(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: PastaA10
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/

public class PastaA10 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();

while (x != y) {
if (x > y) {
y++;
} else {
x++;
}
}
}
}


public class Random {
static String[] args;
static int index = 0;

public static int random() {
String string = args[index];
index++;
return string.length();
}
}


(1) JBC2FIG (SOUND transformation)

Constructed FIGraph.

(2) Obligation:

FIGraph based on JBC Program:
Graph of 192 nodes with 1 SCC.

(3) FIGtoITRSProof (SOUND transformation)

Transformed FIGraph to ITRS rules

(4) Obligation:

ITRS problem:

The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean

The TRS R consists of the following rules:
Load1069(i14, i53) → Cond_Load1069(i14 < i53, i14, i53)
Cond_Load1069(TRUE, i14, i53) → Load1069(i14 + 1, i53)
Load1069(i14, i53) → Cond_Load10691(i14 > i53, i14, i53)
Cond_Load10691(TRUE, i14, i53) → Load1069(i14, i53 + 1)
The set Q consists of the following terms:
Load1069(x0, x1)
Cond_Load1069(TRUE, x0, x1)
Cond_Load10691(TRUE, x0, x1)

(5) ITRStoIDPProof (EQUIVALENT transformation)

Added dependency pairs

(6) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


The ITRS R consists of the following rules:
Load1069(i14, i53) → Cond_Load1069(i14 < i53, i14, i53)
Cond_Load1069(TRUE, i14, i53) → Load1069(i14 + 1, i53)
Load1069(i14, i53) → Cond_Load10691(i14 > i53, i14, i53)
Cond_Load10691(TRUE, i14, i53) → Load1069(i14, i53 + 1)

The integer pair graph contains the following rules and edges:
(0): LOAD1069(i14[0], i53[0]) → COND_LOAD1069(i14[0] < i53[0], i14[0], i53[0])
(1): COND_LOAD1069(TRUE, i14[1], i53[1]) → LOAD1069(i14[1] + 1, i53[1])
(2): LOAD1069(i14[2], i53[2]) → COND_LOAD10691(i14[2] > i53[2], i14[2], i53[2])
(3): COND_LOAD10691(TRUE, i14[3], i53[3]) → LOAD1069(i14[3], i53[3] + 1)

(0) -> (1), if ((i14[0] < i53[0]* TRUE)∧(i53[0]* i53[1])∧(i14[0]* i14[1]))


(1) -> (0), if ((i14[1] + 1* i14[0])∧(i53[1]* i53[0]))


(1) -> (2), if ((i14[1] + 1* i14[2])∧(i53[1]* i53[2]))


(2) -> (3), if ((i14[2]* i14[3])∧(i53[2]* i53[3])∧(i14[2] > i53[2]* TRUE))


(3) -> (0), if ((i53[3] + 1* i53[0])∧(i14[3]* i14[0]))


(3) -> (2), if ((i53[3] + 1* i53[2])∧(i14[3]* i14[2]))



The set Q consists of the following terms:
Load1069(x0, x1)
Cond_Load1069(TRUE, x0, x1)
Cond_Load10691(TRUE, x0, x1)

(7) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(8) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): LOAD1069(i14[0], i53[0]) → COND_LOAD1069(i14[0] < i53[0], i14[0], i53[0])
(1): COND_LOAD1069(TRUE, i14[1], i53[1]) → LOAD1069(i14[1] + 1, i53[1])
(2): LOAD1069(i14[2], i53[2]) → COND_LOAD10691(i14[2] > i53[2], i14[2], i53[2])
(3): COND_LOAD10691(TRUE, i14[3], i53[3]) → LOAD1069(i14[3], i53[3] + 1)

(0) -> (1), if ((i14[0] < i53[0]* TRUE)∧(i53[0]* i53[1])∧(i14[0]* i14[1]))


(1) -> (0), if ((i14[1] + 1* i14[0])∧(i53[1]* i53[0]))


(1) -> (2), if ((i14[1] + 1* i14[2])∧(i53[1]* i53[2]))


(2) -> (3), if ((i14[2]* i14[3])∧(i53[2]* i53[3])∧(i14[2] > i53[2]* TRUE))


(3) -> (0), if ((i53[3] + 1* i53[0])∧(i14[3]* i14[0]))


(3) -> (2), if ((i53[3] + 1* i53[2])∧(i14[3]* i14[2]))



The set Q consists of the following terms:
Load1069(x0, x1)
Cond_Load1069(TRUE, x0, x1)
Cond_Load10691(TRUE, x0, x1)

(9) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair LOAD1069(i14, i53) → COND_LOAD1069(<(i14, i53), i14, i53) the following chains were created:
  • We consider the chain LOAD1069(i14[0], i53[0]) → COND_LOAD1069(<(i14[0], i53[0]), i14[0], i53[0]), COND_LOAD1069(TRUE, i14[1], i53[1]) → LOAD1069(+(i14[1], 1), i53[1]) which results in the following constraint:

    (1)    (<(i14[0], i53[0])=TRUEi53[0]=i53[1]i14[0]=i14[1]LOAD1069(i14[0], i53[0])≥NonInfC∧LOAD1069(i14[0], i53[0])≥COND_LOAD1069(<(i14[0], i53[0]), i14[0], i53[0])∧(UIncreasing(COND_LOAD1069(<(i14[0], i53[0]), i14[0], i53[0])), ≥))



    We simplified constraint (1) using rule (IV) which results in the following new constraint:

    (2)    (<(i14[0], i53[0])=TRUELOAD1069(i14[0], i53[0])≥NonInfC∧LOAD1069(i14[0], i53[0])≥COND_LOAD1069(<(i14[0], i53[0]), i14[0], i53[0])∧(UIncreasing(COND_LOAD1069(<(i14[0], i53[0]), i14[0], i53[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (i53[0] + [-1] + [-1]i14[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1069(<(i14[0], i53[0]), i14[0], i53[0])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]max{i14[0] + [-1]i53[0], [-1]i14[0] + i53[0]} ≥ 0∧[(-1)bso_14] + max{i14[0] + [-1]i53[0], [-1]i14[0] + i53[0]} + [-1]max{i14[0] + [-1]i53[0], [-1]i14[0] + i53[0]} ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (i53[0] + [-1] + [-1]i14[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1069(<(i14[0], i53[0]), i14[0], i53[0])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]max{i14[0] + [-1]i53[0], [-1]i14[0] + i53[0]} ≥ 0∧[(-1)bso_14] + max{i14[0] + [-1]i53[0], [-1]i14[0] + i53[0]} + [-1]max{i14[0] + [-1]i53[0], [-1]i14[0] + i53[0]} ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (i53[0] + [-1] + [-1]i14[0] ≥ 0∧[-1] + [-2]i14[0] + [2]i53[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1069(<(i14[0], i53[0]), i14[0], i53[0])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]i14[0] + [bni_13]i53[0] ≥ 0∧[(-1)bso_14] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (i53[0] ≥ 0∧[1] + [2]i53[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1069(<(i14[0], i53[0]), i14[0], i53[0])), ≥)∧[(-1)Bound*bni_13] + [bni_13]i53[0] ≥ 0∧[(-1)bso_14] ≥ 0)



    We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (7)    (i53[0] ≥ 0∧[1] + [2]i53[0] ≥ 0∧i14[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1069(<(i14[0], i53[0]), i14[0], i53[0])), ≥)∧[(-1)Bound*bni_13] + [bni_13]i53[0] ≥ 0∧[(-1)bso_14] ≥ 0)


    (8)    (i53[0] ≥ 0∧[1] + [2]i53[0] ≥ 0∧i14[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1069(<(i14[0], i53[0]), i14[0], i53[0])), ≥)∧[(-1)Bound*bni_13] + [bni_13]i53[0] ≥ 0∧[(-1)bso_14] ≥ 0)



    We simplified constraint (7) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (9)    (i53[0] ≥ 0∧i14[0] ≥ 0∧i53[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1069(<(i14[0], i53[0]), i14[0], i53[0])), ≥)∧[(-1)Bound*bni_13] + [bni_13]i53[0] ≥ 0∧[(-1)bso_14] ≥ 0)



    We simplified constraint (8) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (10)    (i53[0] ≥ 0∧i14[0] ≥ 0∧i53[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1069(<(i14[0], i53[0]), i14[0], i53[0])), ≥)∧[(-1)Bound*bni_13] + [bni_13]i53[0] ≥ 0∧[(-1)bso_14] ≥ 0)







For Pair COND_LOAD1069(TRUE, i14, i53) → LOAD1069(+(i14, 1), i53) the following chains were created:
  • We consider the chain COND_LOAD1069(TRUE, i14[1], i53[1]) → LOAD1069(+(i14[1], 1), i53[1]), LOAD1069(i14[0], i53[0]) → COND_LOAD1069(<(i14[0], i53[0]), i14[0], i53[0]), COND_LOAD1069(TRUE, i14[1], i53[1]) → LOAD1069(+(i14[1], 1), i53[1]) which results in the following constraint:

    (11)    (+(i14[1], 1)=i14[0]i53[1]=i53[0]<(i14[0], i53[0])=TRUEi53[0]=i53[1]1i14[0]=i14[1]1COND_LOAD1069(TRUE, i14[1]1, i53[1]1)≥NonInfC∧COND_LOAD1069(TRUE, i14[1]1, i53[1]1)≥LOAD1069(+(i14[1]1, 1), i53[1]1)∧(UIncreasing(LOAD1069(+(i14[1]1, 1), i53[1]1)), ≥))



    We simplified constraint (11) using rule (III) which results in the following new constraint:

    (12)    (<(+(i14[1], 1), i53[0])=TRUECOND_LOAD1069(TRUE, +(i14[1], 1), i53[0])≥NonInfC∧COND_LOAD1069(TRUE, +(i14[1], 1), i53[0])≥LOAD1069(+(+(i14[1], 1), 1), i53[0])∧(UIncreasing(LOAD1069(+(i14[1]1, 1), i53[1]1)), ≥))



    We simplified constraint (12) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (13)    (i53[0] + [-2] + [-1]i14[1] ≥ 0 ⇒ (UIncreasing(LOAD1069(+(i14[1]1, 1), i53[1]1)), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]max{[1] + i14[1] + [-1]i53[0], [-1] + [-1]i14[1] + i53[0]} ≥ 0∧[(-1)bso_16] + max{[1] + i14[1] + [-1]i53[0], [-1] + [-1]i14[1] + i53[0]} + [-1]max{[2] + i14[1] + [-1]i53[0], [-2] + [-1]i14[1] + i53[0]} ≥ 0)



    We simplified constraint (13) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (14)    (i53[0] + [-2] + [-1]i14[1] ≥ 0 ⇒ (UIncreasing(LOAD1069(+(i14[1]1, 1), i53[1]1)), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]max{[1] + i14[1] + [-1]i53[0], [-1] + [-1]i14[1] + i53[0]} ≥ 0∧[(-1)bso_16] + max{[1] + i14[1] + [-1]i53[0], [-1] + [-1]i14[1] + i53[0]} + [-1]max{[2] + i14[1] + [-1]i53[0], [-2] + [-1]i14[1] + i53[0]} ≥ 0)



    We simplified constraint (14) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraints:

    (15)    (i53[0] + [-2] + [-1]i14[1] ≥ 0∧[-3] + [-2]i14[1] + [2]i53[0] ≥ 0∧[4] + [2]i14[1] + [-2]i53[0] ≥ 0 ⇒ (UIncreasing(LOAD1069(+(i14[1]1, 1), i53[1]1)), ≥)∧[(-2)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]i14[1] + [bni_15]i53[0] ≥ 0∧[-3 + (-1)bso_16] + [-2]i14[1] + [2]i53[0] ≥ 0)


    (16)    (i53[0] + [-2] + [-1]i14[1] ≥ 0∧[-3] + [-2]i14[1] + [2]i53[0] ≥ 0∧[-5] + [-2]i14[1] + [2]i53[0] ≥ 0 ⇒ (UIncreasing(LOAD1069(+(i14[1]1, 1), i53[1]1)), ≥)∧[(-2)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]i14[1] + [bni_15]i53[0] ≥ 0∧[1 + (-1)bso_16] ≥ 0)



    We simplified constraint (15) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (17)    (i53[0] ≥ 0∧[1] + [2]i53[0] ≥ 0∧[-2]i53[0] ≥ 0 ⇒ (UIncreasing(LOAD1069(+(i14[1]1, 1), i53[1]1)), ≥)∧[(-1)Bound*bni_15] + [bni_15]i53[0] ≥ 0∧[1 + (-1)bso_16] + [2]i53[0] ≥ 0)



    We simplified constraint (16) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (18)    (i53[0] ≥ 0∧[1] + [2]i53[0] ≥ 0∧[-1] + [2]i53[0] ≥ 0 ⇒ (UIncreasing(LOAD1069(+(i14[1]1, 1), i53[1]1)), ≥)∧[(-1)Bound*bni_15] + [bni_15]i53[0] ≥ 0∧[1 + (-1)bso_16] ≥ 0)



    We simplified constraint (17) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (19)    (0 ≥ 0∧[1] ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(LOAD1069(+(i14[1]1, 1), i53[1]1)), ≥)∧[(-1)Bound*bni_15] ≥ 0∧[1 + (-1)bso_16] ≥ 0)



    We simplified constraint (19) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (20)    (0 ≥ 0∧[1] ≥ 0∧0 ≥ 0∧i14[1] ≥ 0 ⇒ (UIncreasing(LOAD1069(+(i14[1]1, 1), i53[1]1)), ≥)∧[(-1)Bound*bni_15] ≥ 0∧[1 + (-1)bso_16] ≥ 0)


    (21)    (0 ≥ 0∧[1] ≥ 0∧0 ≥ 0∧i14[1] ≥ 0 ⇒ (UIncreasing(LOAD1069(+(i14[1]1, 1), i53[1]1)), ≥)∧[(-1)Bound*bni_15] ≥ 0∧[1 + (-1)bso_16] ≥ 0)



    We simplified constraint (18) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (22)    (i53[0] ≥ 0∧[1] + [2]i53[0] ≥ 0∧[-1] + [2]i53[0] ≥ 0∧i14[1] ≥ 0 ⇒ (UIncreasing(LOAD1069(+(i14[1]1, 1), i53[1]1)), ≥)∧[(-1)Bound*bni_15] + [bni_15]i53[0] ≥ 0∧[1 + (-1)bso_16] ≥ 0)


    (23)    (i53[0] ≥ 0∧[1] + [2]i53[0] ≥ 0∧[-1] + [2]i53[0] ≥ 0∧i14[1] ≥ 0 ⇒ (UIncreasing(LOAD1069(+(i14[1]1, 1), i53[1]1)), ≥)∧[(-1)Bound*bni_15] + [bni_15]i53[0] ≥ 0∧[1 + (-1)bso_16] ≥ 0)



    We simplified constraint (22) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (24)    (i53[0] ≥ 0∧i14[1] ≥ 0∧i53[0] ≥ 0∧i53[0] ≥ 0 ⇒ (UIncreasing(LOAD1069(+(i14[1]1, 1), i53[1]1)), ≥)∧[(-1)Bound*bni_15] + [bni_15]i53[0] ≥ 0∧[1 + (-1)bso_16] ≥ 0)



    We simplified constraint (23) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (25)    (i53[0] ≥ 0∧i14[1] ≥ 0∧i53[0] ≥ 0∧i53[0] ≥ 0 ⇒ (UIncreasing(LOAD1069(+(i14[1]1, 1), i53[1]1)), ≥)∧[(-1)Bound*bni_15] + [bni_15]i53[0] ≥ 0∧[1 + (-1)bso_16] ≥ 0)



  • We consider the chain COND_LOAD10691(TRUE, i14[3], i53[3]) → LOAD1069(i14[3], +(i53[3], 1)), LOAD1069(i14[0], i53[0]) → COND_LOAD1069(<(i14[0], i53[0]), i14[0], i53[0]), COND_LOAD1069(TRUE, i14[1], i53[1]) → LOAD1069(+(i14[1], 1), i53[1]) which results in the following constraint:

    (26)    (+(i53[3], 1)=i53[0]i14[3]=i14[0]<(i14[0], i53[0])=TRUEi53[0]=i53[1]i14[0]=i14[1]COND_LOAD1069(TRUE, i14[1], i53[1])≥NonInfC∧COND_LOAD1069(TRUE, i14[1], i53[1])≥LOAD1069(+(i14[1], 1), i53[1])∧(UIncreasing(LOAD1069(+(i14[1], 1), i53[1])), ≥))



    We simplified constraint (26) using rule (III) which results in the following new constraint:

    (27)    (<(i14[0], +(i53[3], 1))=TRUECOND_LOAD1069(TRUE, i14[0], +(i53[3], 1))≥NonInfC∧COND_LOAD1069(TRUE, i14[0], +(i53[3], 1))≥LOAD1069(+(i14[0], 1), +(i53[3], 1))∧(UIncreasing(LOAD1069(+(i14[1], 1), i53[1])), ≥))



    We simplified constraint (27) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (28)    (i53[3] + [-1]i14[0] ≥ 0 ⇒ (UIncreasing(LOAD1069(+(i14[1], 1), i53[1])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]max{[-1] + i14[0] + [-1]i53[3], [1] + [-1]i14[0] + i53[3]} ≥ 0∧[(-1)bso_16] + max{[-1] + i14[0] + [-1]i53[3], [1] + [-1]i14[0] + i53[3]} + [-1]max{i14[0] + [-1]i53[3], [-1]i14[0] + i53[3]} ≥ 0)



    We simplified constraint (28) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (29)    (i53[3] + [-1]i14[0] ≥ 0 ⇒ (UIncreasing(LOAD1069(+(i14[1], 1), i53[1])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]max{[-1] + i14[0] + [-1]i53[3], [1] + [-1]i14[0] + i53[3]} ≥ 0∧[(-1)bso_16] + max{[-1] + i14[0] + [-1]i53[3], [1] + [-1]i14[0] + i53[3]} + [-1]max{i14[0] + [-1]i53[3], [-1]i14[0] + i53[3]} ≥ 0)



    We simplified constraint (29) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraints:

    (30)    (i53[3] + [-1]i14[0] ≥ 0∧[1] + [-2]i14[0] + [2]i53[3] ≥ 0∧[2]i14[0] + [-2]i53[3] ≥ 0 ⇒ (UIncreasing(LOAD1069(+(i14[1], 1), i53[1])), ≥)∧[(-1)Bound*bni_15] + [(-1)bni_15]i14[0] + [bni_15]i53[3] ≥ 0∧[1 + (-1)bso_16] + [-2]i14[0] + [2]i53[3] ≥ 0)


    (31)    (i53[3] + [-1]i14[0] ≥ 0∧[1] + [-2]i14[0] + [2]i53[3] ≥ 0∧[-1] + [-2]i14[0] + [2]i53[3] ≥ 0 ⇒ (UIncreasing(LOAD1069(+(i14[1], 1), i53[1])), ≥)∧[(-1)Bound*bni_15] + [(-1)bni_15]i14[0] + [bni_15]i53[3] ≥ 0∧[1 + (-1)bso_16] ≥ 0)



    We simplified constraint (30) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (32)    (i53[3] ≥ 0∧[1] + [2]i53[3] ≥ 0∧[-2]i53[3] ≥ 0 ⇒ (UIncreasing(LOAD1069(+(i14[1], 1), i53[1])), ≥)∧[(-1)Bound*bni_15] + [bni_15]i53[3] ≥ 0∧[1 + (-1)bso_16] + [2]i53[3] ≥ 0)



    We simplified constraint (31) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (33)    (i53[3] ≥ 0∧[1] + [2]i53[3] ≥ 0∧[-1] + [2]i53[3] ≥ 0 ⇒ (UIncreasing(LOAD1069(+(i14[1], 1), i53[1])), ≥)∧[(-1)Bound*bni_15] + [bni_15]i53[3] ≥ 0∧[1 + (-1)bso_16] ≥ 0)



    We simplified constraint (32) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (34)    (0 ≥ 0∧[1] ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(LOAD1069(+(i14[1], 1), i53[1])), ≥)∧[(-1)Bound*bni_15] ≥ 0∧[1 + (-1)bso_16] ≥ 0)



    We simplified constraint (34) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (35)    (0 ≥ 0∧[1] ≥ 0∧0 ≥ 0∧i14[0] ≥ 0 ⇒ (UIncreasing(LOAD1069(+(i14[1], 1), i53[1])), ≥)∧[(-1)Bound*bni_15] ≥ 0∧[1 + (-1)bso_16] ≥ 0)


    (36)    (0 ≥ 0∧[1] ≥ 0∧0 ≥ 0∧i14[0] ≥ 0 ⇒ (UIncreasing(LOAD1069(+(i14[1], 1), i53[1])), ≥)∧[(-1)Bound*bni_15] ≥ 0∧[1 + (-1)bso_16] ≥ 0)



    We simplified constraint (33) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (37)    (i53[3] ≥ 0∧[1] + [2]i53[3] ≥ 0∧[-1] + [2]i53[3] ≥ 0∧i14[0] ≥ 0 ⇒ (UIncreasing(LOAD1069(+(i14[1], 1), i53[1])), ≥)∧[(-1)Bound*bni_15] + [bni_15]i53[3] ≥ 0∧[1 + (-1)bso_16] ≥ 0)


    (38)    (i53[3] ≥ 0∧[1] + [2]i53[3] ≥ 0∧[-1] + [2]i53[3] ≥ 0∧i14[0] ≥ 0 ⇒ (UIncreasing(LOAD1069(+(i14[1], 1), i53[1])), ≥)∧[(-1)Bound*bni_15] + [bni_15]i53[3] ≥ 0∧[1 + (-1)bso_16] ≥ 0)



    We simplified constraint (37) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (39)    (i53[3] ≥ 0∧i14[0] ≥ 0∧i53[3] ≥ 0∧i53[3] ≥ 0 ⇒ (UIncreasing(LOAD1069(+(i14[1], 1), i53[1])), ≥)∧[(-1)Bound*bni_15] + [bni_15]i53[3] ≥ 0∧[1 + (-1)bso_16] ≥ 0)



    We simplified constraint (38) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (40)    (i53[3] ≥ 0∧i14[0] ≥ 0∧i53[3] ≥ 0∧i53[3] ≥ 0 ⇒ (UIncreasing(LOAD1069(+(i14[1], 1), i53[1])), ≥)∧[(-1)Bound*bni_15] + [bni_15]i53[3] ≥ 0∧[1 + (-1)bso_16] ≥ 0)







For Pair LOAD1069(i14, i53) → COND_LOAD10691(>(i14, i53), i14, i53) the following chains were created:
  • We consider the chain LOAD1069(i14[2], i53[2]) → COND_LOAD10691(>(i14[2], i53[2]), i14[2], i53[2]), COND_LOAD10691(TRUE, i14[3], i53[3]) → LOAD1069(i14[3], +(i53[3], 1)) which results in the following constraint:

    (41)    (i14[2]=i14[3]i53[2]=i53[3]>(i14[2], i53[2])=TRUELOAD1069(i14[2], i53[2])≥NonInfC∧LOAD1069(i14[2], i53[2])≥COND_LOAD10691(>(i14[2], i53[2]), i14[2], i53[2])∧(UIncreasing(COND_LOAD10691(>(i14[2], i53[2]), i14[2], i53[2])), ≥))



    We simplified constraint (41) using rule (IV) which results in the following new constraint:

    (42)    (>(i14[2], i53[2])=TRUELOAD1069(i14[2], i53[2])≥NonInfC∧LOAD1069(i14[2], i53[2])≥COND_LOAD10691(>(i14[2], i53[2]), i14[2], i53[2])∧(UIncreasing(COND_LOAD10691(>(i14[2], i53[2]), i14[2], i53[2])), ≥))



    We simplified constraint (42) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (43)    (i14[2] + [-1] + [-1]i53[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD10691(>(i14[2], i53[2]), i14[2], i53[2])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [bni_17]max{i14[2] + [-1]i53[2], [-1]i14[2] + i53[2]} ≥ 0∧[(-1)bso_18] + max{i14[2] + [-1]i53[2], [-1]i14[2] + i53[2]} + [-1]max{i14[2] + [-1]i53[2], [-1]i14[2] + i53[2]} ≥ 0)



    We simplified constraint (43) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (44)    (i14[2] + [-1] + [-1]i53[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD10691(>(i14[2], i53[2]), i14[2], i53[2])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [bni_17]max{i14[2] + [-1]i53[2], [-1]i14[2] + i53[2]} ≥ 0∧[(-1)bso_18] + max{i14[2] + [-1]i53[2], [-1]i14[2] + i53[2]} + [-1]max{i14[2] + [-1]i53[2], [-1]i14[2] + i53[2]} ≥ 0)



    We simplified constraint (44) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (45)    (i14[2] + [-1] + [-1]i53[2] ≥ 0∧[2]i14[2] + [-2]i53[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD10691(>(i14[2], i53[2]), i14[2], i53[2])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [bni_17]i14[2] + [(-1)bni_17]i53[2] ≥ 0∧[(-1)bso_18] ≥ 0)



    We simplified constraint (45) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (46)    (i14[2] ≥ 0∧[2] + [2]i14[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD10691(>(i14[2], i53[2]), i14[2], i53[2])), ≥)∧[(-1)Bound*bni_17] + [bni_17]i14[2] ≥ 0∧[(-1)bso_18] ≥ 0)



    We simplified constraint (46) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (47)    (i14[2] ≥ 0∧[2] + [2]i14[2] ≥ 0∧i53[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD10691(>(i14[2], i53[2]), i14[2], i53[2])), ≥)∧[(-1)Bound*bni_17] + [bni_17]i14[2] ≥ 0∧[(-1)bso_18] ≥ 0)


    (48)    (i14[2] ≥ 0∧[2] + [2]i14[2] ≥ 0∧i53[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD10691(>(i14[2], i53[2]), i14[2], i53[2])), ≥)∧[(-1)Bound*bni_17] + [bni_17]i14[2] ≥ 0∧[(-1)bso_18] ≥ 0)



    We simplified constraint (47) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (49)    (i14[2] ≥ 0∧i53[2] ≥ 0∧[1] + i14[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD10691(>(i14[2], i53[2]), i14[2], i53[2])), ≥)∧[(-1)Bound*bni_17] + [bni_17]i14[2] ≥ 0∧[(-1)bso_18] ≥ 0)



    We simplified constraint (48) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (50)    (i14[2] ≥ 0∧i53[2] ≥ 0∧[1] + i14[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD10691(>(i14[2], i53[2]), i14[2], i53[2])), ≥)∧[(-1)Bound*bni_17] + [bni_17]i14[2] ≥ 0∧[(-1)bso_18] ≥ 0)







For Pair COND_LOAD10691(TRUE, i14, i53) → LOAD1069(i14, +(i53, 1)) the following chains were created:
  • We consider the chain COND_LOAD1069(TRUE, i14[1], i53[1]) → LOAD1069(+(i14[1], 1), i53[1]), LOAD1069(i14[2], i53[2]) → COND_LOAD10691(>(i14[2], i53[2]), i14[2], i53[2]), COND_LOAD10691(TRUE, i14[3], i53[3]) → LOAD1069(i14[3], +(i53[3], 1)) which results in the following constraint:

    (51)    (+(i14[1], 1)=i14[2]i53[1]=i53[2]i14[2]=i14[3]i53[2]=i53[3]>(i14[2], i53[2])=TRUECOND_LOAD10691(TRUE, i14[3], i53[3])≥NonInfC∧COND_LOAD10691(TRUE, i14[3], i53[3])≥LOAD1069(i14[3], +(i53[3], 1))∧(UIncreasing(LOAD1069(i14[3], +(i53[3], 1))), ≥))



    We simplified constraint (51) using rule (III) which results in the following new constraint:

    (52)    (>(+(i14[1], 1), i53[2])=TRUECOND_LOAD10691(TRUE, +(i14[1], 1), i53[2])≥NonInfC∧COND_LOAD10691(TRUE, +(i14[1], 1), i53[2])≥LOAD1069(+(i14[1], 1), +(i53[2], 1))∧(UIncreasing(LOAD1069(i14[3], +(i53[3], 1))), ≥))



    We simplified constraint (52) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (53)    (i14[1] + [-1]i53[2] ≥ 0 ⇒ (UIncreasing(LOAD1069(i14[3], +(i53[3], 1))), ≥)∧[(-1)bni_19 + (-1)Bound*bni_19] + [bni_19]max{[1] + i14[1] + [-1]i53[2], [-1] + [-1]i14[1] + i53[2]} ≥ 0∧[(-1)bso_20] + max{[1] + i14[1] + [-1]i53[2], [-1] + [-1]i14[1] + i53[2]} + [-1]max{i14[1] + [-1]i53[2], [-1]i14[1] + i53[2]} ≥ 0)



    We simplified constraint (53) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (54)    (i14[1] + [-1]i53[2] ≥ 0 ⇒ (UIncreasing(LOAD1069(i14[3], +(i53[3], 1))), ≥)∧[(-1)bni_19 + (-1)Bound*bni_19] + [bni_19]max{[1] + i14[1] + [-1]i53[2], [-1] + [-1]i14[1] + i53[2]} ≥ 0∧[(-1)bso_20] + max{[1] + i14[1] + [-1]i53[2], [-1] + [-1]i14[1] + i53[2]} + [-1]max{i14[1] + [-1]i53[2], [-1]i14[1] + i53[2]} ≥ 0)



    We simplified constraint (54) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (55)    (i14[1] + [-1]i53[2] ≥ 0∧[2] + [2]i14[1] + [-2]i53[2] ≥ 0∧[2]i14[1] + [-2]i53[2] ≥ 0 ⇒ (UIncreasing(LOAD1069(i14[3], +(i53[3], 1))), ≥)∧[(-1)Bound*bni_19] + [bni_19]i14[1] + [(-1)bni_19]i53[2] ≥ 0∧[1 + (-1)bso_20] ≥ 0)



    We simplified constraint (55) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (56)    (i14[1] ≥ 0∧[2] + [2]i14[1] ≥ 0∧[2]i14[1] ≥ 0 ⇒ (UIncreasing(LOAD1069(i14[3], +(i53[3], 1))), ≥)∧[(-1)Bound*bni_19] + [bni_19]i14[1] ≥ 0∧[1 + (-1)bso_20] ≥ 0)



    We simplified constraint (56) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (57)    (i14[1] ≥ 0∧[2] + [2]i14[1] ≥ 0∧[2]i14[1] ≥ 0∧i53[2] ≥ 0 ⇒ (UIncreasing(LOAD1069(i14[3], +(i53[3], 1))), ≥)∧[(-1)Bound*bni_19] + [bni_19]i14[1] ≥ 0∧[1 + (-1)bso_20] ≥ 0)


    (58)    (i14[1] ≥ 0∧[2] + [2]i14[1] ≥ 0∧[2]i14[1] ≥ 0∧i53[2] ≥ 0 ⇒ (UIncreasing(LOAD1069(i14[3], +(i53[3], 1))), ≥)∧[(-1)Bound*bni_19] + [bni_19]i14[1] ≥ 0∧[1 + (-1)bso_20] ≥ 0)



    We simplified constraint (57) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (59)    (i14[1] ≥ 0∧i53[2] ≥ 0∧[1] + i14[1] ≥ 0∧i14[1] ≥ 0 ⇒ (UIncreasing(LOAD1069(i14[3], +(i53[3], 1))), ≥)∧[(-1)Bound*bni_19] + [bni_19]i14[1] ≥ 0∧[1 + (-1)bso_20] ≥ 0)



    We simplified constraint (58) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (60)    (i14[1] ≥ 0∧i53[2] ≥ 0∧[1] + i14[1] ≥ 0∧i14[1] ≥ 0 ⇒ (UIncreasing(LOAD1069(i14[3], +(i53[3], 1))), ≥)∧[(-1)Bound*bni_19] + [bni_19]i14[1] ≥ 0∧[1 + (-1)bso_20] ≥ 0)



  • We consider the chain COND_LOAD10691(TRUE, i14[3], i53[3]) → LOAD1069(i14[3], +(i53[3], 1)), LOAD1069(i14[2], i53[2]) → COND_LOAD10691(>(i14[2], i53[2]), i14[2], i53[2]), COND_LOAD10691(TRUE, i14[3], i53[3]) → LOAD1069(i14[3], +(i53[3], 1)) which results in the following constraint:

    (61)    (+(i53[3], 1)=i53[2]i14[3]=i14[2]i14[2]=i14[3]1i53[2]=i53[3]1>(i14[2], i53[2])=TRUECOND_LOAD10691(TRUE, i14[3]1, i53[3]1)≥NonInfC∧COND_LOAD10691(TRUE, i14[3]1, i53[3]1)≥LOAD1069(i14[3]1, +(i53[3]1, 1))∧(UIncreasing(LOAD1069(i14[3]1, +(i53[3]1, 1))), ≥))



    We simplified constraint (61) using rule (III) which results in the following new constraint:

    (62)    (>(i14[2], +(i53[3], 1))=TRUECOND_LOAD10691(TRUE, i14[2], +(i53[3], 1))≥NonInfC∧COND_LOAD10691(TRUE, i14[2], +(i53[3], 1))≥LOAD1069(i14[2], +(+(i53[3], 1), 1))∧(UIncreasing(LOAD1069(i14[3]1, +(i53[3]1, 1))), ≥))



    We simplified constraint (62) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (63)    (i14[2] + [-2] + [-1]i53[3] ≥ 0 ⇒ (UIncreasing(LOAD1069(i14[3]1, +(i53[3]1, 1))), ≥)∧[(-1)bni_19 + (-1)Bound*bni_19] + [bni_19]max{[-1] + i14[2] + [-1]i53[3], [1] + [-1]i14[2] + i53[3]} ≥ 0∧[(-1)bso_20] + max{[-1] + i14[2] + [-1]i53[3], [1] + [-1]i14[2] + i53[3]} + [-1]max{[-2] + i14[2] + [-1]i53[3], [2] + [-1]i14[2] + i53[3]} ≥ 0)



    We simplified constraint (63) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (64)    (i14[2] + [-2] + [-1]i53[3] ≥ 0 ⇒ (UIncreasing(LOAD1069(i14[3]1, +(i53[3]1, 1))), ≥)∧[(-1)bni_19 + (-1)Bound*bni_19] + [bni_19]max{[-1] + i14[2] + [-1]i53[3], [1] + [-1]i14[2] + i53[3]} ≥ 0∧[(-1)bso_20] + max{[-1] + i14[2] + [-1]i53[3], [1] + [-1]i14[2] + i53[3]} + [-1]max{[-2] + i14[2] + [-1]i53[3], [2] + [-1]i14[2] + i53[3]} ≥ 0)



    We simplified constraint (64) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (65)    (i14[2] + [-2] + [-1]i53[3] ≥ 0∧[-2] + [2]i14[2] + [-2]i53[3] ≥ 0∧[-4] + [2]i14[2] + [-2]i53[3] ≥ 0 ⇒ (UIncreasing(LOAD1069(i14[3]1, +(i53[3]1, 1))), ≥)∧[(-2)bni_19 + (-1)Bound*bni_19] + [bni_19]i14[2] + [(-1)bni_19]i53[3] ≥ 0∧[1 + (-1)bso_20] ≥ 0)



    We simplified constraint (65) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (66)    (i14[2] ≥ 0∧[2] + [2]i14[2] ≥ 0∧[2]i14[2] ≥ 0 ⇒ (UIncreasing(LOAD1069(i14[3]1, +(i53[3]1, 1))), ≥)∧[(-1)Bound*bni_19] + [bni_19]i14[2] ≥ 0∧[1 + (-1)bso_20] ≥ 0)



    We simplified constraint (66) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (67)    (i14[2] ≥ 0∧[2] + [2]i14[2] ≥ 0∧[2]i14[2] ≥ 0∧i53[3] ≥ 0 ⇒ (UIncreasing(LOAD1069(i14[3]1, +(i53[3]1, 1))), ≥)∧[(-1)Bound*bni_19] + [bni_19]i14[2] ≥ 0∧[1 + (-1)bso_20] ≥ 0)


    (68)    (i14[2] ≥ 0∧[2] + [2]i14[2] ≥ 0∧[2]i14[2] ≥ 0∧i53[3] ≥ 0 ⇒ (UIncreasing(LOAD1069(i14[3]1, +(i53[3]1, 1))), ≥)∧[(-1)Bound*bni_19] + [bni_19]i14[2] ≥ 0∧[1 + (-1)bso_20] ≥ 0)



    We simplified constraint (67) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (69)    (i14[2] ≥ 0∧i53[3] ≥ 0∧[1] + i14[2] ≥ 0∧i14[2] ≥ 0 ⇒ (UIncreasing(LOAD1069(i14[3]1, +(i53[3]1, 1))), ≥)∧[(-1)Bound*bni_19] + [bni_19]i14[2] ≥ 0∧[1 + (-1)bso_20] ≥ 0)



    We simplified constraint (68) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (70)    (i14[2] ≥ 0∧i53[3] ≥ 0∧[1] + i14[2] ≥ 0∧i14[2] ≥ 0 ⇒ (UIncreasing(LOAD1069(i14[3]1, +(i53[3]1, 1))), ≥)∧[(-1)Bound*bni_19] + [bni_19]i14[2] ≥ 0∧[1 + (-1)bso_20] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • LOAD1069(i14, i53) → COND_LOAD1069(<(i14, i53), i14, i53)
    • (i53[0] ≥ 0∧i14[0] ≥ 0∧i53[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1069(<(i14[0], i53[0]), i14[0], i53[0])), ≥)∧[(-1)Bound*bni_13] + [bni_13]i53[0] ≥ 0∧[(-1)bso_14] ≥ 0)
    • (i53[0] ≥ 0∧i14[0] ≥ 0∧i53[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1069(<(i14[0], i53[0]), i14[0], i53[0])), ≥)∧[(-1)Bound*bni_13] + [bni_13]i53[0] ≥ 0∧[(-1)bso_14] ≥ 0)

  • COND_LOAD1069(TRUE, i14, i53) → LOAD1069(+(i14, 1), i53)
    • (0 ≥ 0∧[1] ≥ 0∧0 ≥ 0∧i14[1] ≥ 0 ⇒ (UIncreasing(LOAD1069(+(i14[1]1, 1), i53[1]1)), ≥)∧[(-1)Bound*bni_15] ≥ 0∧[1 + (-1)bso_16] ≥ 0)
    • (0 ≥ 0∧[1] ≥ 0∧0 ≥ 0∧i14[1] ≥ 0 ⇒ (UIncreasing(LOAD1069(+(i14[1]1, 1), i53[1]1)), ≥)∧[(-1)Bound*bni_15] ≥ 0∧[1 + (-1)bso_16] ≥ 0)
    • (i53[0] ≥ 0∧i14[1] ≥ 0∧i53[0] ≥ 0∧i53[0] ≥ 0 ⇒ (UIncreasing(LOAD1069(+(i14[1]1, 1), i53[1]1)), ≥)∧[(-1)Bound*bni_15] + [bni_15]i53[0] ≥ 0∧[1 + (-1)bso_16] ≥ 0)
    • (i53[0] ≥ 0∧i14[1] ≥ 0∧i53[0] ≥ 0∧i53[0] ≥ 0 ⇒ (UIncreasing(LOAD1069(+(i14[1]1, 1), i53[1]1)), ≥)∧[(-1)Bound*bni_15] + [bni_15]i53[0] ≥ 0∧[1 + (-1)bso_16] ≥ 0)
    • (0 ≥ 0∧[1] ≥ 0∧0 ≥ 0∧i14[0] ≥ 0 ⇒ (UIncreasing(LOAD1069(+(i14[1], 1), i53[1])), ≥)∧[(-1)Bound*bni_15] ≥ 0∧[1 + (-1)bso_16] ≥ 0)
    • (0 ≥ 0∧[1] ≥ 0∧0 ≥ 0∧i14[0] ≥ 0 ⇒ (UIncreasing(LOAD1069(+(i14[1], 1), i53[1])), ≥)∧[(-1)Bound*bni_15] ≥ 0∧[1 + (-1)bso_16] ≥ 0)
    • (i53[3] ≥ 0∧i14[0] ≥ 0∧i53[3] ≥ 0∧i53[3] ≥ 0 ⇒ (UIncreasing(LOAD1069(+(i14[1], 1), i53[1])), ≥)∧[(-1)Bound*bni_15] + [bni_15]i53[3] ≥ 0∧[1 + (-1)bso_16] ≥ 0)
    • (i53[3] ≥ 0∧i14[0] ≥ 0∧i53[3] ≥ 0∧i53[3] ≥ 0 ⇒ (UIncreasing(LOAD1069(+(i14[1], 1), i53[1])), ≥)∧[(-1)Bound*bni_15] + [bni_15]i53[3] ≥ 0∧[1 + (-1)bso_16] ≥ 0)

  • LOAD1069(i14, i53) → COND_LOAD10691(>(i14, i53), i14, i53)
    • (i14[2] ≥ 0∧i53[2] ≥ 0∧[1] + i14[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD10691(>(i14[2], i53[2]), i14[2], i53[2])), ≥)∧[(-1)Bound*bni_17] + [bni_17]i14[2] ≥ 0∧[(-1)bso_18] ≥ 0)
    • (i14[2] ≥ 0∧i53[2] ≥ 0∧[1] + i14[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD10691(>(i14[2], i53[2]), i14[2], i53[2])), ≥)∧[(-1)Bound*bni_17] + [bni_17]i14[2] ≥ 0∧[(-1)bso_18] ≥ 0)

  • COND_LOAD10691(TRUE, i14, i53) → LOAD1069(i14, +(i53, 1))
    • (i14[1] ≥ 0∧i53[2] ≥ 0∧[1] + i14[1] ≥ 0∧i14[1] ≥ 0 ⇒ (UIncreasing(LOAD1069(i14[3], +(i53[3], 1))), ≥)∧[(-1)Bound*bni_19] + [bni_19]i14[1] ≥ 0∧[1 + (-1)bso_20] ≥ 0)
    • (i14[1] ≥ 0∧i53[2] ≥ 0∧[1] + i14[1] ≥ 0∧i14[1] ≥ 0 ⇒ (UIncreasing(LOAD1069(i14[3], +(i53[3], 1))), ≥)∧[(-1)Bound*bni_19] + [bni_19]i14[1] ≥ 0∧[1 + (-1)bso_20] ≥ 0)
    • (i14[2] ≥ 0∧i53[3] ≥ 0∧[1] + i14[2] ≥ 0∧i14[2] ≥ 0 ⇒ (UIncreasing(LOAD1069(i14[3]1, +(i53[3]1, 1))), ≥)∧[(-1)Bound*bni_19] + [bni_19]i14[2] ≥ 0∧[1 + (-1)bso_20] ≥ 0)
    • (i14[2] ≥ 0∧i53[3] ≥ 0∧[1] + i14[2] ≥ 0∧i14[2] ≥ 0 ⇒ (UIncreasing(LOAD1069(i14[3]1, +(i53[3]1, 1))), ≥)∧[(-1)Bound*bni_19] + [bni_19]i14[2] ≥ 0∧[1 + (-1)bso_20] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(LOAD1069(x1, x2)) = [-1] + max{x1 + [-1]x2, [-1]x1 + x2}   
POL(COND_LOAD1069(x1, x2, x3)) = [-1] + max{x2 + [-1]x3, [-1]x2 + x3}   
POL(<(x1, x2)) = [-1]   
POL(+(x1, x2)) = x1 + x2   
POL(1) = [1]   
POL(COND_LOAD10691(x1, x2, x3)) = [-1] + max{x2 + [-1]x3, [-1]x2 + x3}   
POL(>(x1, x2)) = [-1]   

The following pairs are in P>:

COND_LOAD1069(TRUE, i14[1], i53[1]) → LOAD1069(+(i14[1], 1), i53[1])
COND_LOAD10691(TRUE, i14[3], i53[3]) → LOAD1069(i14[3], +(i53[3], 1))

The following pairs are in Pbound:

LOAD1069(i14[0], i53[0]) → COND_LOAD1069(<(i14[0], i53[0]), i14[0], i53[0])
COND_LOAD1069(TRUE, i14[1], i53[1]) → LOAD1069(+(i14[1], 1), i53[1])
LOAD1069(i14[2], i53[2]) → COND_LOAD10691(>(i14[2], i53[2]), i14[2], i53[2])
COND_LOAD10691(TRUE, i14[3], i53[3]) → LOAD1069(i14[3], +(i53[3], 1))

The following pairs are in P:

LOAD1069(i14[0], i53[0]) → COND_LOAD1069(<(i14[0], i53[0]), i14[0], i53[0])
LOAD1069(i14[2], i53[2]) → COND_LOAD10691(>(i14[2], i53[2]), i14[2], i53[2])

There are no usable rules.

(10) Complex Obligation (AND)

(11) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): LOAD1069(i14[0], i53[0]) → COND_LOAD1069(i14[0] < i53[0], i14[0], i53[0])
(2): LOAD1069(i14[2], i53[2]) → COND_LOAD10691(i14[2] > i53[2], i14[2], i53[2])


The set Q consists of the following terms:
Load1069(x0, x1)
Cond_Load1069(TRUE, x0, x1)
Cond_Load10691(TRUE, x0, x1)

(12) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(13) TRUE

(14) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:
none


R is empty.

The integer pair graph is empty.

The set Q consists of the following terms:
Load1069(x0, x1)
Cond_Load1069(TRUE, x0, x1)
Cond_Load10691(TRUE, x0, x1)

(15) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs.

(16) TRUE