(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: PastaA6
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/

public class PastaA6 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
int z = Random.random();

while (x > y + z) {
y++;
z++;
}
}
}


public class Random {
static String[] args;
static int index = 0;

public static int random() {
String string = args[index];
index++;
return string.length();
}
}


(1) JBC2FIG (SOUND transformation)

Constructed FIGraph.

(2) Obligation:

FIGraph based on JBC Program:
Graph of 248 nodes with 1 SCC.

(3) FIGtoITRSProof (SOUND transformation)

Transformed FIGraph to ITRS rules

(4) Obligation:

ITRS problem:

The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean

The TRS R consists of the following rules:
Load940(i14, i26, i78) → Cond_Load940(i14 > i26 + i78, i14, i26, i78)
Cond_Load940(TRUE, i14, i26, i78) → Load940(i14, i26 + 1, i78 + 1)
The set Q consists of the following terms:
Load940(x0, x1, x2)
Cond_Load940(TRUE, x0, x1, x2)

(5) ITRStoIDPProof (EQUIVALENT transformation)

Added dependency pairs

(6) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


The ITRS R consists of the following rules:
Load940(i14, i26, i78) → Cond_Load940(i14 > i26 + i78, i14, i26, i78)
Cond_Load940(TRUE, i14, i26, i78) → Load940(i14, i26 + 1, i78 + 1)

The integer pair graph contains the following rules and edges:
(0): LOAD940(i14[0], i26[0], i78[0]) → COND_LOAD940(i14[0] > i26[0] + i78[0], i14[0], i26[0], i78[0])
(1): COND_LOAD940(TRUE, i14[1], i26[1], i78[1]) → LOAD940(i14[1], i26[1] + 1, i78[1] + 1)

(0) -> (1), if ((i78[0]* i78[1])∧(i14[0]* i14[1])∧(i26[0]* i26[1])∧(i14[0] > i26[0] + i78[0]* TRUE))


(1) -> (0), if ((i26[1] + 1* i26[0])∧(i14[1]* i14[0])∧(i78[1] + 1* i78[0]))



The set Q consists of the following terms:
Load940(x0, x1, x2)
Cond_Load940(TRUE, x0, x1, x2)

(7) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(8) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): LOAD940(i14[0], i26[0], i78[0]) → COND_LOAD940(i14[0] > i26[0] + i78[0], i14[0], i26[0], i78[0])
(1): COND_LOAD940(TRUE, i14[1], i26[1], i78[1]) → LOAD940(i14[1], i26[1] + 1, i78[1] + 1)

(0) -> (1), if ((i78[0]* i78[1])∧(i14[0]* i14[1])∧(i26[0]* i26[1])∧(i14[0] > i26[0] + i78[0]* TRUE))


(1) -> (0), if ((i26[1] + 1* i26[0])∧(i14[1]* i14[0])∧(i78[1] + 1* i78[0]))



The set Q consists of the following terms:
Load940(x0, x1, x2)
Cond_Load940(TRUE, x0, x1, x2)

(9) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair LOAD940(i14, i26, i78) → COND_LOAD940(>(i14, +(i26, i78)), i14, i26, i78) the following chains were created:
  • We consider the chain LOAD940(i14[0], i26[0], i78[0]) → COND_LOAD940(>(i14[0], +(i26[0], i78[0])), i14[0], i26[0], i78[0]), COND_LOAD940(TRUE, i14[1], i26[1], i78[1]) → LOAD940(i14[1], +(i26[1], 1), +(i78[1], 1)) which results in the following constraint:

    (1)    (i78[0]=i78[1]i14[0]=i14[1]i26[0]=i26[1]>(i14[0], +(i26[0], i78[0]))=TRUELOAD940(i14[0], i26[0], i78[0])≥NonInfC∧LOAD940(i14[0], i26[0], i78[0])≥COND_LOAD940(>(i14[0], +(i26[0], i78[0])), i14[0], i26[0], i78[0])∧(UIncreasing(COND_LOAD940(>(i14[0], +(i26[0], i78[0])), i14[0], i26[0], i78[0])), ≥))



    We simplified constraint (1) using rule (IV) which results in the following new constraint:

    (2)    (>(i14[0], +(i26[0], i78[0]))=TRUELOAD940(i14[0], i26[0], i78[0])≥NonInfC∧LOAD940(i14[0], i26[0], i78[0])≥COND_LOAD940(>(i14[0], +(i26[0], i78[0])), i14[0], i26[0], i78[0])∧(UIncreasing(COND_LOAD940(>(i14[0], +(i26[0], i78[0])), i14[0], i26[0], i78[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (i14[0] + [-1] + [-1]i26[0] + [-1]i78[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD940(>(i14[0], +(i26[0], i78[0])), i14[0], i26[0], i78[0])), ≥)∧[bni_9 + (-1)Bound*bni_9] + [(-1)bni_9]i78[0] + [(-1)bni_9]i26[0] + [bni_9]i14[0] ≥ 0∧[(-1)bso_10] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (i14[0] + [-1] + [-1]i26[0] + [-1]i78[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD940(>(i14[0], +(i26[0], i78[0])), i14[0], i26[0], i78[0])), ≥)∧[bni_9 + (-1)Bound*bni_9] + [(-1)bni_9]i78[0] + [(-1)bni_9]i26[0] + [bni_9]i14[0] ≥ 0∧[(-1)bso_10] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (i14[0] + [-1] + [-1]i26[0] + [-1]i78[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD940(>(i14[0], +(i26[0], i78[0])), i14[0], i26[0], i78[0])), ≥)∧[bni_9 + (-1)Bound*bni_9] + [(-1)bni_9]i78[0] + [(-1)bni_9]i26[0] + [bni_9]i14[0] ≥ 0∧[(-1)bso_10] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (i14[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD940(>(i14[0], +(i26[0], i78[0])), i14[0], i26[0], i78[0])), ≥)∧[(2)bni_9 + (-1)Bound*bni_9] + [bni_9]i14[0] ≥ 0∧[(-1)bso_10] ≥ 0)



    We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (7)    (i14[0] ≥ 0∧i26[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD940(>(i14[0], +(i26[0], i78[0])), i14[0], i26[0], i78[0])), ≥)∧[(2)bni_9 + (-1)Bound*bni_9] + [bni_9]i14[0] ≥ 0∧[(-1)bso_10] ≥ 0)


    (8)    (i14[0] ≥ 0∧i26[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD940(>(i14[0], +(i26[0], i78[0])), i14[0], i26[0], i78[0])), ≥)∧[(2)bni_9 + (-1)Bound*bni_9] + [bni_9]i14[0] ≥ 0∧[(-1)bso_10] ≥ 0)



    We simplified constraint (7) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (9)    (i14[0] ≥ 0∧i26[0] ≥ 0∧i78[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD940(>(i14[0], +(i26[0], i78[0])), i14[0], i26[0], i78[0])), ≥)∧[(2)bni_9 + (-1)Bound*bni_9] + [bni_9]i14[0] ≥ 0∧[(-1)bso_10] ≥ 0)


    (10)    (i14[0] ≥ 0∧i26[0] ≥ 0∧i78[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD940(>(i14[0], +(i26[0], i78[0])), i14[0], i26[0], i78[0])), ≥)∧[(2)bni_9 + (-1)Bound*bni_9] + [bni_9]i14[0] ≥ 0∧[(-1)bso_10] ≥ 0)



    We simplified constraint (8) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (11)    (i14[0] ≥ 0∧i26[0] ≥ 0∧i78[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD940(>(i14[0], +(i26[0], i78[0])), i14[0], i26[0], i78[0])), ≥)∧[(2)bni_9 + (-1)Bound*bni_9] + [bni_9]i14[0] ≥ 0∧[(-1)bso_10] ≥ 0)


    (12)    (i14[0] ≥ 0∧i26[0] ≥ 0∧i78[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD940(>(i14[0], +(i26[0], i78[0])), i14[0], i26[0], i78[0])), ≥)∧[(2)bni_9 + (-1)Bound*bni_9] + [bni_9]i14[0] ≥ 0∧[(-1)bso_10] ≥ 0)







For Pair COND_LOAD940(TRUE, i14, i26, i78) → LOAD940(i14, +(i26, 1), +(i78, 1)) the following chains were created:
  • We consider the chain COND_LOAD940(TRUE, i14[1], i26[1], i78[1]) → LOAD940(i14[1], +(i26[1], 1), +(i78[1], 1)) which results in the following constraint:

    (13)    (COND_LOAD940(TRUE, i14[1], i26[1], i78[1])≥NonInfC∧COND_LOAD940(TRUE, i14[1], i26[1], i78[1])≥LOAD940(i14[1], +(i26[1], 1), +(i78[1], 1))∧(UIncreasing(LOAD940(i14[1], +(i26[1], 1), +(i78[1], 1))), ≥))



    We simplified constraint (13) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (14)    ((UIncreasing(LOAD940(i14[1], +(i26[1], 1), +(i78[1], 1))), ≥)∧[2 + (-1)bso_12] ≥ 0)



    We simplified constraint (14) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (15)    ((UIncreasing(LOAD940(i14[1], +(i26[1], 1), +(i78[1], 1))), ≥)∧[2 + (-1)bso_12] ≥ 0)



    We simplified constraint (15) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (16)    ((UIncreasing(LOAD940(i14[1], +(i26[1], 1), +(i78[1], 1))), ≥)∧[2 + (-1)bso_12] ≥ 0)



    We simplified constraint (16) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (17)    ((UIncreasing(LOAD940(i14[1], +(i26[1], 1), +(i78[1], 1))), ≥)∧0 = 0∧0 = 0∧0 = 0∧[2 + (-1)bso_12] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • LOAD940(i14, i26, i78) → COND_LOAD940(>(i14, +(i26, i78)), i14, i26, i78)
    • (i14[0] ≥ 0∧i26[0] ≥ 0∧i78[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD940(>(i14[0], +(i26[0], i78[0])), i14[0], i26[0], i78[0])), ≥)∧[(2)bni_9 + (-1)Bound*bni_9] + [bni_9]i14[0] ≥ 0∧[(-1)bso_10] ≥ 0)
    • (i14[0] ≥ 0∧i26[0] ≥ 0∧i78[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD940(>(i14[0], +(i26[0], i78[0])), i14[0], i26[0], i78[0])), ≥)∧[(2)bni_9 + (-1)Bound*bni_9] + [bni_9]i14[0] ≥ 0∧[(-1)bso_10] ≥ 0)
    • (i14[0] ≥ 0∧i26[0] ≥ 0∧i78[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD940(>(i14[0], +(i26[0], i78[0])), i14[0], i26[0], i78[0])), ≥)∧[(2)bni_9 + (-1)Bound*bni_9] + [bni_9]i14[0] ≥ 0∧[(-1)bso_10] ≥ 0)
    • (i14[0] ≥ 0∧i26[0] ≥ 0∧i78[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD940(>(i14[0], +(i26[0], i78[0])), i14[0], i26[0], i78[0])), ≥)∧[(2)bni_9 + (-1)Bound*bni_9] + [bni_9]i14[0] ≥ 0∧[(-1)bso_10] ≥ 0)

  • COND_LOAD940(TRUE, i14, i26, i78) → LOAD940(i14, +(i26, 1), +(i78, 1))
    • ((UIncreasing(LOAD940(i14[1], +(i26[1], 1), +(i78[1], 1))), ≥)∧0 = 0∧0 = 0∧0 = 0∧[2 + (-1)bso_12] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(LOAD940(x1, x2, x3)) = [1] + [-1]x3 + [-1]x2 + x1   
POL(COND_LOAD940(x1, x2, x3, x4)) = [1] + [-1]x4 + [-1]x3 + x2   
POL(>(x1, x2)) = [-1]   
POL(+(x1, x2)) = x1 + x2   
POL(1) = [1]   

The following pairs are in P>:

COND_LOAD940(TRUE, i14[1], i26[1], i78[1]) → LOAD940(i14[1], +(i26[1], 1), +(i78[1], 1))

The following pairs are in Pbound:

LOAD940(i14[0], i26[0], i78[0]) → COND_LOAD940(>(i14[0], +(i26[0], i78[0])), i14[0], i26[0], i78[0])

The following pairs are in P:

LOAD940(i14[0], i26[0], i78[0]) → COND_LOAD940(>(i14[0], +(i26[0], i78[0])), i14[0], i26[0], i78[0])

There are no usable rules.

(10) Complex Obligation (AND)

(11) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): LOAD940(i14[0], i26[0], i78[0]) → COND_LOAD940(i14[0] > i26[0] + i78[0], i14[0], i26[0], i78[0])


The set Q consists of the following terms:
Load940(x0, x1, x2)
Cond_Load940(TRUE, x0, x1, x2)

(12) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(13) TRUE

(14) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_LOAD940(TRUE, i14[1], i26[1], i78[1]) → LOAD940(i14[1], i26[1] + 1, i78[1] + 1)


The set Q consists of the following terms:
Load940(x0, x1, x2)
Cond_Load940(TRUE, x0, x1, x2)

(15) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(16) TRUE