0 JBC
↳1 JBC2FIG (⇐)
↳2 FIGraph
↳3 FIGtoITRSProof (⇐)
↳4 ITRS
↳5 ITRStoIDPProof (⇔)
↳6 IDP
↳7 UsableRulesProof (⇔)
↳8 IDP
↳9 IDPNonInfProof (⇐)
↳10 AND
↳11 IDP
↳12 IDependencyGraphProof (⇔)
↳13 TRUE
↳14 IDP
↳15 IDPNonInfProof (⇐)
↳16 AND
↳17 IDP
↳18 IDependencyGraphProof (⇔)
↳19 TRUE
↳20 IDP
↳21 IDependencyGraphProof (⇔)
↳22 TRUE
public class MinusMin{
public static int min (int x, int y) {
if (x < y) return x;
else return y;
}
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
int res = 0;
while (min(x-1,y) == y) {
y++;
res++;
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(0) -> (1), if ((i215[0] →* i215[1])∧(i214[0] →* i214[1])∧(i14[0] →* i14[1])∧(i14[0] - 1 >= i214[0] →* TRUE))
(1) -> (2), if ((i14[1] →* i14[2])∧(i214[1] →* i214[2])∧(i215[1] →* i215[2]))
(2) -> (0), if ((i215[2] + 1 →* i215[0])∧(i214[2] + 1 →* i214[0])∧(i14[2] →* i14[0]))
(2) -> (3), if ((i14[2] →* i14[3])∧(i214[2] + 1 →* i14[3] - 1)∧(i215[2] + 1 →* i215[3]))
(3) -> (4), if ((i14[3] →* i14[4])∧(i14[3] - 1 < i14[3] - 1 && i215[3] + 1 > 0 →* TRUE)∧(i215[3] →* i215[4])∧(i14[3] - 1 →* i14[4] - 1))
(4) -> (0), if ((i14[4] - 1 + 1 →* i214[0])∧(i14[4] →* i14[0])∧(i215[4] + 1 →* i215[0]))
(4) -> (3), if ((i215[4] + 1 →* i215[3])∧(i14[4] - 1 + 1 →* i14[3] - 1)∧(i14[4] →* i14[3]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(0) -> (1), if ((i215[0] →* i215[1])∧(i214[0] →* i214[1])∧(i14[0] →* i14[1])∧(i14[0] - 1 >= i214[0] →* TRUE))
(1) -> (2), if ((i14[1] →* i14[2])∧(i214[1] →* i214[2])∧(i215[1] →* i215[2]))
(2) -> (0), if ((i215[2] + 1 →* i215[0])∧(i214[2] + 1 →* i214[0])∧(i14[2] →* i14[0]))
(2) -> (3), if ((i14[2] →* i14[3])∧(i214[2] + 1 →* i14[3] - 1)∧(i215[2] + 1 →* i215[3]))
(3) -> (4), if ((i14[3] →* i14[4])∧(i14[3] - 1 < i14[3] - 1 && i215[3] + 1 > 0 →* TRUE)∧(i215[3] →* i215[4])∧(i14[3] - 1 →* i14[4] - 1))
(4) -> (0), if ((i14[4] - 1 + 1 →* i214[0])∧(i14[4] →* i14[0])∧(i215[4] + 1 →* i215[0]))
(4) -> (3), if ((i215[4] + 1 →* i215[3])∧(i14[4] - 1 + 1 →* i14[3] - 1)∧(i14[4] →* i14[3]))
(1) (i215[0]=i215[1]∧i214[0]=i214[1]∧i14[0]=i14[1]∧>=(-(i14[0], 1), i214[0])=TRUE ⇒ LOAD1487(i14[0], i214[0], i215[0])≥NonInfC∧LOAD1487(i14[0], i214[0], i215[0])≥COND_LOAD1487(>=(-(i14[0], 1), i214[0]), i14[0], i214[0], i215[0])∧(UIncreasing(COND_LOAD1487(>=(-(i14[0], 1), i214[0]), i14[0], i214[0], i215[0])), ≥))
(2) (>=(-(i14[0], 1), i214[0])=TRUE ⇒ LOAD1487(i14[0], i214[0], i215[0])≥NonInfC∧LOAD1487(i14[0], i214[0], i215[0])≥COND_LOAD1487(>=(-(i14[0], 1), i214[0]), i14[0], i214[0], i215[0])∧(UIncreasing(COND_LOAD1487(>=(-(i14[0], 1), i214[0]), i14[0], i214[0], i215[0])), ≥))
(3) (i14[0] + [-1] + [-1]i214[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1487(>=(-(i14[0], 1), i214[0]), i14[0], i214[0], i215[0])), ≥)∧[(-1)bni_25 + (-1)Bound*bni_25] + [(-1)bni_25]i215[0] + [(-1)bni_25]i214[0] + [(-1)bni_25]i14[0] ≥ 0∧[(-1)bso_26] ≥ 0)
(4) (i14[0] + [-1] + [-1]i214[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1487(>=(-(i14[0], 1), i214[0]), i14[0], i214[0], i215[0])), ≥)∧[(-1)bni_25 + (-1)Bound*bni_25] + [(-1)bni_25]i215[0] + [(-1)bni_25]i214[0] + [(-1)bni_25]i14[0] ≥ 0∧[(-1)bso_26] ≥ 0)
(5) (i14[0] + [-1] + [-1]i214[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1487(>=(-(i14[0], 1), i214[0]), i14[0], i214[0], i215[0])), ≥)∧[(-1)bni_25 + (-1)Bound*bni_25] + [(-1)bni_25]i215[0] + [(-1)bni_25]i214[0] + [(-1)bni_25]i14[0] ≥ 0∧[(-1)bso_26] ≥ 0)
(6) (i14[0] + [-1] + [-1]i214[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1487(>=(-(i14[0], 1), i214[0]), i14[0], i214[0], i215[0])), ≥)∧[(-1)bni_25] = 0∧[(-1)bni_25 + (-1)Bound*bni_25] + [(-1)bni_25]i214[0] + [(-1)bni_25]i14[0] ≥ 0∧0 = 0∧[(-1)bso_26] ≥ 0)
(7) (i14[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1487(>=(-(i14[0], 1), i214[0]), i14[0], i214[0], i215[0])), ≥)∧[(-1)bni_25] = 0∧[(-2)bni_25 + (-1)Bound*bni_25] + [(-2)bni_25]i214[0] + [(-1)bni_25]i14[0] ≥ 0∧0 = 0∧[(-1)bso_26] ≥ 0)
(8) (i14[0] ≥ 0∧i214[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1487(>=(-(i14[0], 1), i214[0]), i14[0], i214[0], i215[0])), ≥)∧[(-1)bni_25] = 0∧[(-2)bni_25 + (-1)Bound*bni_25] + [(2)bni_25]i214[0] + [(-1)bni_25]i14[0] ≥ 0∧0 = 0∧[(-1)bso_26] ≥ 0)
(9) (i14[0] ≥ 0∧i214[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1487(>=(-(i14[0], 1), i214[0]), i14[0], i214[0], i215[0])), ≥)∧[(-1)bni_25] = 0∧[(-2)bni_25 + (-1)Bound*bni_25] + [(-2)bni_25]i214[0] + [(-1)bni_25]i14[0] ≥ 0∧0 = 0∧[(-1)bso_26] ≥ 0)
(10) (i14[1]=i14[2]∧i214[1]=i214[2]∧i215[1]=i215[2] ⇒ COND_LOAD1487(TRUE, i14[1], i214[1], i215[1])≥NonInfC∧COND_LOAD1487(TRUE, i14[1], i214[1], i215[1])≥LOAD1538(i14[1], i215[1], i214[1])∧(UIncreasing(LOAD1538(i14[1], i215[1], i214[1])), ≥))
(11) (COND_LOAD1487(TRUE, i14[1], i214[1], i215[1])≥NonInfC∧COND_LOAD1487(TRUE, i14[1], i214[1], i215[1])≥LOAD1538(i14[1], i215[1], i214[1])∧(UIncreasing(LOAD1538(i14[1], i215[1], i214[1])), ≥))
(12) ((UIncreasing(LOAD1538(i14[1], i215[1], i214[1])), ≥)∧[(-1)bso_28] ≥ 0)
(13) ((UIncreasing(LOAD1538(i14[1], i215[1], i214[1])), ≥)∧[(-1)bso_28] ≥ 0)
(14) ((UIncreasing(LOAD1538(i14[1], i215[1], i214[1])), ≥)∧[(-1)bso_28] ≥ 0)
(15) ((UIncreasing(LOAD1538(i14[1], i215[1], i214[1])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_28] ≥ 0)
(16) (i14[1]=i14[2]∧i214[1]=i214[2]∧i215[1]=i215[2]∧+(i215[2], 1)=i215[0]∧+(i214[2], 1)=i214[0]∧i14[2]=i14[0] ⇒ LOAD1538(i14[2], i215[2], i214[2])≥NonInfC∧LOAD1538(i14[2], i215[2], i214[2])≥LOAD1487(i14[2], +(i214[2], 1), +(i215[2], 1))∧(UIncreasing(LOAD1487(i14[2], +(i214[2], 1), +(i215[2], 1))), ≥))
(17) (LOAD1538(i14[1], i215[1], i214[1])≥NonInfC∧LOAD1538(i14[1], i215[1], i214[1])≥LOAD1487(i14[1], +(i214[1], 1), +(i215[1], 1))∧(UIncreasing(LOAD1487(i14[2], +(i214[2], 1), +(i215[2], 1))), ≥))
(18) ((UIncreasing(LOAD1487(i14[2], +(i214[2], 1), +(i215[2], 1))), ≥)∧[2 + (-1)bso_30] ≥ 0)
(19) ((UIncreasing(LOAD1487(i14[2], +(i214[2], 1), +(i215[2], 1))), ≥)∧[2 + (-1)bso_30] ≥ 0)
(20) ((UIncreasing(LOAD1487(i14[2], +(i214[2], 1), +(i215[2], 1))), ≥)∧[2 + (-1)bso_30] ≥ 0)
(21) ((UIncreasing(LOAD1487(i14[2], +(i214[2], 1), +(i215[2], 1))), ≥)∧0 = 0∧0 = 0∧0 = 0∧[2 + (-1)bso_30] ≥ 0)
(22) (i14[1]=i14[2]∧i214[1]=i214[2]∧i215[1]=i215[2]∧i14[2]=i14[3]∧+(i214[2], 1)=-(i14[3], 1)∧+(i215[2], 1)=i215[3] ⇒ LOAD1538(i14[2], i215[2], i214[2])≥NonInfC∧LOAD1538(i14[2], i215[2], i214[2])≥LOAD1487(i14[2], +(i214[2], 1), +(i215[2], 1))∧(UIncreasing(LOAD1487(i14[2], +(i214[2], 1), +(i215[2], 1))), ≥))
(23) (+(i214[2], 1)=-(i14[1], 1) ⇒ LOAD1538(i14[1], i215[1], i214[2])≥NonInfC∧LOAD1538(i14[1], i215[1], i214[2])≥LOAD1487(i14[1], +(i214[2], 1), +(i215[1], 1))∧(UIncreasing(LOAD1487(i14[2], +(i214[2], 1), +(i215[2], 1))), ≥))
(24) (i214[2] + [2] + [-1]i14[1] ≥ 0 ⇒ (UIncreasing(LOAD1487(i14[2], +(i214[2], 1), +(i215[2], 1))), ≥)∧0 ≥ 0∧[2 + (-1)bso_30] ≥ 0)
(25) (i214[2] + [2] + [-1]i14[1] ≥ 0 ⇒ (UIncreasing(LOAD1487(i14[2], +(i214[2], 1), +(i215[2], 1))), ≥)∧0 ≥ 0∧[2 + (-1)bso_30] ≥ 0)
(26) (i214[2] + [2] + [-1]i14[1] ≥ 0 ⇒ (UIncreasing(LOAD1487(i14[2], +(i214[2], 1), +(i215[2], 1))), ≥)∧0 ≥ 0∧[2 + (-1)bso_30] ≥ 0)
(27) (i214[2] + [2] + [-1]i14[1] ≥ 0 ⇒ (UIncreasing(LOAD1487(i14[2], +(i214[2], 1), +(i215[2], 1))), ≥)∧0 = 0∧0 ≥ 0∧0 = 0∧[2 + (-1)bso_30] ≥ 0)
(28) (i14[1] ≥ 0 ⇒ (UIncreasing(LOAD1487(i14[2], +(i214[2], 1), +(i215[2], 1))), ≥)∧0 = 0∧0 ≥ 0∧0 = 0∧[2 + (-1)bso_30] ≥ 0)
(29) (i14[1] ≥ 0∧i214[2] ≥ 0 ⇒ (UIncreasing(LOAD1487(i14[2], +(i214[2], 1), +(i215[2], 1))), ≥)∧0 = 0∧0 ≥ 0∧0 = 0∧[2 + (-1)bso_30] ≥ 0)
(30) (i14[1] ≥ 0∧i214[2] ≥ 0 ⇒ (UIncreasing(LOAD1487(i14[2], +(i214[2], 1), +(i215[2], 1))), ≥)∧0 = 0∧0 ≥ 0∧0 = 0∧[2 + (-1)bso_30] ≥ 0)
(31) (i14[3]=i14[4]∧&&(<(-(i14[3], 1), -(i14[3], 1)), >(+(i215[3], 1), 0))=TRUE∧i215[3]=i215[4]∧-(i14[3], 1)=-(i14[4], 1) ⇒ LOAD1487(i14[3], -(i14[3], 1), i215[3])≥NonInfC∧LOAD1487(i14[3], -(i14[3], 1), i215[3])≥COND_LOAD14871(&&(<(-(i14[3], 1), -(i14[3], 1)), >(+(i215[3], 1), 0)), i14[3], -(i14[3], 1), i215[3])∧(UIncreasing(COND_LOAD14871(&&(<(-(i14[3], 1), -(i14[3], 1)), >(+(i215[3], 1), 0)), i14[3], -(i14[3], 1), i215[3])), ≥))
(32) (<(-(i14[3], 1), -(i14[3], 1))=TRUE∧>(+(i215[3], 1), 0)=TRUE ⇒ LOAD1487(i14[3], -(i14[3], 1), i215[3])≥NonInfC∧LOAD1487(i14[3], -(i14[3], 1), i215[3])≥COND_LOAD14871(&&(<(-(i14[3], 1), -(i14[3], 1)), >(+(i215[3], 1), 0)), i14[3], -(i14[3], 1), i215[3])∧(UIncreasing(COND_LOAD14871(&&(<(-(i14[3], 1), -(i14[3], 1)), >(+(i215[3], 1), 0)), i14[3], -(i14[3], 1), i215[3])), ≥))
(33) ([-1] ≥ 0∧i215[3] ≥ 0 ⇒ (UIncreasing(COND_LOAD14871(&&(<(-(i14[3], 1), -(i14[3], 1)), >(+(i215[3], 1), 0)), i14[3], -(i14[3], 1), i215[3])), ≥)∧[(-1)Bound*bni_31] + [(-1)bni_31]i215[3] + [(-2)bni_31]i14[3] ≥ 0∧[-1 + (-1)bso_32] ≥ 0)
(34) ([-1] ≥ 0∧i215[3] ≥ 0 ⇒ (UIncreasing(COND_LOAD14871(&&(<(-(i14[3], 1), -(i14[3], 1)), >(+(i215[3], 1), 0)), i14[3], -(i14[3], 1), i215[3])), ≥)∧[(-1)Bound*bni_31] + [(-1)bni_31]i215[3] + [(-2)bni_31]i14[3] ≥ 0∧[-1 + (-1)bso_32] ≥ 0)
(35) ([-1] ≥ 0∧i215[3] ≥ 0 ⇒ (UIncreasing(COND_LOAD14871(&&(<(-(i14[3], 1), -(i14[3], 1)), >(+(i215[3], 1), 0)), i14[3], -(i14[3], 1), i215[3])), ≥)∧[(-1)Bound*bni_31] + [(-1)bni_31]i215[3] + [(-2)bni_31]i14[3] ≥ 0∧[-1 + (-1)bso_32] ≥ 0)
(36) (i14[3]=i14[4]∧&&(<(-(i14[3], 1), -(i14[3], 1)), >(+(i215[3], 1), 0))=TRUE∧i215[3]=i215[4]∧-(i14[3], 1)=-(i14[4], 1)∧+(-(i14[4], 1), 1)=i214[0]∧i14[4]=i14[0]∧+(i215[4], 1)=i215[0] ⇒ COND_LOAD14871(TRUE, i14[4], -(i14[4], 1), i215[4])≥NonInfC∧COND_LOAD14871(TRUE, i14[4], -(i14[4], 1), i215[4])≥LOAD1487(i14[4], +(-(i14[4], 1), 1), +(i215[4], 1))∧(UIncreasing(LOAD1487(i14[4], +(-(i14[4], 1), 1), +(i215[4], 1))), ≥))
(37) (<(-(i14[3], 1), -(i14[3], 1))=TRUE∧>(+(i215[3], 1), 0)=TRUE ⇒ COND_LOAD14871(TRUE, i14[3], -(i14[3], 1), i215[3])≥NonInfC∧COND_LOAD14871(TRUE, i14[3], -(i14[3], 1), i215[3])≥LOAD1487(i14[3], +(-(i14[3], 1), 1), +(i215[3], 1))∧(UIncreasing(LOAD1487(i14[4], +(-(i14[4], 1), 1), +(i215[4], 1))), ≥))
(38) ([-1] ≥ 0∧i215[3] ≥ 0 ⇒ (UIncreasing(LOAD1487(i14[4], +(-(i14[4], 1), 1), +(i215[4], 1))), ≥)∧[(-1)Bound*bni_33] + [(-1)bni_33]i215[3] + [(-2)bni_33]i14[3] ≥ 0∧[2 + (-1)bso_34] ≥ 0)
(39) ([-1] ≥ 0∧i215[3] ≥ 0 ⇒ (UIncreasing(LOAD1487(i14[4], +(-(i14[4], 1), 1), +(i215[4], 1))), ≥)∧[(-1)Bound*bni_33] + [(-1)bni_33]i215[3] + [(-2)bni_33]i14[3] ≥ 0∧[2 + (-1)bso_34] ≥ 0)
(40) ([-1] ≥ 0∧i215[3] ≥ 0 ⇒ (UIncreasing(LOAD1487(i14[4], +(-(i14[4], 1), 1), +(i215[4], 1))), ≥)∧[(-1)Bound*bni_33] + [(-1)bni_33]i215[3] + [(-2)bni_33]i14[3] ≥ 0∧[2 + (-1)bso_34] ≥ 0)
(41) (i14[3]=i14[4]∧&&(<(-(i14[3], 1), -(i14[3], 1)), >(+(i215[3], 1), 0))=TRUE∧i215[3]=i215[4]∧-(i14[3], 1)=-(i14[4], 1)∧+(i215[4], 1)=i215[3]1∧+(-(i14[4], 1), 1)=-(i14[3]1, 1)∧i14[4]=i14[3]1 ⇒ COND_LOAD14871(TRUE, i14[4], -(i14[4], 1), i215[4])≥NonInfC∧COND_LOAD14871(TRUE, i14[4], -(i14[4], 1), i215[4])≥LOAD1487(i14[4], +(-(i14[4], 1), 1), +(i215[4], 1))∧(UIncreasing(LOAD1487(i14[4], +(-(i14[4], 1), 1), +(i215[4], 1))), ≥))
(42) (+(-(i14[3], 1), 1)=-(i14[3], 1)∧<(-(i14[3], 1), -(i14[3], 1))=TRUE∧>(+(i215[3], 1), 0)=TRUE ⇒ COND_LOAD14871(TRUE, i14[3], -(i14[3], 1), i215[3])≥NonInfC∧COND_LOAD14871(TRUE, i14[3], -(i14[3], 1), i215[3])≥LOAD1487(i14[3], +(-(i14[3], 1), 1), +(i215[3], 1))∧(UIncreasing(LOAD1487(i14[4], +(-(i14[4], 1), 1), +(i215[4], 1))), ≥))
(43) ([1] ≥ 0∧[-1] ≥ 0∧i215[3] ≥ 0 ⇒ (UIncreasing(LOAD1487(i14[4], +(-(i14[4], 1), 1), +(i215[4], 1))), ≥)∧[(-1)Bound*bni_33] + [(-1)bni_33]i215[3] + [(-2)bni_33]i14[3] ≥ 0∧[2 + (-1)bso_34] ≥ 0)
(44) ([1] ≥ 0∧[-1] ≥ 0∧i215[3] ≥ 0 ⇒ (UIncreasing(LOAD1487(i14[4], +(-(i14[4], 1), 1), +(i215[4], 1))), ≥)∧[(-1)Bound*bni_33] + [(-1)bni_33]i215[3] + [(-2)bni_33]i14[3] ≥ 0∧[2 + (-1)bso_34] ≥ 0)
(45) ([1] ≥ 0∧[-1] ≥ 0∧i215[3] ≥ 0 ⇒ (UIncreasing(LOAD1487(i14[4], +(-(i14[4], 1), 1), +(i215[4], 1))), ≥)∧[(-1)Bound*bni_33] + [(-1)bni_33]i215[3] + [(-2)bni_33]i14[3] ≥ 0∧[2 + (-1)bso_34] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(LOAD1487(x1, x2, x3)) = [-1] + [-1]x3 + [-1]x2 + [-1]x1
POL(COND_LOAD1487(x1, x2, x3, x4)) = [-1] + [-1]x4 + [-1]x3 + [-1]x2
POL(>=(x1, x2)) = [-1]
POL(-(x1, x2)) = x1 + [-1]x2
POL(1) = [1]
POL(LOAD1538(x1, x2, x3)) = [-1] + [-1]x3 + [-1]x2 + [-1]x1
POL(+(x1, x2)) = x1 + x2
POL(COND_LOAD14871(x1, x2, x3, x4)) = [-1] + [-1]x4 + [-1]x3 + [-1]x2 + [-1]x1
POL(&&(x1, x2)) = [-1]
POL(<(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
LOAD1538(i14[2], i215[2], i214[2]) → LOAD1487(i14[2], +(i214[2], 1), +(i215[2], 1))
LOAD1487(i14[3], -(i14[3], 1), i215[3]) → COND_LOAD14871(&&(<(-(i14[3], 1), -(i14[3], 1)), >(+(i215[3], 1), 0)), i14[3], -(i14[3], 1), i215[3])
COND_LOAD14871(TRUE, i14[4], -(i14[4], 1), i215[4]) → LOAD1487(i14[4], +(-(i14[4], 1), 1), +(i215[4], 1))
LOAD1487(i14[3], -(i14[3], 1), i215[3]) → COND_LOAD14871(&&(<(-(i14[3], 1), -(i14[3], 1)), >(+(i215[3], 1), 0)), i14[3], -(i14[3], 1), i215[3])
COND_LOAD14871(TRUE, i14[4], -(i14[4], 1), i215[4]) → LOAD1487(i14[4], +(-(i14[4], 1), 1), +(i215[4], 1))
LOAD1487(i14[0], i214[0], i215[0]) → COND_LOAD1487(>=(-(i14[0], 1), i214[0]), i14[0], i214[0], i215[0])
COND_LOAD1487(TRUE, i14[1], i214[1], i215[1]) → LOAD1538(i14[1], i215[1], i214[1])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(0) -> (1), if ((i215[0] →* i215[1])∧(i214[0] →* i214[1])∧(i14[0] →* i14[1])∧(i14[0] - 1 >= i214[0] →* TRUE))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(2) -> (0), if ((i215[2] + 1 →* i215[0])∧(i214[2] + 1 →* i214[0])∧(i14[2] →* i14[0]))
(0) -> (1), if ((i215[0] →* i215[1])∧(i214[0] →* i214[1])∧(i14[0] →* i14[1])∧(i14[0] - 1 >= i214[0] →* TRUE))
(1) -> (2), if ((i14[1] →* i14[2])∧(i214[1] →* i214[2])∧(i215[1] →* i215[2]))
(1) (i215[0]=i215[1]∧i214[0]=i214[1]∧i14[0]=i14[1]∧>=(-(i14[0], 1), i214[0])=TRUE ⇒ LOAD1487(i14[0], i214[0], i215[0])≥NonInfC∧LOAD1487(i14[0], i214[0], i215[0])≥COND_LOAD1487(>=(-(i14[0], 1), i214[0]), i14[0], i214[0], i215[0])∧(UIncreasing(COND_LOAD1487(>=(-(i14[0], 1), i214[0]), i14[0], i214[0], i215[0])), ≥))
(2) (>=(-(i14[0], 1), i214[0])=TRUE ⇒ LOAD1487(i14[0], i214[0], i215[0])≥NonInfC∧LOAD1487(i14[0], i214[0], i215[0])≥COND_LOAD1487(>=(-(i14[0], 1), i214[0]), i14[0], i214[0], i215[0])∧(UIncreasing(COND_LOAD1487(>=(-(i14[0], 1), i214[0]), i14[0], i214[0], i215[0])), ≥))
(3) (i14[0] + [-1] + [-1]i214[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1487(>=(-(i14[0], 1), i214[0]), i14[0], i214[0], i215[0])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [(-1)bni_17]i214[0] + [bni_17]i14[0] ≥ 0∧[(-1)bso_18] ≥ 0)
(4) (i14[0] + [-1] + [-1]i214[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1487(>=(-(i14[0], 1), i214[0]), i14[0], i214[0], i215[0])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [(-1)bni_17]i214[0] + [bni_17]i14[0] ≥ 0∧[(-1)bso_18] ≥ 0)
(5) (i14[0] + [-1] + [-1]i214[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1487(>=(-(i14[0], 1), i214[0]), i14[0], i214[0], i215[0])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [(-1)bni_17]i214[0] + [bni_17]i14[0] ≥ 0∧[(-1)bso_18] ≥ 0)
(6) (i14[0] + [-1] + [-1]i214[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1487(>=(-(i14[0], 1), i214[0]), i14[0], i214[0], i215[0])), ≥)∧0 = 0∧[(-1)bni_17 + (-1)Bound*bni_17] + [(-1)bni_17]i214[0] + [bni_17]i14[0] ≥ 0∧0 = 0∧[(-1)bso_18] ≥ 0)
(7) (i14[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1487(>=(-(i14[0], 1), i214[0]), i14[0], i214[0], i215[0])), ≥)∧0 = 0∧[(-1)Bound*bni_17] + [bni_17]i14[0] ≥ 0∧0 = 0∧[(-1)bso_18] ≥ 0)
(8) (i14[0] ≥ 0∧i214[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1487(>=(-(i14[0], 1), i214[0]), i14[0], i214[0], i215[0])), ≥)∧0 = 0∧[(-1)Bound*bni_17] + [bni_17]i14[0] ≥ 0∧0 = 0∧[(-1)bso_18] ≥ 0)
(9) (i14[0] ≥ 0∧i214[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1487(>=(-(i14[0], 1), i214[0]), i14[0], i214[0], i215[0])), ≥)∧0 = 0∧[(-1)Bound*bni_17] + [bni_17]i14[0] ≥ 0∧0 = 0∧[(-1)bso_18] ≥ 0)
(10) (i14[1]=i14[2]∧i214[1]=i214[2]∧i215[1]=i215[2] ⇒ COND_LOAD1487(TRUE, i14[1], i214[1], i215[1])≥NonInfC∧COND_LOAD1487(TRUE, i14[1], i214[1], i215[1])≥LOAD1538(i14[1], i215[1], i214[1])∧(UIncreasing(LOAD1538(i14[1], i215[1], i214[1])), ≥))
(11) (COND_LOAD1487(TRUE, i14[1], i214[1], i215[1])≥NonInfC∧COND_LOAD1487(TRUE, i14[1], i214[1], i215[1])≥LOAD1538(i14[1], i215[1], i214[1])∧(UIncreasing(LOAD1538(i14[1], i215[1], i214[1])), ≥))
(12) ((UIncreasing(LOAD1538(i14[1], i215[1], i214[1])), ≥)∧[(-1)bso_20] ≥ 0)
(13) ((UIncreasing(LOAD1538(i14[1], i215[1], i214[1])), ≥)∧[(-1)bso_20] ≥ 0)
(14) ((UIncreasing(LOAD1538(i14[1], i215[1], i214[1])), ≥)∧[(-1)bso_20] ≥ 0)
(15) ((UIncreasing(LOAD1538(i14[1], i215[1], i214[1])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_20] ≥ 0)
(16) (i14[1]=i14[2]∧i214[1]=i214[2]∧i215[1]=i215[2]∧+(i215[2], 1)=i215[0]∧+(i214[2], 1)=i214[0]∧i14[2]=i14[0] ⇒ LOAD1538(i14[2], i215[2], i214[2])≥NonInfC∧LOAD1538(i14[2], i215[2], i214[2])≥LOAD1487(i14[2], +(i214[2], 1), +(i215[2], 1))∧(UIncreasing(LOAD1487(i14[2], +(i214[2], 1), +(i215[2], 1))), ≥))
(17) (LOAD1538(i14[1], i215[1], i214[1])≥NonInfC∧LOAD1538(i14[1], i215[1], i214[1])≥LOAD1487(i14[1], +(i214[1], 1), +(i215[1], 1))∧(UIncreasing(LOAD1487(i14[2], +(i214[2], 1), +(i215[2], 1))), ≥))
(18) ((UIncreasing(LOAD1487(i14[2], +(i214[2], 1), +(i215[2], 1))), ≥)∧[1 + (-1)bso_22] ≥ 0)
(19) ((UIncreasing(LOAD1487(i14[2], +(i214[2], 1), +(i215[2], 1))), ≥)∧[1 + (-1)bso_22] ≥ 0)
(20) ((UIncreasing(LOAD1487(i14[2], +(i214[2], 1), +(i215[2], 1))), ≥)∧[1 + (-1)bso_22] ≥ 0)
(21) ((UIncreasing(LOAD1487(i14[2], +(i214[2], 1), +(i215[2], 1))), ≥)∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_22] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(LOAD1487(x1, x2, x3)) = [-1] + [-1]x2 + x1
POL(COND_LOAD1487(x1, x2, x3, x4)) = [-1] + [-1]x3 + x2
POL(>=(x1, x2)) = [-1]
POL(-(x1, x2)) = x1 + [-1]x2
POL(1) = [1]
POL(LOAD1538(x1, x2, x3)) = [-1] + [-1]x3 + x1
POL(+(x1, x2)) = x1 + x2
LOAD1538(i14[2], i215[2], i214[2]) → LOAD1487(i14[2], +(i214[2], 1), +(i215[2], 1))
LOAD1487(i14[0], i214[0], i215[0]) → COND_LOAD1487(>=(-(i14[0], 1), i214[0]), i14[0], i214[0], i215[0])
LOAD1487(i14[0], i214[0], i215[0]) → COND_LOAD1487(>=(-(i14[0], 1), i214[0]), i14[0], i214[0], i215[0])
COND_LOAD1487(TRUE, i14[1], i214[1], i215[1]) → LOAD1538(i14[1], i215[1], i214[1])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(0) -> (1), if ((i215[0] →* i215[1])∧(i214[0] →* i214[1])∧(i14[0] →* i14[1])∧(i14[0] - 1 >= i214[0] →* TRUE))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(1) -> (2), if ((i14[1] →* i14[2])∧(i214[1] →* i214[2])∧(i215[1] →* i215[2]))