0 JBC
↳1 JBC2FIG (⇐)
↳2 FIGraph
↳3 FIGtoITRSProof (⇐)
↳4 ITRS
↳5 ITRStoIDPProof (⇔)
↳6 IDP
↳7 UsableRulesProof (⇔)
↳8 IDP
↳9 IDPNonInfProof (⇐)
↳10 IDP
↳11 IDependencyGraphProof (⇔)
↳12 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaA9 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
int z = Random.random();
if (y > 0) {
while (x >= z) {
z += y;
}
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i14[0] →* i14[1])∧(i14[0] >= i87[0] && i94[0] > 0 →* TRUE)∧(i87[0] →* i87[1])∧(i94[0] →* i94[1]))
(1) -> (0), if ((i87[1] + i94[1] →* i87[0])∧(i94[1] →* i94[0])∧(i14[1] →* i14[0]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i14[0] →* i14[1])∧(i14[0] >= i87[0] && i94[0] > 0 →* TRUE)∧(i87[0] →* i87[1])∧(i94[0] →* i94[1]))
(1) -> (0), if ((i87[1] + i94[1] →* i87[0])∧(i94[1] →* i94[0])∧(i14[1] →* i14[0]))
(1) (i14[0]=i14[1]∧&&(>=(i14[0], i87[0]), >(i94[0], 0))=TRUE∧i87[0]=i87[1]∧i94[0]=i94[1] ⇒ LOAD1620(i14[0], i94[0], i87[0])≥NonInfC∧LOAD1620(i14[0], i94[0], i87[0])≥COND_LOAD1620(&&(>=(i14[0], i87[0]), >(i94[0], 0)), i14[0], i94[0], i87[0])∧(UIncreasing(COND_LOAD1620(&&(>=(i14[0], i87[0]), >(i94[0], 0)), i14[0], i94[0], i87[0])), ≥))
(2) (>=(i14[0], i87[0])=TRUE∧>(i94[0], 0)=TRUE ⇒ LOAD1620(i14[0], i94[0], i87[0])≥NonInfC∧LOAD1620(i14[0], i94[0], i87[0])≥COND_LOAD1620(&&(>=(i14[0], i87[0]), >(i94[0], 0)), i14[0], i94[0], i87[0])∧(UIncreasing(COND_LOAD1620(&&(>=(i14[0], i87[0]), >(i94[0], 0)), i14[0], i94[0], i87[0])), ≥))
(3) (i14[0] + [-1]i87[0] ≥ 0∧i94[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1620(&&(>=(i14[0], i87[0]), >(i94[0], 0)), i14[0], i94[0], i87[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]i87[0] + [bni_15]i14[0] ≥ 0∧[(-1)bso_16] + i94[0] ≥ 0)
(4) (i14[0] + [-1]i87[0] ≥ 0∧i94[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1620(&&(>=(i14[0], i87[0]), >(i94[0], 0)), i14[0], i94[0], i87[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]i87[0] + [bni_15]i14[0] ≥ 0∧[(-1)bso_16] + i94[0] ≥ 0)
(5) (i14[0] + [-1]i87[0] ≥ 0∧i94[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1620(&&(>=(i14[0], i87[0]), >(i94[0], 0)), i14[0], i94[0], i87[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]i87[0] + [bni_15]i14[0] ≥ 0∧[(-1)bso_16] + i94[0] ≥ 0)
(6) (i14[0] ≥ 0∧i94[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1620(&&(>=(i14[0], i87[0]), >(i94[0], 0)), i14[0], i94[0], i87[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]i14[0] ≥ 0∧[(-1)bso_16] + i94[0] ≥ 0)
(7) (i14[0] ≥ 0∧i94[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1620(&&(>=(i14[0], i87[0]), >(i94[0], 0)), i14[0], i94[0], i87[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]i14[0] ≥ 0∧[1 + (-1)bso_16] + i94[0] ≥ 0)
(8) (i14[0] ≥ 0∧i94[0] ≥ 0∧i87[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1620(&&(>=(i14[0], i87[0]), >(i94[0], 0)), i14[0], i94[0], i87[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]i14[0] ≥ 0∧[1 + (-1)bso_16] + i94[0] ≥ 0)
(9) (i14[0] ≥ 0∧i94[0] ≥ 0∧i87[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1620(&&(>=(i14[0], i87[0]), >(i94[0], 0)), i14[0], i94[0], i87[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]i14[0] ≥ 0∧[1 + (-1)bso_16] + i94[0] ≥ 0)
(10) (i14[0]=i14[1]∧&&(>=(i14[0], i87[0]), >(i94[0], 0))=TRUE∧i87[0]=i87[1]∧i94[0]=i94[1]∧+(i87[1], i94[1])=i87[0]1∧i94[1]=i94[0]1∧i14[1]=i14[0]1 ⇒ COND_LOAD1620(TRUE, i14[1], i94[1], i87[1])≥NonInfC∧COND_LOAD1620(TRUE, i14[1], i94[1], i87[1])≥LOAD1620(i14[1], i94[1], +(i87[1], i94[1]))∧(UIncreasing(LOAD1620(i14[1], i94[1], +(i87[1], i94[1]))), ≥))
(11) (>=(i14[0], i87[0])=TRUE∧>(i94[0], 0)=TRUE ⇒ COND_LOAD1620(TRUE, i14[0], i94[0], i87[0])≥NonInfC∧COND_LOAD1620(TRUE, i14[0], i94[0], i87[0])≥LOAD1620(i14[0], i94[0], +(i87[0], i94[0]))∧(UIncreasing(LOAD1620(i14[1], i94[1], +(i87[1], i94[1]))), ≥))
(12) (i14[0] + [-1]i87[0] ≥ 0∧i94[0] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD1620(i14[1], i94[1], +(i87[1], i94[1]))), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [(-1)bni_17]i87[0] + [(-1)bni_17]i94[0] + [bni_17]i14[0] ≥ 0∧[(-1)bso_18] ≥ 0)
(13) (i14[0] + [-1]i87[0] ≥ 0∧i94[0] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD1620(i14[1], i94[1], +(i87[1], i94[1]))), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [(-1)bni_17]i87[0] + [(-1)bni_17]i94[0] + [bni_17]i14[0] ≥ 0∧[(-1)bso_18] ≥ 0)
(14) (i14[0] + [-1]i87[0] ≥ 0∧i94[0] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD1620(i14[1], i94[1], +(i87[1], i94[1]))), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [(-1)bni_17]i87[0] + [(-1)bni_17]i94[0] + [bni_17]i14[0] ≥ 0∧[(-1)bso_18] ≥ 0)
(15) (i14[0] ≥ 0∧i94[0] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD1620(i14[1], i94[1], +(i87[1], i94[1]))), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [(-1)bni_17]i94[0] + [bni_17]i14[0] ≥ 0∧[(-1)bso_18] ≥ 0)
(16) (i14[0] ≥ 0∧i94[0] ≥ 0 ⇒ (UIncreasing(LOAD1620(i14[1], i94[1], +(i87[1], i94[1]))), ≥)∧[(-2)bni_17 + (-1)Bound*bni_17] + [(-1)bni_17]i94[0] + [bni_17]i14[0] ≥ 0∧[(-1)bso_18] ≥ 0)
(17) (i14[0] ≥ 0∧i94[0] ≥ 0∧i87[0] ≥ 0 ⇒ (UIncreasing(LOAD1620(i14[1], i94[1], +(i87[1], i94[1]))), ≥)∧[(-2)bni_17 + (-1)Bound*bni_17] + [(-1)bni_17]i94[0] + [bni_17]i14[0] ≥ 0∧[(-1)bso_18] ≥ 0)
(18) (i14[0] ≥ 0∧i94[0] ≥ 0∧i87[0] ≥ 0 ⇒ (UIncreasing(LOAD1620(i14[1], i94[1], +(i87[1], i94[1]))), ≥)∧[(-2)bni_17 + (-1)Bound*bni_17] + [(-1)bni_17]i94[0] + [bni_17]i14[0] ≥ 0∧[(-1)bso_18] ≥ 0)
POL(TRUE) = [1]
POL(FALSE) = [3]
POL(LOAD1620(x1, x2, x3)) = [-1] + [-1]x3 + x1
POL(COND_LOAD1620(x1, x2, x3, x4)) = [-1]x4 + [-1]x3 + x2 + [-1]x1
POL(&&(x1, x2)) = [1]
POL(>=(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(+(x1, x2)) = x1 + x2
LOAD1620(i14[0], i94[0], i87[0]) → COND_LOAD1620(&&(>=(i14[0], i87[0]), >(i94[0], 0)), i14[0], i94[0], i87[0])
LOAD1620(i14[0], i94[0], i87[0]) → COND_LOAD1620(&&(>=(i14[0], i87[0]), >(i94[0], 0)), i14[0], i94[0], i87[0])
COND_LOAD1620(TRUE, i14[1], i94[1], i87[1]) → LOAD1620(i14[1], i94[1], +(i87[1], i94[1]))
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(FALSE, FALSE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer