(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: LogBuiltIn
public class LogBuiltIn{
public static int log(int x) {

int res = 0;

while (x > 1) {

x = x/2;
res++;

}

return res;

}


public static void main(String[] args) {
Random.args = args;
int x = Random.random();
log(x);
}
}



public class Random {
static String[] args;
static int index = 0;

public static int random() {
String string = args[index];
index++;
return string.length();
}
}


(1) JBC2FIG (SOUND transformation)

Constructed FIGraph.

(2) Obligation:

FIGraph based on JBC Program:
Graph of 138 nodes with 1 SCC.

(3) FIGtoITRSProof (SOUND transformation)

Transformed FIGraph to ITRS rules

(4) Obligation:

ITRS problem:

The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean

The TRS R consists of the following rules:
Load653(1, i42, i38) → Cond_Load653(i42 > 1 && i38 + 1 > 0, 1, i42, i38)
Cond_Load653(TRUE, 1, i42, i38) → Load653(1, i42 / 2, i38 + 1)
The set Q consists of the following terms:
Load653(1, x0, x1)
Cond_Load653(TRUE, 1, x0, x1)

(5) GroundTermsRemoverProof (EQUIVALENT transformation)

Some arguments are removed because they always contain the same ground term.
We removed the following ground terms:
  • 1

We removed arguments according to the following replacements:

Load653(x1, x2, x3) → Load653(x2, x3)
Cond_Load653(x1, x2, x3, x4) → Cond_Load653(x1, x3, x4)

(6) Obligation:

ITRS problem:

The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean

The TRS R consists of the following rules:
Load653(i42, i38) → Cond_Load653(i42 > 1 && i38 + 1 > 0, i42, i38)
Cond_Load653(TRUE, i42, i38) → Load653(i42 / 2, i38 + 1)
The set Q consists of the following terms:
Load653(x0, x1)
Cond_Load653(TRUE, x0, x1)

(7) ITRStoIDPProof (EQUIVALENT transformation)

Added dependency pairs

(8) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


The ITRS R consists of the following rules:
Load653(i42, i38) → Cond_Load653(i42 > 1 && i38 + 1 > 0, i42, i38)
Cond_Load653(TRUE, i42, i38) → Load653(i42 / 2, i38 + 1)

The integer pair graph contains the following rules and edges:
(0): LOAD653(i42[0], i38[0]) → COND_LOAD653(i42[0] > 1 && i38[0] + 1 > 0, i42[0], i38[0])
(1): COND_LOAD653(TRUE, i42[1], i38[1]) → LOAD653(i42[1] / 2, i38[1] + 1)

(0) -> (1), if ((i42[0]* i42[1])∧(i38[0]* i38[1])∧(i42[0] > 1 && i38[0] + 1 > 0* TRUE))


(1) -> (0), if ((i42[1] / 2* i42[0])∧(i38[1] + 1* i38[0]))



The set Q consists of the following terms:
Load653(x0, x1)
Cond_Load653(TRUE, x0, x1)

(9) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(10) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): LOAD653(i42[0], i38[0]) → COND_LOAD653(i42[0] > 1 && i38[0] + 1 > 0, i42[0], i38[0])
(1): COND_LOAD653(TRUE, i42[1], i38[1]) → LOAD653(i42[1] / 2, i38[1] + 1)

(0) -> (1), if ((i42[0]* i42[1])∧(i38[0]* i38[1])∧(i42[0] > 1 && i38[0] + 1 > 0* TRUE))


(1) -> (0), if ((i42[1] / 2* i42[0])∧(i38[1] + 1* i38[0]))



The set Q consists of the following terms:
Load653(x0, x1)
Cond_Load653(TRUE, x0, x1)

(11) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair LOAD653(i42, i38) → COND_LOAD653(&&(>(i42, 1), >(+(i38, 1), 0)), i42, i38) the following chains were created:
  • We consider the chain LOAD653(i42[0], i38[0]) → COND_LOAD653(&&(>(i42[0], 1), >(+(i38[0], 1), 0)), i42[0], i38[0]), COND_LOAD653(TRUE, i42[1], i38[1]) → LOAD653(/(i42[1], 2), +(i38[1], 1)) which results in the following constraint:

    (1)    (i42[0]=i42[1]i38[0]=i38[1]&&(>(i42[0], 1), >(+(i38[0], 1), 0))=TRUELOAD653(i42[0], i38[0])≥NonInfC∧LOAD653(i42[0], i38[0])≥COND_LOAD653(&&(>(i42[0], 1), >(+(i38[0], 1), 0)), i42[0], i38[0])∧(UIncreasing(COND_LOAD653(&&(>(i42[0], 1), >(+(i38[0], 1), 0)), i42[0], i38[0])), ≥))



    We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (>(i42[0], 1)=TRUE>(+(i38[0], 1), 0)=TRUELOAD653(i42[0], i38[0])≥NonInfC∧LOAD653(i42[0], i38[0])≥COND_LOAD653(&&(>(i42[0], 1), >(+(i38[0], 1), 0)), i42[0], i38[0])∧(UIncreasing(COND_LOAD653(&&(>(i42[0], 1), >(+(i38[0], 1), 0)), i42[0], i38[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (i42[0] + [-2] ≥ 0∧i38[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD653(&&(>(i42[0], 1), >(+(i38[0], 1), 0)), i42[0], i38[0])), ≥)∧[(-1)bni_12 + (-1)Bound*bni_12] + [bni_12]i42[0] ≥ 0∧[(-1)bso_13] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (i42[0] + [-2] ≥ 0∧i38[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD653(&&(>(i42[0], 1), >(+(i38[0], 1), 0)), i42[0], i38[0])), ≥)∧[(-1)bni_12 + (-1)Bound*bni_12] + [bni_12]i42[0] ≥ 0∧[(-1)bso_13] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (i42[0] + [-2] ≥ 0∧i38[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD653(&&(>(i42[0], 1), >(+(i38[0], 1), 0)), i42[0], i38[0])), ≥)∧[(-1)bni_12 + (-1)Bound*bni_12] + [bni_12]i42[0] ≥ 0∧[(-1)bso_13] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (i42[0] ≥ 0∧i38[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD653(&&(>(i42[0], 1), >(+(i38[0], 1), 0)), i42[0], i38[0])), ≥)∧[bni_12 + (-1)Bound*bni_12] + [bni_12]i42[0] ≥ 0∧[(-1)bso_13] ≥ 0)







For Pair COND_LOAD653(TRUE, i42, i38) → LOAD653(/(i42, 2), +(i38, 1)) the following chains were created:
  • We consider the chain LOAD653(i42[0], i38[0]) → COND_LOAD653(&&(>(i42[0], 1), >(+(i38[0], 1), 0)), i42[0], i38[0]), COND_LOAD653(TRUE, i42[1], i38[1]) → LOAD653(/(i42[1], 2), +(i38[1], 1)), LOAD653(i42[0], i38[0]) → COND_LOAD653(&&(>(i42[0], 1), >(+(i38[0], 1), 0)), i42[0], i38[0]) which results in the following constraint:

    (7)    (i42[0]=i42[1]i38[0]=i38[1]&&(>(i42[0], 1), >(+(i38[0], 1), 0))=TRUE/(i42[1], 2)=i42[0]1+(i38[1], 1)=i38[0]1COND_LOAD653(TRUE, i42[1], i38[1])≥NonInfC∧COND_LOAD653(TRUE, i42[1], i38[1])≥LOAD653(/(i42[1], 2), +(i38[1], 1))∧(UIncreasing(LOAD653(/(i42[1], 2), +(i38[1], 1))), ≥))



    We simplified constraint (7) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (8)    (>(i42[0], 1)=TRUE>(+(i38[0], 1), 0)=TRUECOND_LOAD653(TRUE, i42[0], i38[0])≥NonInfC∧COND_LOAD653(TRUE, i42[0], i38[0])≥LOAD653(/(i42[0], 2), +(i38[0], 1))∧(UIncreasing(LOAD653(/(i42[1], 2), +(i38[1], 1))), ≥))



    We simplified constraint (8) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (9)    (i42[0] + [-2] ≥ 0∧i38[0] ≥ 0 ⇒ (UIncreasing(LOAD653(/(i42[1], 2), +(i38[1], 1))), ≥)∧[(-1)bni_14 + (-1)Bound*bni_14] + [bni_14]i42[0] ≥ 0∧[1 + (-1)bso_18] + i42[0] + [-1]max{i42[0], [-1]i42[0]} ≥ 0)



    We simplified constraint (9) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (10)    (i42[0] + [-2] ≥ 0∧i38[0] ≥ 0 ⇒ (UIncreasing(LOAD653(/(i42[1], 2), +(i38[1], 1))), ≥)∧[(-1)bni_14 + (-1)Bound*bni_14] + [bni_14]i42[0] ≥ 0∧[1 + (-1)bso_18] + i42[0] + [-1]max{i42[0], [-1]i42[0]} ≥ 0)



    We simplified constraint (10) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (11)    (i42[0] + [-2] ≥ 0∧i38[0] ≥ 0∧[2]i42[0] ≥ 0 ⇒ (UIncreasing(LOAD653(/(i42[1], 2), +(i38[1], 1))), ≥)∧[(-1)bni_14 + (-1)Bound*bni_14] + [bni_14]i42[0] ≥ 0∧[1 + (-1)bso_18] ≥ 0)



    We simplified constraint (11) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (12)    (i42[0] ≥ 0∧i38[0] ≥ 0∧[4] + [2]i42[0] ≥ 0 ⇒ (UIncreasing(LOAD653(/(i42[1], 2), +(i38[1], 1))), ≥)∧[bni_14 + (-1)Bound*bni_14] + [bni_14]i42[0] ≥ 0∧[1 + (-1)bso_18] ≥ 0)



    We simplified constraint (12) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (13)    (i42[0] ≥ 0∧i38[0] ≥ 0∧[2] + i42[0] ≥ 0 ⇒ (UIncreasing(LOAD653(/(i42[1], 2), +(i38[1], 1))), ≥)∧[bni_14 + (-1)Bound*bni_14] + [bni_14]i42[0] ≥ 0∧[1 + (-1)bso_18] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • LOAD653(i42, i38) → COND_LOAD653(&&(>(i42, 1), >(+(i38, 1), 0)), i42, i38)
    • (i42[0] ≥ 0∧i38[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD653(&&(>(i42[0], 1), >(+(i38[0], 1), 0)), i42[0], i38[0])), ≥)∧[bni_12 + (-1)Bound*bni_12] + [bni_12]i42[0] ≥ 0∧[(-1)bso_13] ≥ 0)

  • COND_LOAD653(TRUE, i42, i38) → LOAD653(/(i42, 2), +(i38, 1))
    • (i42[0] ≥ 0∧i38[0] ≥ 0∧[2] + i42[0] ≥ 0 ⇒ (UIncreasing(LOAD653(/(i42[1], 2), +(i38[1], 1))), ≥)∧[bni_14 + (-1)Bound*bni_14] + [bni_14]i42[0] ≥ 0∧[1 + (-1)bso_18] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = [2]   
POL(FALSE) = [3]   
POL(LOAD653(x1, x2)) = [-1] + x1   
POL(COND_LOAD653(x1, x2, x3)) = [1] + x2 + [-1]x1   
POL(&&(x1, x2)) = [2]   
POL(>(x1, x2)) = [-1]   
POL(1) = [1]   
POL(+(x1, x2)) = x1 + x2   
POL(0) = 0   
POL(2) = [2]   

Polynomial Interpretations with Context Sensitive Arithemetic Replacement
POL(TermCSAR-Mode @ Context)

POL(/(x1, 2)1 @ {LOAD653_2/0}) = max{x1, [-1]x1} + [-1]   

The following pairs are in P>:

COND_LOAD653(TRUE, i42[1], i38[1]) → LOAD653(/(i42[1], 2), +(i38[1], 1))

The following pairs are in Pbound:

LOAD653(i42[0], i38[0]) → COND_LOAD653(&&(>(i42[0], 1), >(+(i38[0], 1), 0)), i42[0], i38[0])
COND_LOAD653(TRUE, i42[1], i38[1]) → LOAD653(/(i42[1], 2), +(i38[1], 1))

The following pairs are in P:

LOAD653(i42[0], i38[0]) → COND_LOAD653(&&(>(i42[0], 1), >(+(i38[0], 1), 0)), i42[0], i38[0])

At least the following rules have been oriented under context sensitive arithmetic replacement:

&&(TRUE, TRUE)1TRUE1
FALSE1&&(TRUE, FALSE)1
FALSE1&&(FALSE, TRUE)1
FALSE1&&(FALSE, FALSE)1
/1

(12) Complex Obligation (AND)

(13) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): LOAD653(i42[0], i38[0]) → COND_LOAD653(i42[0] > 1 && i38[0] + 1 > 0, i42[0], i38[0])


The set Q consists of the following terms:
Load653(x0, x1)
Cond_Load653(TRUE, x0, x1)

(14) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(15) TRUE

(16) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:
none


R is empty.

The integer pair graph is empty.

The set Q consists of the following terms:
Load653(x0, x1)
Cond_Load653(TRUE, x0, x1)

(17) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs.

(18) TRUE