0 JBC
↳1 JBC2FIG (⇐)
↳2 FIGraph
↳3 FIGtoITRSProof (⇐)
↳4 ITRS
↳5 ITRStoIDPProof (⇔)
↳6 IDP
↳7 UsableRulesProof (⇔)
↳8 IDP
↳9 IDPNonInfProof (⇐)
↳10 AND
↳11 IDP
↳12 IDependencyGraphProof (⇔)
↳13 TRUE
↳14 IDP
↳15 IDependencyGraphProof (⇔)
↳16 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaA5 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
while (x >= y + 1) {
y++;
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(0) -> (1), if ((i11[0] →* i11[1])∧(i29[0] →* i29[1])∧(i11[0] >= i29[0] + 1 →* TRUE))
(1) -> (0), if ((i29[1] + 1 →* i29[0])∧(i11[1] →* i11[0]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(0) -> (1), if ((i11[0] →* i11[1])∧(i29[0] →* i29[1])∧(i11[0] >= i29[0] + 1 →* TRUE))
(1) -> (0), if ((i29[1] + 1 →* i29[0])∧(i11[1] →* i11[0]))
(1) (i11[0]=i11[1]∧i29[0]=i29[1]∧>=(i11[0], +(i29[0], 1))=TRUE ⇒ LOAD622(i11[0], i29[0])≥NonInfC∧LOAD622(i11[0], i29[0])≥COND_LOAD622(>=(i11[0], +(i29[0], 1)), i11[0], i29[0])∧(UIncreasing(COND_LOAD622(>=(i11[0], +(i29[0], 1)), i11[0], i29[0])), ≥))
(2) (>=(i11[0], +(i29[0], 1))=TRUE ⇒ LOAD622(i11[0], i29[0])≥NonInfC∧LOAD622(i11[0], i29[0])≥COND_LOAD622(>=(i11[0], +(i29[0], 1)), i11[0], i29[0])∧(UIncreasing(COND_LOAD622(>=(i11[0], +(i29[0], 1)), i11[0], i29[0])), ≥))
(3) (i11[0] + [-1] + [-1]i29[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD622(>=(i11[0], +(i29[0], 1)), i11[0], i29[0])), ≥)∧[(-1)bni_8 + (-1)Bound*bni_8] + [(-1)bni_8]i29[0] + [bni_8]i11[0] ≥ 0∧[(-1)bso_9] ≥ 0)
(4) (i11[0] + [-1] + [-1]i29[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD622(>=(i11[0], +(i29[0], 1)), i11[0], i29[0])), ≥)∧[(-1)bni_8 + (-1)Bound*bni_8] + [(-1)bni_8]i29[0] + [bni_8]i11[0] ≥ 0∧[(-1)bso_9] ≥ 0)
(5) (i11[0] + [-1] + [-1]i29[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD622(>=(i11[0], +(i29[0], 1)), i11[0], i29[0])), ≥)∧[(-1)bni_8 + (-1)Bound*bni_8] + [(-1)bni_8]i29[0] + [bni_8]i11[0] ≥ 0∧[(-1)bso_9] ≥ 0)
(6) (i11[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD622(>=(i11[0], +(i29[0], 1)), i11[0], i29[0])), ≥)∧[(-1)Bound*bni_8] + [bni_8]i11[0] ≥ 0∧[(-1)bso_9] ≥ 0)
(7) (i11[0] ≥ 0∧i29[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD622(>=(i11[0], +(i29[0], 1)), i11[0], i29[0])), ≥)∧[(-1)Bound*bni_8] + [bni_8]i11[0] ≥ 0∧[(-1)bso_9] ≥ 0)
(8) (i11[0] ≥ 0∧i29[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD622(>=(i11[0], +(i29[0], 1)), i11[0], i29[0])), ≥)∧[(-1)Bound*bni_8] + [bni_8]i11[0] ≥ 0∧[(-1)bso_9] ≥ 0)
(9) (COND_LOAD622(TRUE, i11[1], i29[1])≥NonInfC∧COND_LOAD622(TRUE, i11[1], i29[1])≥LOAD622(i11[1], +(i29[1], 1))∧(UIncreasing(LOAD622(i11[1], +(i29[1], 1))), ≥))
(10) ((UIncreasing(LOAD622(i11[1], +(i29[1], 1))), ≥)∧[1 + (-1)bso_11] ≥ 0)
(11) ((UIncreasing(LOAD622(i11[1], +(i29[1], 1))), ≥)∧[1 + (-1)bso_11] ≥ 0)
(12) ((UIncreasing(LOAD622(i11[1], +(i29[1], 1))), ≥)∧[1 + (-1)bso_11] ≥ 0)
(13) ((UIncreasing(LOAD622(i11[1], +(i29[1], 1))), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_11] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(LOAD622(x1, x2)) = [-1] + [-1]x2 + x1
POL(COND_LOAD622(x1, x2, x3)) = [-1] + [-1]x3 + x2
POL(>=(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(1) = [1]
COND_LOAD622(TRUE, i11[1], i29[1]) → LOAD622(i11[1], +(i29[1], 1))
LOAD622(i11[0], i29[0]) → COND_LOAD622(>=(i11[0], +(i29[0], 1)), i11[0], i29[0])
LOAD622(i11[0], i29[0]) → COND_LOAD622(>=(i11[0], +(i29[0], 1)), i11[0], i29[0])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer