0 JBC
↳1 JBC2FIG (⇐)
↳2 FIGraph
↳3 FIGtoITRSProof (⇐)
↳4 ITRS
↳5 DuplicateArgsRemoverProof (⇔)
↳6 ITRS
↳7 ITRStoIDPProof (⇔)
↳8 IDP
↳9 UsableRulesProof (⇔)
↳10 IDP
↳11 IDPNonInfProof (⇐)
↳12 AND
↳13 IDP
↳14 IDependencyGraphProof (⇔)
↳15 TRUE
↳16 IDP
↳17 IDependencyGraphProof (⇔)
↳18 TRUE
public class LogIterative {
public static int log(int x, int y) {
int res = 0;
while (x >= y && y > 1) {
res++;
x = x/y;
}
return res;
}
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
log(x, y);
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Load1335(x1, x2, x3, x4) → Load1335(x2, x3, x4)
Cond_Load1335(x1, x2, x3, x4, x5) → Cond_Load1335(x1, x3, x4, x5)
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i315[0] →* i315[1])∧(i349[0] > 1 && i315[0] >= i349[0] && i317[0] + 1 > 0 →* TRUE)∧(i317[0] →* i317[1])∧(i349[0] →* i349[1]))
(1) -> (0), if ((i315[1] / i349[1] →* i315[0])∧(i317[1] + 1 →* i317[0])∧(i349[1] →* i349[0]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i315[0] →* i315[1])∧(i349[0] > 1 && i315[0] >= i349[0] && i317[0] + 1 > 0 →* TRUE)∧(i317[0] →* i317[1])∧(i349[0] →* i349[1]))
(1) -> (0), if ((i315[1] / i349[1] →* i315[0])∧(i317[1] + 1 →* i317[0])∧(i349[1] →* i349[0]))
(1) (i315[0]=i315[1]∧&&(&&(>(i349[0], 1), >=(i315[0], i349[0])), >(+(i317[0], 1), 0))=TRUE∧i317[0]=i317[1]∧i349[0]=i349[1] ⇒ LOAD1335(i315[0], i349[0], i317[0])≥NonInfC∧LOAD1335(i315[0], i349[0], i317[0])≥COND_LOAD1335(&&(&&(>(i349[0], 1), >=(i315[0], i349[0])), >(+(i317[0], 1), 0)), i315[0], i349[0], i317[0])∧(UIncreasing(COND_LOAD1335(&&(&&(>(i349[0], 1), >=(i315[0], i349[0])), >(+(i317[0], 1), 0)), i315[0], i349[0], i317[0])), ≥))
(2) (>(+(i317[0], 1), 0)=TRUE∧>(i349[0], 1)=TRUE∧>=(i315[0], i349[0])=TRUE ⇒ LOAD1335(i315[0], i349[0], i317[0])≥NonInfC∧LOAD1335(i315[0], i349[0], i317[0])≥COND_LOAD1335(&&(&&(>(i349[0], 1), >=(i315[0], i349[0])), >(+(i317[0], 1), 0)), i315[0], i349[0], i317[0])∧(UIncreasing(COND_LOAD1335(&&(&&(>(i349[0], 1), >=(i315[0], i349[0])), >(+(i317[0], 1), 0)), i315[0], i349[0], i317[0])), ≥))
(3) (i317[0] ≥ 0∧i349[0] + [-2] ≥ 0∧i315[0] + [-1]i349[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1335(&&(&&(>(i349[0], 1), >=(i315[0], i349[0])), >(+(i317[0], 1), 0)), i315[0], i349[0], i317[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]i315[0] ≥ 0∧[(-1)bso_16] ≥ 0)
(4) (i317[0] ≥ 0∧i349[0] + [-2] ≥ 0∧i315[0] + [-1]i349[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1335(&&(&&(>(i349[0], 1), >=(i315[0], i349[0])), >(+(i317[0], 1), 0)), i315[0], i349[0], i317[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]i315[0] ≥ 0∧[(-1)bso_16] ≥ 0)
(5) (i317[0] ≥ 0∧i349[0] + [-2] ≥ 0∧i315[0] + [-1]i349[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1335(&&(&&(>(i349[0], 1), >=(i315[0], i349[0])), >(+(i317[0], 1), 0)), i315[0], i349[0], i317[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]i315[0] ≥ 0∧[(-1)bso_16] ≥ 0)
(6) (i317[0] ≥ 0∧i349[0] ≥ 0∧i315[0] + [-2] + [-1]i349[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1335(&&(&&(>(i349[0], 1), >=(i315[0], i349[0])), >(+(i317[0], 1), 0)), i315[0], i349[0], i317[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]i315[0] ≥ 0∧[(-1)bso_16] ≥ 0)
(7) (i317[0] ≥ 0∧i349[0] ≥ 0∧i315[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1335(&&(&&(>(i349[0], 1), >=(i315[0], i349[0])), >(+(i317[0], 1), 0)), i315[0], i349[0], i317[0])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [bni_15]i349[0] + [bni_15]i315[0] ≥ 0∧[(-1)bso_16] ≥ 0)
(8) (i315[0]=i315[1]∧&&(&&(>(i349[0], 1), >=(i315[0], i349[0])), >(+(i317[0], 1), 0))=TRUE∧i317[0]=i317[1]∧i349[0]=i349[1]∧/(i315[1], i349[1])=i315[0]1∧+(i317[1], 1)=i317[0]1∧i349[1]=i349[0]1 ⇒ COND_LOAD1335(TRUE, i315[1], i349[1], i317[1])≥NonInfC∧COND_LOAD1335(TRUE, i315[1], i349[1], i317[1])≥LOAD1335(/(i315[1], i349[1]), i349[1], +(i317[1], 1))∧(UIncreasing(LOAD1335(/(i315[1], i349[1]), i349[1], +(i317[1], 1))), ≥))
(9) (>(+(i317[0], 1), 0)=TRUE∧>(i349[0], 1)=TRUE∧>=(i315[0], i349[0])=TRUE ⇒ COND_LOAD1335(TRUE, i315[0], i349[0], i317[0])≥NonInfC∧COND_LOAD1335(TRUE, i315[0], i349[0], i317[0])≥LOAD1335(/(i315[0], i349[0]), i349[0], +(i317[0], 1))∧(UIncreasing(LOAD1335(/(i315[1], i349[1]), i349[1], +(i317[1], 1))), ≥))
(10) (i317[0] ≥ 0∧i349[0] + [-2] ≥ 0∧i315[0] + [-1]i349[0] ≥ 0 ⇒ (UIncreasing(LOAD1335(/(i315[1], i349[1]), i349[1], +(i317[1], 1))), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [bni_17]i315[0] ≥ 0∧[(-1)bso_21] + i315[0] + [-1]max{i315[0], [-1]i315[0]} + min{max{i349[0], [-1]i349[0]} + [-1], max{i315[0], [-1]i315[0]}} ≥ 0)
(11) (i317[0] ≥ 0∧i349[0] + [-2] ≥ 0∧i315[0] + [-1]i349[0] ≥ 0 ⇒ (UIncreasing(LOAD1335(/(i315[1], i349[1]), i349[1], +(i317[1], 1))), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [bni_17]i315[0] ≥ 0∧[(-1)bso_21] + i315[0] + [-1]max{i315[0], [-1]i315[0]} + min{max{i349[0], [-1]i349[0]} + [-1], max{i315[0], [-1]i315[0]}} ≥ 0)
(12) (i317[0] ≥ 0∧i349[0] + [-2] ≥ 0∧i315[0] + [-1]i349[0] ≥ 0∧[2]i315[0] ≥ 0∧[2]i349[0] ≥ 0 ⇒ (UIncreasing(LOAD1335(/(i315[1], i349[1]), i349[1], +(i317[1], 1))), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [bni_17]i315[0] ≥ 0∧[-1 + (-1)bso_21] + i349[0] ≥ 0)
(13) (i317[0] ≥ 0∧i349[0] ≥ 0∧i315[0] + [-2] + [-1]i349[0] ≥ 0∧[2]i315[0] ≥ 0∧[4] + [2]i349[0] ≥ 0 ⇒ (UIncreasing(LOAD1335(/(i315[1], i349[1]), i349[1], +(i317[1], 1))), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [bni_17]i315[0] ≥ 0∧[1 + (-1)bso_21] + i349[0] ≥ 0)
(14) (i317[0] ≥ 0∧i349[0] ≥ 0∧i315[0] ≥ 0∧[4] + [2]i349[0] + [2]i315[0] ≥ 0∧[4] + [2]i349[0] ≥ 0 ⇒ (UIncreasing(LOAD1335(/(i315[1], i349[1]), i349[1], +(i317[1], 1))), ≥)∧[bni_17 + (-1)Bound*bni_17] + [bni_17]i349[0] + [bni_17]i315[0] ≥ 0∧[1 + (-1)bso_21] + i349[0] ≥ 0)
(15) (i317[0] ≥ 0∧i349[0] ≥ 0∧i315[0] ≥ 0∧[2] + i349[0] + i315[0] ≥ 0∧[2] + i349[0] ≥ 0 ⇒ (UIncreasing(LOAD1335(/(i315[1], i349[1]), i349[1], +(i317[1], 1))), ≥)∧[bni_17 + (-1)Bound*bni_17] + [bni_17]i349[0] + [bni_17]i315[0] ≥ 0∧[1 + (-1)bso_21] + i349[0] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(LOAD1335(x1, x2, x3)) = [-1] + x1
POL(COND_LOAD1335(x1, x2, x3, x4)) = [-1] + x2 + [-1]x1
POL(&&(x1, x2)) = 0
POL(>(x1, x2)) = [-1]
POL(1) = [1]
POL(>=(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(0) = 0
Polynomial Interpretations with Context Sensitive Arithemetic Replacement
POL(TermCSAR-Mode @ Context)
POL(/(x1, i349[0])1 @ {LOAD1335_3/0}) = max{x1, [-1]x1} + [-1]min{max{x2, [-1]x2} + [-1], max{x1, [-1]x1}}
COND_LOAD1335(TRUE, i315[1], i349[1], i317[1]) → LOAD1335(/(i315[1], i349[1]), i349[1], +(i317[1], 1))
LOAD1335(i315[0], i349[0], i317[0]) → COND_LOAD1335(&&(&&(>(i349[0], 1), >=(i315[0], i349[0])), >(+(i317[0], 1), 0)), i315[0], i349[0], i317[0])
COND_LOAD1335(TRUE, i315[1], i349[1], i317[1]) → LOAD1335(/(i315[1], i349[1]), i349[1], +(i317[1], 1))
LOAD1335(i315[0], i349[0], i317[0]) → COND_LOAD1335(&&(&&(>(i349[0], 1), >=(i315[0], i349[0])), >(+(i317[0], 1), 0)), i315[0], i349[0], i317[0])
&&(TRUE, TRUE)1 ↔ TRUE1
&&(TRUE, FALSE)1 ↔ FALSE1
&&(FALSE, TRUE)1 ↔ FALSE1
&&(FALSE, FALSE)1 ↔ FALSE1
/1 →
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |