0 JBC
↳1 JBC2FIG (⇐)
↳2 FIGraph
↳3 FIGtoITRSProof (⇐)
↳4 ITRS
↳5 ITRStoIDPProof (⇔)
↳6 IDP
↳7 UsableRulesProof (⇔)
↳8 IDP
↳9 IDPNonInfProof (⇐)
↳10 AND
↳11 IDP
↳12 IDependencyGraphProof (⇔)
↳13 TRUE
↳14 IDP
↳15 IDependencyGraphProof (⇔)
↳16 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaA6 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
int z = Random.random();
while (x > y + z) {
y++;
z++;
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(0) -> (1), if ((i78[0] →* i78[1])∧(i14[0] →* i14[1])∧(i26[0] →* i26[1])∧(i14[0] > i26[0] + i78[0] →* TRUE))
(1) -> (0), if ((i26[1] + 1 →* i26[0])∧(i14[1] →* i14[0])∧(i78[1] + 1 →* i78[0]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(0) -> (1), if ((i78[0] →* i78[1])∧(i14[0] →* i14[1])∧(i26[0] →* i26[1])∧(i14[0] > i26[0] + i78[0] →* TRUE))
(1) -> (0), if ((i26[1] + 1 →* i26[0])∧(i14[1] →* i14[0])∧(i78[1] + 1 →* i78[0]))
(1) (i78[0]=i78[1]∧i14[0]=i14[1]∧i26[0]=i26[1]∧>(i14[0], +(i26[0], i78[0]))=TRUE ⇒ LOAD940(i14[0], i26[0], i78[0])≥NonInfC∧LOAD940(i14[0], i26[0], i78[0])≥COND_LOAD940(>(i14[0], +(i26[0], i78[0])), i14[0], i26[0], i78[0])∧(UIncreasing(COND_LOAD940(>(i14[0], +(i26[0], i78[0])), i14[0], i26[0], i78[0])), ≥))
(2) (>(i14[0], +(i26[0], i78[0]))=TRUE ⇒ LOAD940(i14[0], i26[0], i78[0])≥NonInfC∧LOAD940(i14[0], i26[0], i78[0])≥COND_LOAD940(>(i14[0], +(i26[0], i78[0])), i14[0], i26[0], i78[0])∧(UIncreasing(COND_LOAD940(>(i14[0], +(i26[0], i78[0])), i14[0], i26[0], i78[0])), ≥))
(3) (i14[0] + [-1] + [-1]i26[0] + [-1]i78[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD940(>(i14[0], +(i26[0], i78[0])), i14[0], i26[0], i78[0])), ≥)∧[bni_9 + (-1)Bound*bni_9] + [(-1)bni_9]i78[0] + [(-1)bni_9]i26[0] + [bni_9]i14[0] ≥ 0∧[(-1)bso_10] ≥ 0)
(4) (i14[0] + [-1] + [-1]i26[0] + [-1]i78[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD940(>(i14[0], +(i26[0], i78[0])), i14[0], i26[0], i78[0])), ≥)∧[bni_9 + (-1)Bound*bni_9] + [(-1)bni_9]i78[0] + [(-1)bni_9]i26[0] + [bni_9]i14[0] ≥ 0∧[(-1)bso_10] ≥ 0)
(5) (i14[0] + [-1] + [-1]i26[0] + [-1]i78[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD940(>(i14[0], +(i26[0], i78[0])), i14[0], i26[0], i78[0])), ≥)∧[bni_9 + (-1)Bound*bni_9] + [(-1)bni_9]i78[0] + [(-1)bni_9]i26[0] + [bni_9]i14[0] ≥ 0∧[(-1)bso_10] ≥ 0)
(6) (i14[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD940(>(i14[0], +(i26[0], i78[0])), i14[0], i26[0], i78[0])), ≥)∧[(2)bni_9 + (-1)Bound*bni_9] + [bni_9]i14[0] ≥ 0∧[(-1)bso_10] ≥ 0)
(7) (i14[0] ≥ 0∧i26[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD940(>(i14[0], +(i26[0], i78[0])), i14[0], i26[0], i78[0])), ≥)∧[(2)bni_9 + (-1)Bound*bni_9] + [bni_9]i14[0] ≥ 0∧[(-1)bso_10] ≥ 0)
(8) (i14[0] ≥ 0∧i26[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD940(>(i14[0], +(i26[0], i78[0])), i14[0], i26[0], i78[0])), ≥)∧[(2)bni_9 + (-1)Bound*bni_9] + [bni_9]i14[0] ≥ 0∧[(-1)bso_10] ≥ 0)
(9) (i14[0] ≥ 0∧i26[0] ≥ 0∧i78[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD940(>(i14[0], +(i26[0], i78[0])), i14[0], i26[0], i78[0])), ≥)∧[(2)bni_9 + (-1)Bound*bni_9] + [bni_9]i14[0] ≥ 0∧[(-1)bso_10] ≥ 0)
(10) (i14[0] ≥ 0∧i26[0] ≥ 0∧i78[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD940(>(i14[0], +(i26[0], i78[0])), i14[0], i26[0], i78[0])), ≥)∧[(2)bni_9 + (-1)Bound*bni_9] + [bni_9]i14[0] ≥ 0∧[(-1)bso_10] ≥ 0)
(11) (i14[0] ≥ 0∧i26[0] ≥ 0∧i78[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD940(>(i14[0], +(i26[0], i78[0])), i14[0], i26[0], i78[0])), ≥)∧[(2)bni_9 + (-1)Bound*bni_9] + [bni_9]i14[0] ≥ 0∧[(-1)bso_10] ≥ 0)
(12) (i14[0] ≥ 0∧i26[0] ≥ 0∧i78[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD940(>(i14[0], +(i26[0], i78[0])), i14[0], i26[0], i78[0])), ≥)∧[(2)bni_9 + (-1)Bound*bni_9] + [bni_9]i14[0] ≥ 0∧[(-1)bso_10] ≥ 0)
(13) (COND_LOAD940(TRUE, i14[1], i26[1], i78[1])≥NonInfC∧COND_LOAD940(TRUE, i14[1], i26[1], i78[1])≥LOAD940(i14[1], +(i26[1], 1), +(i78[1], 1))∧(UIncreasing(LOAD940(i14[1], +(i26[1], 1), +(i78[1], 1))), ≥))
(14) ((UIncreasing(LOAD940(i14[1], +(i26[1], 1), +(i78[1], 1))), ≥)∧[2 + (-1)bso_12] ≥ 0)
(15) ((UIncreasing(LOAD940(i14[1], +(i26[1], 1), +(i78[1], 1))), ≥)∧[2 + (-1)bso_12] ≥ 0)
(16) ((UIncreasing(LOAD940(i14[1], +(i26[1], 1), +(i78[1], 1))), ≥)∧[2 + (-1)bso_12] ≥ 0)
(17) ((UIncreasing(LOAD940(i14[1], +(i26[1], 1), +(i78[1], 1))), ≥)∧0 = 0∧0 = 0∧0 = 0∧[2 + (-1)bso_12] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(LOAD940(x1, x2, x3)) = [1] + [-1]x3 + [-1]x2 + x1
POL(COND_LOAD940(x1, x2, x3, x4)) = [1] + [-1]x4 + [-1]x3 + x2
POL(>(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(1) = [1]
COND_LOAD940(TRUE, i14[1], i26[1], i78[1]) → LOAD940(i14[1], +(i26[1], 1), +(i78[1], 1))
LOAD940(i14[0], i26[0], i78[0]) → COND_LOAD940(>(i14[0], +(i26[0], i78[0])), i14[0], i26[0], i78[0])
LOAD940(i14[0], i26[0], i78[0]) → COND_LOAD940(>(i14[0], +(i26[0], i78[0])), i14[0], i26[0], i78[0])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer