0 JBC
↳1 JBC2FIG (⇐)
↳2 FIGraph
↳3 FIGtoITRSProof (⇐)
↳4 ITRS
↳5 ITRStoIDPProof (⇔)
↳6 IDP
↳7 UsableRulesProof (⇔)
↳8 IDP
↳9 IDPNonInfProof (⇐)
↳10 AND
↳11 IDP
↳12 IDependencyGraphProof (⇔)
↳13 TRUE
↳14 IDP
↳15 IDependencyGraphProof (⇔)
↳16 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaA7 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
int z = Random.random();
while (x > y && x > z) {
y++;
z++;
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i14[0] > i41[0] && i14[0] > i20[0] →* TRUE)∧(i41[0] →* i41[1])∧(i14[0] →* i14[1])∧(i20[0] →* i20[1]))
(1) -> (0), if ((i14[1] →* i14[0])∧(i41[1] + 1 →* i41[0])∧(i20[1] + 1 →* i20[0]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i14[0] > i41[0] && i14[0] > i20[0] →* TRUE)∧(i41[0] →* i41[1])∧(i14[0] →* i14[1])∧(i20[0] →* i20[1]))
(1) -> (0), if ((i14[1] →* i14[0])∧(i41[1] + 1 →* i41[0])∧(i20[1] + 1 →* i20[0]))
(1) (&&(>(i14[0], i41[0]), >(i14[0], i20[0]))=TRUE∧i41[0]=i41[1]∧i14[0]=i14[1]∧i20[0]=i20[1] ⇒ LOAD870(i14[0], i20[0], i41[0])≥NonInfC∧LOAD870(i14[0], i20[0], i41[0])≥COND_LOAD870(&&(>(i14[0], i41[0]), >(i14[0], i20[0])), i14[0], i20[0], i41[0])∧(UIncreasing(COND_LOAD870(&&(>(i14[0], i41[0]), >(i14[0], i20[0])), i14[0], i20[0], i41[0])), ≥))
(2) (>(i14[0], i41[0])=TRUE∧>(i14[0], i20[0])=TRUE ⇒ LOAD870(i14[0], i20[0], i41[0])≥NonInfC∧LOAD870(i14[0], i20[0], i41[0])≥COND_LOAD870(&&(>(i14[0], i41[0]), >(i14[0], i20[0])), i14[0], i20[0], i41[0])∧(UIncreasing(COND_LOAD870(&&(>(i14[0], i41[0]), >(i14[0], i20[0])), i14[0], i20[0], i41[0])), ≥))
(3) (i14[0] + [-1] + [-1]i41[0] ≥ 0∧i14[0] + [-1] + [-1]i20[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD870(&&(>(i14[0], i41[0]), >(i14[0], i20[0])), i14[0], i20[0], i41[0])), ≥)∧[(-1)Bound*bni_10] + [(-1)bni_10]i41[0] + [(-1)bni_10]i20[0] + [(2)bni_10]i14[0] ≥ 0∧[1 + (-1)bso_11] ≥ 0)
(4) (i14[0] + [-1] + [-1]i41[0] ≥ 0∧i14[0] + [-1] + [-1]i20[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD870(&&(>(i14[0], i41[0]), >(i14[0], i20[0])), i14[0], i20[0], i41[0])), ≥)∧[(-1)Bound*bni_10] + [(-1)bni_10]i41[0] + [(-1)bni_10]i20[0] + [(2)bni_10]i14[0] ≥ 0∧[1 + (-1)bso_11] ≥ 0)
(5) (i14[0] + [-1] + [-1]i41[0] ≥ 0∧i14[0] + [-1] + [-1]i20[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD870(&&(>(i14[0], i41[0]), >(i14[0], i20[0])), i14[0], i20[0], i41[0])), ≥)∧[(-1)Bound*bni_10] + [(-1)bni_10]i41[0] + [(-1)bni_10]i20[0] + [(2)bni_10]i14[0] ≥ 0∧[1 + (-1)bso_11] ≥ 0)
(6) (i14[0] ≥ 0∧i41[0] + i14[0] + [-1]i20[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD870(&&(>(i14[0], i41[0]), >(i14[0], i20[0])), i14[0], i20[0], i41[0])), ≥)∧[(-1)Bound*bni_10 + (2)bni_10] + [bni_10]i41[0] + [(-1)bni_10]i20[0] + [(2)bni_10]i14[0] ≥ 0∧[1 + (-1)bso_11] ≥ 0)
(7) (i14[0] ≥ 0∧i20[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD870(&&(>(i14[0], i41[0]), >(i14[0], i20[0])), i14[0], i20[0], i41[0])), ≥)∧[(-1)Bound*bni_10 + (2)bni_10] + [bni_10]i14[0] + [bni_10]i20[0] ≥ 0∧[1 + (-1)bso_11] ≥ 0)
(8) (i14[0] ≥ 0∧i20[0] ≥ 0∧i41[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD870(&&(>(i14[0], i41[0]), >(i14[0], i20[0])), i14[0], i20[0], i41[0])), ≥)∧[(-1)Bound*bni_10 + (2)bni_10] + [bni_10]i14[0] + [bni_10]i20[0] ≥ 0∧[1 + (-1)bso_11] ≥ 0)
(9) (i14[0] ≥ 0∧i20[0] ≥ 0∧i41[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD870(&&(>(i14[0], i41[0]), >(i14[0], i20[0])), i14[0], i20[0], i41[0])), ≥)∧[(-1)Bound*bni_10 + (2)bni_10] + [bni_10]i14[0] + [bni_10]i20[0] ≥ 0∧[1 + (-1)bso_11] ≥ 0)
(10) (COND_LOAD870(TRUE, i14[1], i20[1], i41[1])≥NonInfC∧COND_LOAD870(TRUE, i14[1], i20[1], i41[1])≥LOAD870(i14[1], +(i20[1], 1), +(i41[1], 1))∧(UIncreasing(LOAD870(i14[1], +(i20[1], 1), +(i41[1], 1))), ≥))
(11) ((UIncreasing(LOAD870(i14[1], +(i20[1], 1), +(i41[1], 1))), ≥)∧[1 + (-1)bso_13] ≥ 0)
(12) ((UIncreasing(LOAD870(i14[1], +(i20[1], 1), +(i41[1], 1))), ≥)∧[1 + (-1)bso_13] ≥ 0)
(13) ((UIncreasing(LOAD870(i14[1], +(i20[1], 1), +(i41[1], 1))), ≥)∧[1 + (-1)bso_13] ≥ 0)
(14) ((UIncreasing(LOAD870(i14[1], +(i20[1], 1), +(i41[1], 1))), ≥)∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_13] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(LOAD870(x1, x2, x3)) = [-1]x3 + [-1]x2 + [2]x1
POL(COND_LOAD870(x1, x2, x3, x4)) = [-1] + [-1]x4 + [-1]x3 + [2]x2
POL(&&(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(1) = [1]
LOAD870(i14[0], i20[0], i41[0]) → COND_LOAD870(&&(>(i14[0], i41[0]), >(i14[0], i20[0])), i14[0], i20[0], i41[0])
COND_LOAD870(TRUE, i14[1], i20[1], i41[1]) → LOAD870(i14[1], +(i20[1], 1), +(i41[1], 1))
LOAD870(i14[0], i20[0], i41[0]) → COND_LOAD870(&&(>(i14[0], i41[0]), >(i14[0], i20[0])), i14[0], i20[0], i41[0])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer