10] ≥ 0)



    We simplified constraint (3) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (4)    ((UIncreasing(LOAD974(i154[3], +(i161[3], -1))), ≥)∧[1 + (-1)bso_10] ≥ 0)



    We simplified constraint (4) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (5)    ((UIncreasing(LOAD974(i154[3], +(i161[3], -1))), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_10] ≥ 0)







For Pair LOAD974(i154[2], i161[2]) → COND_LOAD9741(&&(&&(>(i161[2], 0), <=(i154[2], 0)), >(+(i154[2], i161[2]), 0)), i154[2], i161[2]) the following chains were created:
  • We consider the chain LOAD974(i154[2], i161[2]) → COND_LOAD9741(&&(&&(>(i161[2], 0), <=(i154[2], 0)), >(+(i154[2], i161[2]), 0)), i154[2], i161[2]), COND_LOAD9741(TRUE, i154[3], i161[3]) → LOAD974(i154[3], +(i161[3], -1)) which results in the following constraint:

    (6)    (&&(&&(>(i161[2], 0), <=(i154[2], 0)), >(+(i154[2], i161[2]), 0))=TRUEi161[2]=i161[3]i154[2]=i154[3]LOAD974(i154[2], i161[2])≥NonInfC∧LOAD974(i154[2], i161[2])≥COND_LOAD9741(&&(&&(>(i161[2], 0), <=(i154[2], 0)), >(+(i154[2], i161[2]), 0)), i154[2], i161[2])∧(UIncreasing(COND_LOAD9741(&&(&&(>(i161[2], 0), <=(i154[2], 0)), >(+(i154[2], i161[2]), 0)), i154[2], i161[2])), ≥))



    We simplified constraint (6) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (7)    (>(+(i154[2], i161[2]), 0)=TRUE>(i161[2], 0)=TRUE<=(i154[2], 0)=TRUELOAD974(i154[2], i161[2])≥NonInfC∧LOAD974(i154[2], i161[2])≥COND_LOAD9741(&&(&&(>(i161[2], 0), <=(i154[2], 0)), >(+(i154[2], i161[2]), 0)), i154[2], i161[2])∧(UIncreasing(COND_LOAD9741(&&(&&(>(i161[2], 0), <=(i154[2], 0)), >(+(i154[2], i161[2]), 0)), i154[2], i161[2])), ≥))



    We simplified constraint (7) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (8)    (i154[2] + [-1] + i161[2] ≥ 0∧i161[2] + [-1] ≥ 0∧[-1]i154[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD9741(&&(&&(>(i161[2], 0), <=(i154[2], 0)), >(+(i154[2], i161[2]), 0)), i154[2], i161[2])), ≥)∧[bni_11 + (-1)Bound*bni_11] + [bni_11]i161[2] + [bni_11]i154[2] ≥ 0∧[(-1)bso_12] ≥ 0)



    We simplified constraint (8) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (9)    (i154[2] + [-1] + i161[2] ≥ 0∧i161[2] + [-1] ≥ 0∧[-1]i154[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD9741(&&(&&(>(i161[2], 0), <=(i154[2], 0)), >(+(i154[2], i161[2]), 0)), i154[2], i161[2])), ≥)∧[bni_11 + (-1)Bound*bni_11] + [bni_11]i161[2] + [bni_11]i154[2] ≥ 0∧[(-1)bso_12] ≥ 0)



    We simplified constraint (9) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (10)    (i154[2] + [-1] + i161[2] ≥ 0∧i161[2] + [-1] ≥ 0∧[-1]i154[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD9741(&&(&&(>(i161[2], 0), <=(i154[2], 0)), >(+(i154[2], i161[2]), 0)), i154[2], i161[2])), ≥)∧[bni_11 + (-1)Bound*bni_11] + [bni_11]i161[2] + [bni_11]i154[2] ≥ 0∧[(-1)bso_12] ≥ 0)



    We simplified constraint (10) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (11)    ([-1]i154[2] + [-1] + i161[2] ≥ 0∧i161[2] + [-1] ≥ 0∧i154[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD9741(&&(&&(>(i161[2], 0), <=(i154[2], 0)), >(+(i154[2], i161[2]), 0)), i154[2], i161[2])), ≥)∧[bni_11 + (-1)Bound*bni_11] + [bni_11]i161[2] + [(-1)bni_11]i154[2] ≥ 0∧[(-1)bso_12] ≥ 0)



    We simplified constraint (11) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (12)    (i161[2] ≥ 0∧i154[2] + i161[2] ≥ 0∧i154[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD9741(&&(&&(>(i161[2], 0), <=(i154[2], 0)), >(+(i154[2], i161[2]), 0)), i154[2], i161[2])), ≥)∧[(2)bni_11 + (-1)Bound*bni_11] + [bni_11]i161[2] ≥ 0∧[(-1)bso_12] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • COND_LOAD9741(TRUE, i154[3], i161[3]) → LOAD974(i154[3], +(i161[3], -1))
    • ((UIncreasing(LOAD974(i154[3], +(i161[3], -1))), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_10] ≥ 0)

  • LOAD974(i154[2], i161[2]) → COND_LOAD9741(&&(&&(>(i161[2], 0), <=(i154[2], 0)), >(+(i154[2], i161[2]), 0)), i154[2], i161[2])
    • (i161[2] ≥ 0∧i154[2] + i161[2] ≥ 0∧i154[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD9741(&&(&&(>(i161[2], 0), <=(i154[2], 0)), >(+(i154[2], i161[2]), 0)), i154[2], i161[2])), ≥)∧[(2)bni_11 + (-1)Bound*bni_11] + [bni_11]i161[2] ≥ 0∧[(-1)bso_12] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(COND_LOAD9741(x1, x2, x3)) = [1] + x2 + x3   
POL(LOAD974(x1, x2)) = [1] + x2 + x1   
POL(+(x1, x2)) = x1 + x2   
POL(-1) = [-1]   
POL(&&(x1, x2)) = [-1]   
POL(>(x1, x2)) = [-1]   
POL(0) = 0   
POL(<=(x1, x2)) = [-1]   

The following pairs are in P>:

COND_LOAD9741(TRUE, i154[3], i161[3]) → LOAD974(i154[3], +(i161[3], -1))

The following pairs are in Pbound:

LOAD974(i154[2], i161[2]) → COND_LOAD9741(&&(&&(>(i161[2], 0), <=(i154[2], 0)), >(+(i154[2], i161[2]), 0)), i154[2], i161[2])

The following pairs are in P:

LOAD974(i154[2], i161[2]) → COND_LOAD9741(&&(&&(>(i161[2], 0), <=(i154[2], 0)), >(+(i154[2], i161[2]), 0)), i154[2], i161[2])

There are no usable rules.

(22) Complex Obligation (AND)

(23) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(2): LOAD974(i154[2], i161[2]) → COND_LOAD9741(i161[2] > 0 && i154[2] <= 0 && i154[2] + i161[2] > 0, i154[2], i161[2])


The set Q consists of the following terms:
Load974(x0, x1)
Cond_Load974(TRUE, x0, x1)
Cond_Load9741(TRUE, x0, x1)
Cond_Load9742(TRUE, x0, x1)

(24) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(25) TRUE

(26) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(3): COND_LOAD9741(TRUE, i154[3], i161[3]) → LOAD974(i154[3], i161[3] + -1)


The set Q consists of the following terms:
Load974(x0, x1)
Cond_Load974(TRUE, x0, x1)
Cond_Load9741(TRUE, x0, x1)
Cond_Load9742(TRUE, x0, x1)

(27) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(28) TRUE