0 JBC
↳1 JBC2FIG (⇐)
↳2 FIGraph
↳3 FIGtoITRSProof (⇐)
↳4 AND
↳5 ITRS
↳6 ITRStoIDPProof (⇔)
↳7 IDP
↳8 UsableRulesProof (⇔)
↳9 IDP
↳10 IDPNonInfProof (⇐)
↳11 AND
↳12 IDP
↳13 IDependencyGraphProof (⇔)
↳14 TRUE
↳15 IDP
↳16 IDependencyGraphProof (⇔)
↳17 IDP
↳18 IDPNonInfProof (⇐)
↳19 IDP
↳20 IDependencyGraphProof (⇔)
↳21 TRUE
↳22 ITRS
↳23 ITRStoIDPProof (⇔)
↳24 IDP
↳25 UsableRulesProof (⇔)
↳26 IDP
↳27 IDPNonInfProof (⇐)
↳28 IDP
↳29 IDependencyGraphProof (⇔)
↳30 TRUE
public class Mod {
public static void main(String[] args) {
int x = args[0].length();
int y = args[1].length();
mod(x, y);
}
public static int mod(int x, int y) {
while (x >= y && y > 0) {
x = minus(x,y);
}
return x;
}
public static int minus(int x, int y) {
while (y != 0) {
if (y > 0) {
y--;
x--;
} else {
y++;
x++;
}
}
return x;
}
}
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(0) -> (1), if ((i162[0] > 0 →* TRUE)∧(i162[0] →* i162[1])∧(i148[0] →* i148[1])∧(i59[0] →* i59[1]))
(1) -> (0), if ((i162[1] + -1 →* i162[0])∧(i59[1] →* i59[0])∧(i148[1] + -1 →* i148[0]))
(1) -> (4), if ((i59[1] →* i59[4])∧(i162[1] + -1 →* 0)∧(i148[1] + -1 →* i148[4]))
(2) -> (3), if ((i59[2] →* i59[3])∧(i59[2] > 0 && i71[2] >= i59[2] →* TRUE)∧(i71[2] →* i71[3]))
(3) -> (0), if ((i59[3] →* i59[0])∧(i59[3] + -1 + -1 →* i162[0])∧(i71[3] + -1 + -1 →* i148[0]))
(3) -> (4), if ((i59[3] + -1 + -1 →* 0)∧(i59[3] →* i59[4])∧(i71[3] + -1 + -1 →* i148[4]))
(4) -> (2), if ((i59[4] →* i59[2])∧(i148[4] →* i71[2]))
(4) -> (5), if ((i59[4] →* 1)∧(i148[4] →* i71[5]))
(5) -> (6), if ((i71[5] →* i71[6])∧(1 > 0 && i71[5] >= 1 →* TRUE))
(6) -> (2), if ((i71[6] + -1 →* i71[2])∧(1 →* i59[2]))
(6) -> (5), if (i71[6] + -1 →* i71[5])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(0) -> (1), if ((i162[0] > 0 →* TRUE)∧(i162[0] →* i162[1])∧(i148[0] →* i148[1])∧(i59[0] →* i59[1]))
(1) -> (0), if ((i162[1] + -1 →* i162[0])∧(i59[1] →* i59[0])∧(i148[1] + -1 →* i148[0]))
(1) -> (4), if ((i59[1] →* i59[4])∧(i162[1] + -1 →* 0)∧(i148[1] + -1 →* i148[4]))
(2) -> (3), if ((i59[2] →* i59[3])∧(i59[2] > 0 && i71[2] >= i59[2] →* TRUE)∧(i71[2] →* i71[3]))
(3) -> (0), if ((i59[3] →* i59[0])∧(i59[3] + -1 + -1 →* i162[0])∧(i71[3] + -1 + -1 →* i148[0]))
(3) -> (4), if ((i59[3] + -1 + -1 →* 0)∧(i59[3] →* i59[4])∧(i71[3] + -1 + -1 →* i148[4]))
(4) -> (2), if ((i59[4] →* i59[2])∧(i148[4] →* i71[2]))
(4) -> (5), if ((i59[4] →* 1)∧(i148[4] →* i71[5]))
(5) -> (6), if ((i71[5] →* i71[6])∧(1 > 0 && i71[5] >= 1 →* TRUE))
(6) -> (2), if ((i71[6] + -1 →* i71[2])∧(1 →* i59[2]))
(6) -> (5), if (i71[6] + -1 →* i71[5])
(1) (>(i162[0], 0)=TRUE∧i162[0]=i162[1]∧i148[0]=i148[1]∧i59[0]=i59[1] ⇒ JMP981'(i59[0], i59[0], i59[0], i148[0], i162[0])≥NonInfC∧JMP981'(i59[0], i59[0], i59[0], i148[0], i162[0])≥COND_JMP981(>(i162[0], 0), i59[0], i59[0], i59[0], i148[0], i162[0])∧(UIncreasing(COND_JMP981(>(i162[0], 0), i59[0], i59[0], i59[0], i148[0], i162[0])), ≥))
(2) (>(i162[0], 0)=TRUE ⇒ JMP981'(i59[0], i59[0], i59[0], i148[0], i162[0])≥NonInfC∧JMP981'(i59[0], i59[0], i59[0], i148[0], i162[0])≥COND_JMP981(>(i162[0], 0), i59[0], i59[0], i59[0], i148[0], i162[0])∧(UIncreasing(COND_JMP981(>(i162[0], 0), i59[0], i59[0], i59[0], i148[0], i162[0])), ≥))
(3) (i162[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_JMP981(>(i162[0], 0), i59[0], i59[0], i59[0], i148[0], i162[0])), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]i148[0] + [(2)bni_21]i59[0] ≥ 0∧[(-1)bso_22] ≥ 0)
(4) (i162[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_JMP981(>(i162[0], 0), i59[0], i59[0], i59[0], i148[0], i162[0])), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]i148[0] + [(2)bni_21]i59[0] ≥ 0∧[(-1)bso_22] ≥ 0)
(5) (i162[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_JMP981(>(i162[0], 0), i59[0], i59[0], i59[0], i148[0], i162[0])), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]i148[0] + [(2)bni_21]i59[0] ≥ 0∧[(-1)bso_22] ≥ 0)
(6) (i162[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_JMP981(>(i162[0], 0), i59[0], i59[0], i59[0], i148[0], i162[0])), ≥)∧[bni_21] = 0∧[(2)bni_21] = 0∧[(-1)bni_21 + (-1)Bound*bni_21] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_22] ≥ 0)
(7) (i162[0] ≥ 0 ⇒ (UIncreasing(COND_JMP981(>(i162[0], 0), i59[0], i59[0], i59[0], i148[0], i162[0])), ≥)∧[bni_21] = 0∧[(2)bni_21] = 0∧[(-1)bni_21 + (-1)Bound*bni_21] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_22] ≥ 0)
(8) (COND_JMP981(TRUE, i59[1], i59[1], i59[1], i148[1], i162[1])≥NonInfC∧COND_JMP981(TRUE, i59[1], i59[1], i59[1], i148[1], i162[1])≥JMP981'(i59[1], i59[1], i59[1], +(i148[1], -1), +(i162[1], -1))∧(UIncreasing(JMP981'(i59[1], i59[1], i59[1], +(i148[1], -1), +(i162[1], -1))), ≥))
(9) ((UIncreasing(JMP981'(i59[1], i59[1], i59[1], +(i148[1], -1), +(i162[1], -1))), ≥)∧[1 + (-1)bso_24] ≥ 0)
(10) ((UIncreasing(JMP981'(i59[1], i59[1], i59[1], +(i148[1], -1), +(i162[1], -1))), ≥)∧[1 + (-1)bso_24] ≥ 0)
(11) ((UIncreasing(JMP981'(i59[1], i59[1], i59[1], +(i148[1], -1), +(i162[1], -1))), ≥)∧[1 + (-1)bso_24] ≥ 0)
(12) ((UIncreasing(JMP981'(i59[1], i59[1], i59[1], +(i148[1], -1), +(i162[1], -1))), ≥)∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_24] ≥ 0)
(13) (i59[2]=i59[3]∧&&(>(i59[2], 0), >=(i71[2], i59[2]))=TRUE∧i71[2]=i71[3] ⇒ JMP873'(i59[2], i71[2], i59[2])≥NonInfC∧JMP873'(i59[2], i71[2], i59[2])≥COND_JMP873(&&(>(i59[2], 0), >=(i71[2], i59[2])), i59[2], i71[2], i59[2])∧(UIncreasing(COND_JMP873(&&(>(i59[2], 0), >=(i71[2], i59[2])), i59[2], i71[2], i59[2])), ≥))
(14) (>(i59[2], 0)=TRUE∧>=(i71[2], i59[2])=TRUE ⇒ JMP873'(i59[2], i71[2], i59[2])≥NonInfC∧JMP873'(i59[2], i71[2], i59[2])≥COND_JMP873(&&(>(i59[2], 0), >=(i71[2], i59[2])), i59[2], i71[2], i59[2])∧(UIncreasing(COND_JMP873(&&(>(i59[2], 0), >=(i71[2], i59[2])), i59[2], i71[2], i59[2])), ≥))
(15) (i59[2] + [-1] ≥ 0∧i71[2] + [-1]i59[2] ≥ 0 ⇒ (UIncreasing(COND_JMP873(&&(>(i59[2], 0), >=(i71[2], i59[2])), i59[2], i71[2], i59[2])), ≥)∧[(-1)bni_25 + (-1)Bound*bni_25] + [(2)bni_25]i59[2] + [bni_25]i71[2] ≥ 0∧[(-1)bso_26] ≥ 0)
(16) (i59[2] + [-1] ≥ 0∧i71[2] + [-1]i59[2] ≥ 0 ⇒ (UIncreasing(COND_JMP873(&&(>(i59[2], 0), >=(i71[2], i59[2])), i59[2], i71[2], i59[2])), ≥)∧[(-1)bni_25 + (-1)Bound*bni_25] + [(2)bni_25]i59[2] + [bni_25]i71[2] ≥ 0∧[(-1)bso_26] ≥ 0)
(17) (i59[2] + [-1] ≥ 0∧i71[2] + [-1]i59[2] ≥ 0 ⇒ (UIncreasing(COND_JMP873(&&(>(i59[2], 0), >=(i71[2], i59[2])), i59[2], i71[2], i59[2])), ≥)∧[(-1)bni_25 + (-1)Bound*bni_25] + [(2)bni_25]i59[2] + [bni_25]i71[2] ≥ 0∧[(-1)bso_26] ≥ 0)
(18) (i59[2] ≥ 0∧i71[2] + [-1] + [-1]i59[2] ≥ 0 ⇒ (UIncreasing(COND_JMP873(&&(>(i59[2], 0), >=(i71[2], i59[2])), i59[2], i71[2], i59[2])), ≥)∧[bni_25 + (-1)Bound*bni_25] + [(2)bni_25]i59[2] + [bni_25]i71[2] ≥ 0∧[(-1)bso_26] ≥ 0)
(19) (i59[2] ≥ 0∧i71[2] ≥ 0 ⇒ (UIncreasing(COND_JMP873(&&(>(i59[2], 0), >=(i71[2], i59[2])), i59[2], i71[2], i59[2])), ≥)∧[(2)bni_25 + (-1)Bound*bni_25] + [(3)bni_25]i59[2] + [bni_25]i71[2] ≥ 0∧[(-1)bso_26] ≥ 0)
(20) (COND_JMP873(TRUE, i59[3], i71[3], i59[3])≥NonInfC∧COND_JMP873(TRUE, i59[3], i71[3], i59[3])≥JMP981'(i59[3], i59[3], i59[3], +(+(i71[3], -1), -1), +(+(i59[3], -1), -1))∧(UIncreasing(JMP981'(i59[3], i59[3], i59[3], +(+(i71[3], -1), -1), +(+(i59[3], -1), -1))), ≥))
(21) ((UIncreasing(JMP981'(i59[3], i59[3], i59[3], +(+(i71[3], -1), -1), +(+(i59[3], -1), -1))), ≥)∧[2 + (-1)bso_28] ≥ 0)
(22) ((UIncreasing(JMP981'(i59[3], i59[3], i59[3], +(+(i71[3], -1), -1), +(+(i59[3], -1), -1))), ≥)∧[2 + (-1)bso_28] ≥ 0)
(23) ((UIncreasing(JMP981'(i59[3], i59[3], i59[3], +(+(i71[3], -1), -1), +(+(i59[3], -1), -1))), ≥)∧[2 + (-1)bso_28] ≥ 0)
(24) ((UIncreasing(JMP981'(i59[3], i59[3], i59[3], +(+(i71[3], -1), -1), +(+(i59[3], -1), -1))), ≥)∧0 = 0∧0 = 0∧[2 + (-1)bso_28] ≥ 0)
(25) (i59[4]=i59[2]∧i148[4]=i71[2] ⇒ JMP981'(i59[4], i59[4], i59[4], i148[4], 0)≥NonInfC∧JMP981'(i59[4], i59[4], i59[4], i148[4], 0)≥JMP873'(i59[4], i148[4], i59[4])∧(UIncreasing(JMP873'(i59[4], i148[4], i59[4])), ≥))
(26) (JMP981'(i59[4], i59[4], i59[4], i148[4], 0)≥NonInfC∧JMP981'(i59[4], i59[4], i59[4], i148[4], 0)≥JMP873'(i59[4], i148[4], i59[4])∧(UIncreasing(JMP873'(i59[4], i148[4], i59[4])), ≥))
(27) ((UIncreasing(JMP873'(i59[4], i148[4], i59[4])), ≥)∧[(-1)bso_30] ≥ 0)
(28) ((UIncreasing(JMP873'(i59[4], i148[4], i59[4])), ≥)∧[(-1)bso_30] ≥ 0)
(29) ((UIncreasing(JMP873'(i59[4], i148[4], i59[4])), ≥)∧[(-1)bso_30] ≥ 0)
(30) ((UIncreasing(JMP873'(i59[4], i148[4], i59[4])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_30] ≥ 0)
(31) (i59[4]=1∧i148[4]=i71[5] ⇒ JMP981'(i59[4], i59[4], i59[4], i148[4], 0)≥NonInfC∧JMP981'(i59[4], i59[4], i59[4], i148[4], 0)≥JMP873'(i59[4], i148[4], i59[4])∧(UIncreasing(JMP873'(i59[4], i148[4], i59[4])), ≥))
(32) (JMP981'(1, 1, 1, i148[4], 0)≥NonInfC∧JMP981'(1, 1, 1, i148[4], 0)≥JMP873'(1, i148[4], 1)∧(UIncreasing(JMP873'(i59[4], i148[4], i59[4])), ≥))
(33) ((UIncreasing(JMP873'(i59[4], i148[4], i59[4])), ≥)∧[(-1)bso_30] ≥ 0)
(34) ((UIncreasing(JMP873'(i59[4], i148[4], i59[4])), ≥)∧[(-1)bso_30] ≥ 0)
(35) ((UIncreasing(JMP873'(i59[4], i148[4], i59[4])), ≥)∧[(-1)bso_30] ≥ 0)
(36) ((UIncreasing(JMP873'(i59[4], i148[4], i59[4])), ≥)∧0 = 0∧[(-1)bso_30] ≥ 0)
(37) (i71[5]=i71[6]∧&&(>(1, 0), >=(i71[5], 1))=TRUE ⇒ JMP873'(1, i71[5], 1)≥NonInfC∧JMP873'(1, i71[5], 1)≥COND_JMP8731(&&(>(1, 0), >=(i71[5], 1)), 1, i71[5], 1)∧(UIncreasing(COND_JMP8731(&&(>(1, 0), >=(i71[5], 1)), 1, i71[5], 1)), ≥))
(38) (>=(i71[5], 1)=TRUE ⇒ JMP873'(1, i71[5], 1)≥NonInfC∧JMP873'(1, i71[5], 1)≥COND_JMP8731(&&(>(1, 0), >=(i71[5], 1)), 1, i71[5], 1)∧(UIncreasing(COND_JMP8731(&&(>(1, 0), >=(i71[5], 1)), 1, i71[5], 1)), ≥))
(39) (i71[5] + [-1] ≥ 0 ⇒ (UIncreasing(COND_JMP8731(&&(>(1, 0), >=(i71[5], 1)), 1, i71[5], 1)), ≥)∧[bni_31 + (-1)Bound*bni_31] + [bni_31]i71[5] ≥ 0∧[1 + (-1)bso_32] ≥ 0)
(40) (i71[5] + [-1] ≥ 0 ⇒ (UIncreasing(COND_JMP8731(&&(>(1, 0), >=(i71[5], 1)), 1, i71[5], 1)), ≥)∧[bni_31 + (-1)Bound*bni_31] + [bni_31]i71[5] ≥ 0∧[1 + (-1)bso_32] ≥ 0)
(41) (i71[5] + [-1] ≥ 0 ⇒ (UIncreasing(COND_JMP8731(&&(>(1, 0), >=(i71[5], 1)), 1, i71[5], 1)), ≥)∧[bni_31 + (-1)Bound*bni_31] + [bni_31]i71[5] ≥ 0∧[1 + (-1)bso_32] ≥ 0)
(42) (i71[5] ≥ 0 ⇒ (UIncreasing(COND_JMP8731(&&(>(1, 0), >=(i71[5], 1)), 1, i71[5], 1)), ≥)∧[(2)bni_31 + (-1)Bound*bni_31] + [bni_31]i71[5] ≥ 0∧[1 + (-1)bso_32] ≥ 0)
(43) (COND_JMP8731(TRUE, 1, i71[6], 1)≥NonInfC∧COND_JMP8731(TRUE, 1, i71[6], 1)≥JMP873'(1, +(i71[6], -1), 1)∧(UIncreasing(JMP873'(1, +(i71[6], -1), 1)), ≥))
(44) ((UIncreasing(JMP873'(1, +(i71[6], -1), 1)), ≥)∧[(-1)bso_34] ≥ 0)
(45) ((UIncreasing(JMP873'(1, +(i71[6], -1), 1)), ≥)∧[(-1)bso_34] ≥ 0)
(46) ((UIncreasing(JMP873'(1, +(i71[6], -1), 1)), ≥)∧[(-1)bso_34] ≥ 0)
(47) ((UIncreasing(JMP873'(1, +(i71[6], -1), 1)), ≥)∧0 = 0∧[(-1)bso_34] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(JMP981'(x1, x2, x3, x4, x5)) = [-1] + x4 + [-1]x3 + x2 + [2]x1
POL(COND_JMP981(x1, x2, x3, x4, x5, x6)) = [-1] + [2]x4 + x3 + x5 + [-1]x2
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(JMP873'(x1, x2, x3)) = [-1] + x1 + x3 + x2
POL(COND_JMP873(x1, x2, x3, x4)) = [-1] + x4 + x2 + x3
POL(&&(x1, x2)) = [-1]
POL(>=(x1, x2)) = [-1]
POL(1) = [1]
POL(COND_JMP8731(x1, x2, x3, x4)) = x3
COND_JMP981(TRUE, i59[1], i59[1], i59[1], i148[1], i162[1]) → JMP981'(i59[1], i59[1], i59[1], +(i148[1], -1), +(i162[1], -1))
COND_JMP873(TRUE, i59[3], i71[3], i59[3]) → JMP981'(i59[3], i59[3], i59[3], +(+(i71[3], -1), -1), +(+(i59[3], -1), -1))
JMP873'(1, i71[5], 1) → COND_JMP8731(&&(>(1, 0), >=(i71[5], 1)), 1, i71[5], 1)
JMP873'(i59[2], i71[2], i59[2]) → COND_JMP873(&&(>(i59[2], 0), >=(i71[2], i59[2])), i59[2], i71[2], i59[2])
JMP873'(1, i71[5], 1) → COND_JMP8731(&&(>(1, 0), >=(i71[5], 1)), 1, i71[5], 1)
JMP981'(i59[0], i59[0], i59[0], i148[0], i162[0]) → COND_JMP981(>(i162[0], 0), i59[0], i59[0], i59[0], i148[0], i162[0])
JMP873'(i59[2], i71[2], i59[2]) → COND_JMP873(&&(>(i59[2], 0), >=(i71[2], i59[2])), i59[2], i71[2], i59[2])
JMP981'(i59[4], i59[4], i59[4], i148[4], 0) → JMP873'(i59[4], i148[4], i59[4])
COND_JMP8731(TRUE, 1, i71[6], 1) → JMP873'(1, +(i71[6], -1), 1)
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(4) -> (2), if ((i59[4] →* i59[2])∧(i148[4] →* i71[2]))
(6) -> (2), if ((i71[6] + -1 →* i71[2])∧(1 →* i59[2]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(1) -> (0), if ((i162[1] + -1 →* i162[0])∧(i59[1] →* i59[0])∧(i148[1] + -1 →* i148[0]))
(3) -> (0), if ((i59[3] →* i59[0])∧(i59[3] + -1 + -1 →* i162[0])∧(i71[3] + -1 + -1 →* i148[0]))
(0) -> (1), if ((i162[0] > 0 →* TRUE)∧(i162[0] →* i162[1])∧(i148[0] →* i148[1])∧(i59[0] →* i59[1]))
(1) -> (4), if ((i59[1] →* i59[4])∧(i162[1] + -1 →* 0)∧(i148[1] + -1 →* i148[4]))
(3) -> (4), if ((i59[3] + -1 + -1 →* 0)∧(i59[3] →* i59[4])∧(i71[3] + -1 + -1 →* i148[4]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(1) -> (0), if ((i162[1] + -1 →* i162[0])∧(i59[1] →* i59[0])∧(i148[1] + -1 →* i148[0]))
(0) -> (1), if ((i162[0] > 0 →* TRUE)∧(i162[0] →* i162[1])∧(i148[0] →* i148[1])∧(i59[0] →* i59[1]))
(1) (COND_JMP981(TRUE, i59[1], i59[1], i59[1], i148[1], i162[1])≥NonInfC∧COND_JMP981(TRUE, i59[1], i59[1], i59[1], i148[1], i162[1])≥JMP981'(i59[1], i59[1], i59[1], +(i148[1], -1), +(i162[1], -1))∧(UIncreasing(JMP981'(i59[1], i59[1], i59[1], +(i148[1], -1), +(i162[1], -1))), ≥))
(2) ((UIncreasing(JMP981'(i59[1], i59[1], i59[1], +(i148[1], -1), +(i162[1], -1))), ≥)∧[(-1)bso_7] ≥ 0)
(3) ((UIncreasing(JMP981'(i59[1], i59[1], i59[1], +(i148[1], -1), +(i162[1], -1))), ≥)∧[(-1)bso_7] ≥ 0)
(4) ((UIncreasing(JMP981'(i59[1], i59[1], i59[1], +(i148[1], -1), +(i162[1], -1))), ≥)∧[(-1)bso_7] ≥ 0)
(5) ((UIncreasing(JMP981'(i59[1], i59[1], i59[1], +(i148[1], -1), +(i162[1], -1))), ≥)∧0 = 0∧0 = 0∧[(-1)bso_7] ≥ 0)
(6) (>(i162[0], 0)=TRUE∧i162[0]=i162[1]∧i148[0]=i148[1]∧i59[0]=i59[1] ⇒ JMP981'(i59[0], i59[0], i59[0], i148[0], i162[0])≥NonInfC∧JMP981'(i59[0], i59[0], i59[0], i148[0], i162[0])≥COND_JMP981(>(i162[0], 0), i59[0], i59[0], i59[0], i148[0], i162[0])∧(UIncreasing(COND_JMP981(>(i162[0], 0), i59[0], i59[0], i59[0], i148[0], i162[0])), ≥))
(7) (>(i162[0], 0)=TRUE ⇒ JMP981'(i59[0], i59[0], i59[0], i148[0], i162[0])≥NonInfC∧JMP981'(i59[0], i59[0], i59[0], i148[0], i162[0])≥COND_JMP981(>(i162[0], 0), i59[0], i59[0], i59[0], i148[0], i162[0])∧(UIncreasing(COND_JMP981(>(i162[0], 0), i59[0], i59[0], i59[0], i148[0], i162[0])), ≥))
(8) (i162[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_JMP981(>(i162[0], 0), i59[0], i59[0], i59[0], i148[0], i162[0])), ≥)∧[(2)bni_8 + (-1)Bound*bni_8] + [(2)bni_8]i162[0] ≥ 0∧[2 + (-1)bso_9] ≥ 0)
(9) (i162[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_JMP981(>(i162[0], 0), i59[0], i59[0], i59[0], i148[0], i162[0])), ≥)∧[(2)bni_8 + (-1)Bound*bni_8] + [(2)bni_8]i162[0] ≥ 0∧[2 + (-1)bso_9] ≥ 0)
(10) (i162[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_JMP981(>(i162[0], 0), i59[0], i59[0], i59[0], i148[0], i162[0])), ≥)∧[(2)bni_8 + (-1)Bound*bni_8] + [(2)bni_8]i162[0] ≥ 0∧[2 + (-1)bso_9] ≥ 0)
(11) (i162[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_JMP981(>(i162[0], 0), i59[0], i59[0], i59[0], i148[0], i162[0])), ≥)∧0 = 0∧[(2)bni_8 + (-1)Bound*bni_8] + [(2)bni_8]i162[0] ≥ 0∧0 = 0∧[2 + (-1)bso_9] ≥ 0)
(12) (i162[0] ≥ 0 ⇒ (UIncreasing(COND_JMP981(>(i162[0], 0), i59[0], i59[0], i59[0], i148[0], i162[0])), ≥)∧0 = 0∧[(4)bni_8 + (-1)Bound*bni_8] + [(2)bni_8]i162[0] ≥ 0∧0 = 0∧[2 + (-1)bso_9] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_JMP981(x1, x2, x3, x4, x5, x6)) = [2]x6
POL(JMP981'(x1, x2, x3, x4, x5)) = [2] + [2]x5
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(>(x1, x2)) = 0
POL(0) = 0
JMP981'(i59[0], i59[0], i59[0], i148[0], i162[0]) → COND_JMP981(>(i162[0], 0), i59[0], i59[0], i59[0], i148[0], i162[0])
JMP981'(i59[0], i59[0], i59[0], i148[0], i162[0]) → COND_JMP981(>(i162[0], 0), i59[0], i59[0], i59[0], i148[0], i162[0])
COND_JMP981(TRUE, i59[1], i59[1], i59[1], i148[1], i162[1]) → JMP981'(i59[1], i59[1], i59[1], +(i148[1], -1), +(i162[1], -1))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(0) -> (1), if ((i74[0] →* i74[1])∧(i74[0] > 0 →* TRUE)∧(i71[0] →* i71[1]))
(1) -> (0), if ((i71[1] + -1 →* i71[0])∧(i74[1] + -1 →* i74[0]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(0) -> (1), if ((i74[0] →* i74[1])∧(i74[0] > 0 →* TRUE)∧(i71[0] →* i71[1]))
(1) -> (0), if ((i71[1] + -1 →* i71[0])∧(i74[1] + -1 →* i74[0]))
(1) (i74[0]=i74[1]∧>(i74[0], 0)=TRUE∧i71[0]=i71[1] ⇒ JMP839'(i71[0], i74[0])≥NonInfC∧JMP839'(i71[0], i74[0])≥COND_JMP839(>(i74[0], 0), i71[0], i74[0])∧(UIncreasing(COND_JMP839(>(i74[0], 0), i71[0], i74[0])), ≥))
(2) (>(i74[0], 0)=TRUE ⇒ JMP839'(i71[0], i74[0])≥NonInfC∧JMP839'(i71[0], i74[0])≥COND_JMP839(>(i74[0], 0), i71[0], i74[0])∧(UIncreasing(COND_JMP839(>(i74[0], 0), i71[0], i74[0])), ≥))
(3) (i74[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_JMP839(>(i74[0], 0), i71[0], i74[0])), ≥)∧[bni_8 + (-1)Bound*bni_8] + [(2)bni_8]i74[0] ≥ 0∧[2 + (-1)bso_9] ≥ 0)
(4) (i74[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_JMP839(>(i74[0], 0), i71[0], i74[0])), ≥)∧[bni_8 + (-1)Bound*bni_8] + [(2)bni_8]i74[0] ≥ 0∧[2 + (-1)bso_9] ≥ 0)
(5) (i74[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_JMP839(>(i74[0], 0), i71[0], i74[0])), ≥)∧[bni_8 + (-1)Bound*bni_8] + [(2)bni_8]i74[0] ≥ 0∧[2 + (-1)bso_9] ≥ 0)
(6) (i74[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_JMP839(>(i74[0], 0), i71[0], i74[0])), ≥)∧0 = 0∧[bni_8 + (-1)Bound*bni_8] + [(2)bni_8]i74[0] ≥ 0∧0 = 0∧[2 + (-1)bso_9] ≥ 0)
(7) (i74[0] ≥ 0 ⇒ (UIncreasing(COND_JMP839(>(i74[0], 0), i71[0], i74[0])), ≥)∧0 = 0∧[(3)bni_8 + (-1)Bound*bni_8] + [(2)bni_8]i74[0] ≥ 0∧0 = 0∧[2 + (-1)bso_9] ≥ 0)
(8) (COND_JMP839(TRUE, i71[1], i74[1])≥NonInfC∧COND_JMP839(TRUE, i71[1], i74[1])≥JMP839'(+(i71[1], -1), +(i74[1], -1))∧(UIncreasing(JMP839'(+(i71[1], -1), +(i74[1], -1))), ≥))
(9) ((UIncreasing(JMP839'(+(i71[1], -1), +(i74[1], -1))), ≥)∧[(-1)bso_11] ≥ 0)
(10) ((UIncreasing(JMP839'(+(i71[1], -1), +(i74[1], -1))), ≥)∧[(-1)bso_11] ≥ 0)
(11) ((UIncreasing(JMP839'(+(i71[1], -1), +(i74[1], -1))), ≥)∧[(-1)bso_11] ≥ 0)
(12) ((UIncreasing(JMP839'(+(i71[1], -1), +(i74[1], -1))), ≥)∧0 = 0∧0 = 0∧[(-1)bso_11] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(JMP839'(x1, x2)) = [1] + [2]x2
POL(COND_JMP839(x1, x2, x3)) = [-1] + [2]x3
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
JMP839'(i71[0], i74[0]) → COND_JMP839(>(i74[0], 0), i71[0], i74[0])
JMP839'(i71[0], i74[0]) → COND_JMP839(>(i74[0], 0), i71[0], i74[0])
COND_JMP839(TRUE, i71[1], i74[1]) → JMP839'(+(i71[1], -1), +(i74[1], -1))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer