0 JBC
↳1 JBC2FIG (⇐)
↳2 FIGraph
↳3 FIGtoITRSProof (⇐)
↳4 ITRS
↳5 ITRStoIDPProof (⇔)
↳6 IDP
↳7 UsableRulesProof (⇔)
↳8 IDP
↳9 IDPNonInfProof (⇐)
↳10 AND
↳11 IDP
↳12 IDependencyGraphProof (⇔)
↳13 TRUE
↳14 IDP
↳15 IDependencyGraphProof (⇔)
↳16 TRUE
public class MinusBuiltIn{
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
int res = 0;
while (x > y) {
y++;
res++;
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i14[0] →* i14[1])∧(i14[0] > i61[0] && i62[0] + 1 > 0 →* TRUE)∧(i62[0] →* i62[1])∧(i61[0] →* i61[1]))
(1) -> (0), if ((i62[1] + 1 →* i62[0])∧(i14[1] →* i14[0])∧(i61[1] + 1 →* i61[0]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i14[0] →* i14[1])∧(i14[0] > i61[0] && i62[0] + 1 > 0 →* TRUE)∧(i62[0] →* i62[1])∧(i61[0] →* i61[1]))
(1) -> (0), if ((i62[1] + 1 →* i62[0])∧(i14[1] →* i14[0])∧(i61[1] + 1 →* i61[0]))
(1) (i14[0]=i14[1]∧&&(>(i14[0], i61[0]), >(+(i62[0], 1), 0))=TRUE∧i62[0]=i62[1]∧i61[0]=i61[1] ⇒ LOAD920(i14[0], i61[0], i62[0])≥NonInfC∧LOAD920(i14[0], i61[0], i62[0])≥COND_LOAD920(&&(>(i14[0], i61[0]), >(+(i62[0], 1), 0)), i14[0], i61[0], i62[0])∧(UIncreasing(COND_LOAD920(&&(>(i14[0], i61[0]), >(+(i62[0], 1), 0)), i14[0], i61[0], i62[0])), ≥))
(2) (>(i14[0], i61[0])=TRUE∧>(+(i62[0], 1), 0)=TRUE ⇒ LOAD920(i14[0], i61[0], i62[0])≥NonInfC∧LOAD920(i14[0], i61[0], i62[0])≥COND_LOAD920(&&(>(i14[0], i61[0]), >(+(i62[0], 1), 0)), i14[0], i61[0], i62[0])∧(UIncreasing(COND_LOAD920(&&(>(i14[0], i61[0]), >(+(i62[0], 1), 0)), i14[0], i61[0], i62[0])), ≥))
(3) (i14[0] + [-1] + [-1]i61[0] ≥ 0∧i62[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD920(&&(>(i14[0], i61[0]), >(+(i62[0], 1), 0)), i14[0], i61[0], i62[0])), ≥)∧[(2)bni_14 + (-1)Bound*bni_14] + [(-1)bni_14]i61[0] + [bni_14]i14[0] ≥ 0∧[(-1)bso_15] ≥ 0)
(4) (i14[0] + [-1] + [-1]i61[0] ≥ 0∧i62[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD920(&&(>(i14[0], i61[0]), >(+(i62[0], 1), 0)), i14[0], i61[0], i62[0])), ≥)∧[(2)bni_14 + (-1)Bound*bni_14] + [(-1)bni_14]i61[0] + [bni_14]i14[0] ≥ 0∧[(-1)bso_15] ≥ 0)
(5) (i14[0] + [-1] + [-1]i61[0] ≥ 0∧i62[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD920(&&(>(i14[0], i61[0]), >(+(i62[0], 1), 0)), i14[0], i61[0], i62[0])), ≥)∧[(2)bni_14 + (-1)Bound*bni_14] + [(-1)bni_14]i61[0] + [bni_14]i14[0] ≥ 0∧[(-1)bso_15] ≥ 0)
(6) (i14[0] ≥ 0∧i62[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD920(&&(>(i14[0], i61[0]), >(+(i62[0], 1), 0)), i14[0], i61[0], i62[0])), ≥)∧[(3)bni_14 + (-1)Bound*bni_14] + [bni_14]i14[0] ≥ 0∧[(-1)bso_15] ≥ 0)
(7) (i14[0] ≥ 0∧i62[0] ≥ 0∧i61[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD920(&&(>(i14[0], i61[0]), >(+(i62[0], 1), 0)), i14[0], i61[0], i62[0])), ≥)∧[(3)bni_14 + (-1)Bound*bni_14] + [bni_14]i14[0] ≥ 0∧[(-1)bso_15] ≥ 0)
(8) (i14[0] ≥ 0∧i62[0] ≥ 0∧i61[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD920(&&(>(i14[0], i61[0]), >(+(i62[0], 1), 0)), i14[0], i61[0], i62[0])), ≥)∧[(3)bni_14 + (-1)Bound*bni_14] + [bni_14]i14[0] ≥ 0∧[(-1)bso_15] ≥ 0)
(9) (i14[0]=i14[1]∧&&(>(i14[0], i61[0]), >(+(i62[0], 1), 0))=TRUE∧i62[0]=i62[1]∧i61[0]=i61[1]∧+(i62[1], 1)=i62[0]1∧i14[1]=i14[0]1∧+(i61[1], 1)=i61[0]1 ⇒ COND_LOAD920(TRUE, i14[1], i61[1], i62[1])≥NonInfC∧COND_LOAD920(TRUE, i14[1], i61[1], i62[1])≥LOAD920(i14[1], +(i61[1], 1), +(i62[1], 1))∧(UIncreasing(LOAD920(i14[1], +(i61[1], 1), +(i62[1], 1))), ≥))
(10) (>(i14[0], i61[0])=TRUE∧>(+(i62[0], 1), 0)=TRUE ⇒ COND_LOAD920(TRUE, i14[0], i61[0], i62[0])≥NonInfC∧COND_LOAD920(TRUE, i14[0], i61[0], i62[0])≥LOAD920(i14[0], +(i61[0], 1), +(i62[0], 1))∧(UIncreasing(LOAD920(i14[1], +(i61[1], 1), +(i62[1], 1))), ≥))
(11) (i14[0] + [-1] + [-1]i61[0] ≥ 0∧i62[0] ≥ 0 ⇒ (UIncreasing(LOAD920(i14[1], +(i61[1], 1), +(i62[1], 1))), ≥)∧[(2)bni_16 + (-1)Bound*bni_16] + [(-1)bni_16]i61[0] + [bni_16]i14[0] ≥ 0∧[1 + (-1)bso_17] ≥ 0)
(12) (i14[0] + [-1] + [-1]i61[0] ≥ 0∧i62[0] ≥ 0 ⇒ (UIncreasing(LOAD920(i14[1], +(i61[1], 1), +(i62[1], 1))), ≥)∧[(2)bni_16 + (-1)Bound*bni_16] + [(-1)bni_16]i61[0] + [bni_16]i14[0] ≥ 0∧[1 + (-1)bso_17] ≥ 0)
(13) (i14[0] + [-1] + [-1]i61[0] ≥ 0∧i62[0] ≥ 0 ⇒ (UIncreasing(LOAD920(i14[1], +(i61[1], 1), +(i62[1], 1))), ≥)∧[(2)bni_16 + (-1)Bound*bni_16] + [(-1)bni_16]i61[0] + [bni_16]i14[0] ≥ 0∧[1 + (-1)bso_17] ≥ 0)
(14) (i14[0] ≥ 0∧i62[0] ≥ 0 ⇒ (UIncreasing(LOAD920(i14[1], +(i61[1], 1), +(i62[1], 1))), ≥)∧[(3)bni_16 + (-1)Bound*bni_16] + [bni_16]i14[0] ≥ 0∧[1 + (-1)bso_17] ≥ 0)
(15) (i14[0] ≥ 0∧i62[0] ≥ 0∧i61[0] ≥ 0 ⇒ (UIncreasing(LOAD920(i14[1], +(i61[1], 1), +(i62[1], 1))), ≥)∧[(3)bni_16 + (-1)Bound*bni_16] + [bni_16]i14[0] ≥ 0∧[1 + (-1)bso_17] ≥ 0)
(16) (i14[0] ≥ 0∧i62[0] ≥ 0∧i61[0] ≥ 0 ⇒ (UIncreasing(LOAD920(i14[1], +(i61[1], 1), +(i62[1], 1))), ≥)∧[(3)bni_16 + (-1)Bound*bni_16] + [bni_16]i14[0] ≥ 0∧[1 + (-1)bso_17] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(LOAD920(x1, x2, x3)) = [2] + [-1]x2 + x1
POL(COND_LOAD920(x1, x2, x3, x4)) = [2] + [-1]x3 + x2 + [-1]x1
POL(&&(x1, x2)) = 0
POL(>(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(1) = [1]
POL(0) = 0
COND_LOAD920(TRUE, i14[1], i61[1], i62[1]) → LOAD920(i14[1], +(i61[1], 1), +(i62[1], 1))
LOAD920(i14[0], i61[0], i62[0]) → COND_LOAD920(&&(>(i14[0], i61[0]), >(+(i62[0], 1), 0)), i14[0], i61[0], i62[0])
COND_LOAD920(TRUE, i14[1], i61[1], i62[1]) → LOAD920(i14[1], +(i61[1], 1), +(i62[1], 1))
LOAD920(i14[0], i61[0], i62[0]) → COND_LOAD920(&&(>(i14[0], i61[0]), >(+(i62[0], 1), 0)), i14[0], i61[0], i62[0])
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
&&(FALSE, FALSE)1 ↔ FALSE1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |