0 JBC
↳1 JBC2FIG (⇐)
↳2 FIGraph
↳3 FIGtoITRSProof (⇐)
↳4 ITRS
↳5 GroundTermsRemoverProof (⇔)
↳6 ITRS
↳7 ITRStoIDPProof (⇔)
↳8 IDP
↳9 UsableRulesProof (⇔)
↳10 IDP
↳11 IDPNonInfProof (⇐)
↳12 AND
↳13 IDP
↳14 IDependencyGraphProof (⇔)
↳15 IDP
↳16 IDPNonInfProof (⇐)
↳17 AND
↳18 IDP
↳19 IDependencyGraphProof (⇔)
↳20 TRUE
↳21 IDP
↳22 IDependencyGraphProof (⇔)
↳23 TRUE
↳24 IDP
↳25 IDependencyGraphProof (⇔)
↳26 TRUE
public class Log{
public static int half(int x) {
int res = 0;
while (x > 1) {
x = x-2;
res++;
}
return res;
}
public static int log(int x) {
int res = 0;
while (x > 1) {
x = half(x);
res++;
}
return res;
}
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
log(x);
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Cond_Load10492(x1, x2, x3, x4, x5) → Cond_Load10492(x1, x3, x4, x5)
Load1049(x1, x2, x3, x4) → Load1049(x2, x3, x4)
Load872(x1, x2, x3) → Load872(x2, x3)
Load1065(x1, x2, x3) → Load1065(x2, x3)
Cond_Load10491(x1, x2, x3, x4, x5) → Cond_Load10491(x1, x3, x4, x5)
Cond_Load1049(x1, x2, x3, x4, x5) → Cond_Load1049(x1, x3, x4, x5)
Cond_Load872(x1, x2, x3, x4) → Cond_Load872(x1, x3, x4)
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(0) -> (1), if ((i63[0] →* i63[1])∧(i63[0] > 1 →* TRUE)∧(i53[0] →* i53[1]))
(1) -> (2), if ((i53[1] →* i53[2])∧(0 →* i84[2])∧(i63[1] →* i91[2]))
(1) -> (4), if ((i53[1] →* i53[4])∧(0 →* i84[4])∧(i63[1] →* i91[4]))
(1) -> (7), if ((i53[1] →* i53[7])∧(i63[1] →* i90[7])∧(0 →* i84[7]))
(2) -> (3), if ((i84[2] →* i84[3])∧(i91[2] →* i91[3])∧(i53[2] →* i53[3])∧(i91[2] > 1 && i84[2] + 1 > 0 →* TRUE))
(3) -> (2), if ((i91[3] - 2 →* i91[2])∧(i84[3] + 1 →* i84[2])∧(i53[3] →* i53[2]))
(3) -> (4), if ((i84[3] + 1 →* i84[4])∧(i91[3] - 2 →* i91[4])∧(i53[3] →* i53[4]))
(3) -> (7), if ((i84[3] + 1 →* i84[7])∧(i53[3] →* i53[7])∧(i91[3] - 2 →* i90[7]))
(4) -> (5), if ((i84[4] →* i84[5])∧(i91[4] > 0 && i91[4] <= 1 →* TRUE)∧(i91[4] →* i91[5])∧(i53[4] →* i53[5]))
(5) -> (6), if ((i53[5] →* i53[6])∧(i84[5] →* i84[6]))
(6) -> (0), if ((i53[6] + 1 →* i53[0])∧(i84[6] →* i63[0]))
(7) -> (8), if ((i90[7] →* i90[8])∧(i90[7] <= 1 && i53[7] + 1 > 0 →* TRUE)∧(i84[7] →* i84[8])∧(i53[7] →* i53[8]))
(8) -> (0), if ((i53[8] + 1 →* i53[0])∧(i84[8] →* i63[0]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(0) -> (1), if ((i63[0] →* i63[1])∧(i63[0] > 1 →* TRUE)∧(i53[0] →* i53[1]))
(1) -> (2), if ((i53[1] →* i53[2])∧(0 →* i84[2])∧(i63[1] →* i91[2]))
(1) -> (4), if ((i53[1] →* i53[4])∧(0 →* i84[4])∧(i63[1] →* i91[4]))
(1) -> (7), if ((i53[1] →* i53[7])∧(i63[1] →* i90[7])∧(0 →* i84[7]))
(2) -> (3), if ((i84[2] →* i84[3])∧(i91[2] →* i91[3])∧(i53[2] →* i53[3])∧(i91[2] > 1 && i84[2] + 1 > 0 →* TRUE))
(3) -> (2), if ((i91[3] - 2 →* i91[2])∧(i84[3] + 1 →* i84[2])∧(i53[3] →* i53[2]))
(3) -> (4), if ((i84[3] + 1 →* i84[4])∧(i91[3] - 2 →* i91[4])∧(i53[3] →* i53[4]))
(3) -> (7), if ((i84[3] + 1 →* i84[7])∧(i53[3] →* i53[7])∧(i91[3] - 2 →* i90[7]))
(4) -> (5), if ((i84[4] →* i84[5])∧(i91[4] > 0 && i91[4] <= 1 →* TRUE)∧(i91[4] →* i91[5])∧(i53[4] →* i53[5]))
(5) -> (6), if ((i53[5] →* i53[6])∧(i84[5] →* i84[6]))
(6) -> (0), if ((i53[6] + 1 →* i53[0])∧(i84[6] →* i63[0]))
(7) -> (8), if ((i90[7] →* i90[8])∧(i90[7] <= 1 && i53[7] + 1 > 0 →* TRUE)∧(i84[7] →* i84[8])∧(i53[7] →* i53[8]))
(8) -> (0), if ((i53[8] + 1 →* i53[0])∧(i84[8] →* i63[0]))
(1) (i63[0]=i63[1]∧>(i63[0], 1)=TRUE∧i53[0]=i53[1] ⇒ LOAD872(i63[0], i53[0])≥NonInfC∧LOAD872(i63[0], i53[0])≥COND_LOAD872(>(i63[0], 1), i63[0], i53[0])∧(UIncreasing(COND_LOAD872(>(i63[0], 1), i63[0], i53[0])), ≥))
(2) (>(i63[0], 1)=TRUE ⇒ LOAD872(i63[0], i53[0])≥NonInfC∧LOAD872(i63[0], i53[0])≥COND_LOAD872(>(i63[0], 1), i63[0], i53[0])∧(UIncreasing(COND_LOAD872(>(i63[0], 1), i63[0], i53[0])), ≥))
(3) (i63[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_LOAD872(>(i63[0], 1), i63[0], i53[0])), ≥)∧[(-1)Bound*bni_35] + [bni_35]i63[0] ≥ 0∧[(-1)bso_36] ≥ 0)
(4) (i63[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_LOAD872(>(i63[0], 1), i63[0], i53[0])), ≥)∧[(-1)Bound*bni_35] + [bni_35]i63[0] ≥ 0∧[(-1)bso_36] ≥ 0)
(5) (i63[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_LOAD872(>(i63[0], 1), i63[0], i53[0])), ≥)∧[(-1)Bound*bni_35] + [bni_35]i63[0] ≥ 0∧[(-1)bso_36] ≥ 0)
(6) (i63[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_LOAD872(>(i63[0], 1), i63[0], i53[0])), ≥)∧0 = 0∧[(-1)Bound*bni_35] + [bni_35]i63[0] ≥ 0∧0 = 0∧[(-1)bso_36] ≥ 0)
(7) (i63[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD872(>(i63[0], 1), i63[0], i53[0])), ≥)∧0 = 0∧[(-1)Bound*bni_35 + (2)bni_35] + [bni_35]i63[0] ≥ 0∧0 = 0∧[(-1)bso_36] ≥ 0)
(8) (i53[5]=i53[6]∧i84[5]=i84[6]∧+(i53[6], 1)=i53[0]∧i84[6]=i63[0]∧i63[0]=i63[1]∧>(i63[0], 1)=TRUE∧i53[0]=i53[1]∧i53[1]=i53[2]∧0=i84[2]∧i63[1]=i91[2]∧i84[2]=i84[3]∧i91[2]=i91[3]∧i53[2]=i53[3]∧&&(>(i91[2], 1), >(+(i84[2], 1), 0))=TRUE ⇒ COND_LOAD872(TRUE, i63[1], i53[1])≥NonInfC∧COND_LOAD872(TRUE, i63[1], i53[1])≥LOAD1049(i53[1], i63[1], 0)∧(UIncreasing(LOAD1049(i53[1], i63[1], 0)), ≥))
(9) (>(i63[0], 1)=TRUE ⇒ COND_LOAD872(TRUE, i63[0], +(i53[6], 1))≥NonInfC∧COND_LOAD872(TRUE, i63[0], +(i53[6], 1))≥LOAD1049(+(i53[6], 1), i63[0], 0)∧(UIncreasing(LOAD1049(i53[1], i63[1], 0)), ≥))
(10) (i63[0] + [-2] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[1], i63[1], 0)), ≥)∧[(-1)Bound*bni_37] + [bni_37]i63[0] ≥ 0∧[(-1)bso_38] ≥ 0)
(11) (i63[0] + [-2] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[1], i63[1], 0)), ≥)∧[(-1)Bound*bni_37] + [bni_37]i63[0] ≥ 0∧[(-1)bso_38] ≥ 0)
(12) (i63[0] + [-2] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[1], i63[1], 0)), ≥)∧[(-1)Bound*bni_37] + [bni_37]i63[0] ≥ 0∧[(-1)bso_38] ≥ 0)
(13) (i63[0] + [-2] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[1], i63[1], 0)), ≥)∧0 = 0∧[(-1)Bound*bni_37] + [bni_37]i63[0] ≥ 0∧0 = 0∧[(-1)bso_38] ≥ 0)
(14) (i63[0] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[1], i63[1], 0)), ≥)∧0 = 0∧[(-1)Bound*bni_37 + (2)bni_37] + [bni_37]i63[0] ≥ 0∧0 = 0∧[(-1)bso_38] ≥ 0)
(15) (i53[5]=i53[6]∧i84[5]=i84[6]∧+(i53[6], 1)=i53[0]∧i84[6]=i63[0]∧i63[0]=i63[1]∧>(i63[0], 1)=TRUE∧i53[0]=i53[1]∧i53[1]=i53[4]∧0=i84[4]∧i63[1]=i91[4]∧i84[4]=i84[5]1∧&&(>(i91[4], 0), <=(i91[4], 1))=TRUE∧i91[4]=i91[5]1∧i53[4]=i53[5]1 ⇒ COND_LOAD872(TRUE, i63[1], i53[1])≥NonInfC∧COND_LOAD872(TRUE, i63[1], i53[1])≥LOAD1049(i53[1], i63[1], 0)∧(UIncreasing(LOAD1049(i53[1], i63[1], 0)), ≥))
(16) (>(i63[0], 1)=TRUE∧>(i63[0], 0)=TRUE∧<=(i63[0], 1)=TRUE ⇒ COND_LOAD872(TRUE, i63[0], +(i53[6], 1))≥NonInfC∧COND_LOAD872(TRUE, i63[0], +(i53[6], 1))≥LOAD1049(+(i53[6], 1), i63[0], 0)∧(UIncreasing(LOAD1049(i53[1], i63[1], 0)), ≥))
(17) (i63[0] + [-2] ≥ 0∧i63[0] + [-1] ≥ 0∧[1] + [-1]i63[0] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[1], i63[1], 0)), ≥)∧[(-1)Bound*bni_37] + [bni_37]i63[0] ≥ 0∧[(-1)bso_38] ≥ 0)
(18) (i63[0] + [-2] ≥ 0∧i63[0] + [-1] ≥ 0∧[1] + [-1]i63[0] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[1], i63[1], 0)), ≥)∧[(-1)Bound*bni_37] + [bni_37]i63[0] ≥ 0∧[(-1)bso_38] ≥ 0)
(19) (i63[0] + [-2] ≥ 0∧i63[0] + [-1] ≥ 0∧[1] + [-1]i63[0] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[1], i63[1], 0)), ≥)∧[(-1)Bound*bni_37] + [bni_37]i63[0] ≥ 0∧[(-1)bso_38] ≥ 0)
(20) (i63[0] + [-2] ≥ 0∧i63[0] + [-1] ≥ 0∧[1] + [-1]i63[0] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[1], i63[1], 0)), ≥)∧0 = 0∧[(-1)Bound*bni_37] + [bni_37]i63[0] ≥ 0∧0 = 0∧[(-1)bso_38] ≥ 0)
(21) (i53[5]=i53[6]∧i84[5]=i84[6]∧+(i53[6], 1)=i53[0]∧i84[6]=i63[0]∧i63[0]=i63[1]∧>(i63[0], 1)=TRUE∧i53[0]=i53[1]∧i53[1]=i53[7]∧i63[1]=i90[7]∧0=i84[7]∧i90[7]=i90[8]∧&&(<=(i90[7], 1), >(+(i53[7], 1), 0))=TRUE∧i84[7]=i84[8]∧i53[7]=i53[8] ⇒ COND_LOAD872(TRUE, i63[1], i53[1])≥NonInfC∧COND_LOAD872(TRUE, i63[1], i53[1])≥LOAD1049(i53[1], i63[1], 0)∧(UIncreasing(LOAD1049(i53[1], i63[1], 0)), ≥))
(22) (>(i63[0], 1)=TRUE∧<=(i63[0], 1)=TRUE∧>(+(+(i53[6], 1), 1), 0)=TRUE ⇒ COND_LOAD872(TRUE, i63[0], +(i53[6], 1))≥NonInfC∧COND_LOAD872(TRUE, i63[0], +(i53[6], 1))≥LOAD1049(+(i53[6], 1), i63[0], 0)∧(UIncreasing(LOAD1049(i53[1], i63[1], 0)), ≥))
(23) (i63[0] + [-2] ≥ 0∧[1] + [-1]i63[0] ≥ 0∧i53[6] + [1] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[1], i63[1], 0)), ≥)∧[(-1)Bound*bni_37] + [bni_37]i63[0] ≥ 0∧[(-1)bso_38] ≥ 0)
(24) (i63[0] + [-2] ≥ 0∧[1] + [-1]i63[0] ≥ 0∧i53[6] + [1] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[1], i63[1], 0)), ≥)∧[(-1)Bound*bni_37] + [bni_37]i63[0] ≥ 0∧[(-1)bso_38] ≥ 0)
(25) (i63[0] + [-2] ≥ 0∧[1] + [-1]i63[0] ≥ 0∧i53[6] + [1] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[1], i63[1], 0)), ≥)∧[(-1)Bound*bni_37] + [bni_37]i63[0] ≥ 0∧[(-1)bso_38] ≥ 0)
(26) (i90[7]=i90[8]∧&&(<=(i90[7], 1), >(+(i53[7], 1), 0))=TRUE∧i84[7]=i84[8]∧i53[7]=i53[8]∧+(i53[8], 1)=i53[0]∧i84[8]=i63[0]∧i63[0]=i63[1]∧>(i63[0], 1)=TRUE∧i53[0]=i53[1]∧i53[1]=i53[2]∧0=i84[2]∧i63[1]=i91[2]∧i84[2]=i84[3]∧i91[2]=i91[3]∧i53[2]=i53[3]∧&&(>(i91[2], 1), >(+(i84[2], 1), 0))=TRUE ⇒ COND_LOAD872(TRUE, i63[1], i53[1])≥NonInfC∧COND_LOAD872(TRUE, i63[1], i53[1])≥LOAD1049(i53[1], i63[1], 0)∧(UIncreasing(LOAD1049(i53[1], i63[1], 0)), ≥))
(27) (>(i63[0], 1)=TRUE∧<=(i90[7], 1)=TRUE∧>(+(i53[7], 1), 0)=TRUE ⇒ COND_LOAD872(TRUE, i63[0], +(i53[7], 1))≥NonInfC∧COND_LOAD872(TRUE, i63[0], +(i53[7], 1))≥LOAD1049(+(i53[7], 1), i63[0], 0)∧(UIncreasing(LOAD1049(i53[1], i63[1], 0)), ≥))
(28) (i63[0] + [-2] ≥ 0∧[1] + [-1]i90[7] ≥ 0∧i53[7] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[1], i63[1], 0)), ≥)∧[(-1)Bound*bni_37] + [bni_37]i63[0] ≥ 0∧[(-1)bso_38] ≥ 0)
(29) (i63[0] + [-2] ≥ 0∧[1] + [-1]i90[7] ≥ 0∧i53[7] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[1], i63[1], 0)), ≥)∧[(-1)Bound*bni_37] + [bni_37]i63[0] ≥ 0∧[(-1)bso_38] ≥ 0)
(30) (i63[0] + [-2] ≥ 0∧[1] + [-1]i90[7] ≥ 0∧i53[7] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[1], i63[1], 0)), ≥)∧[(-1)Bound*bni_37] + [bni_37]i63[0] ≥ 0∧[(-1)bso_38] ≥ 0)
(31) (i63[0] ≥ 0∧[1] + [-1]i90[7] ≥ 0∧i53[7] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[1], i63[1], 0)), ≥)∧[(-1)Bound*bni_37 + (2)bni_37] + [bni_37]i63[0] ≥ 0∧[(-1)bso_38] ≥ 0)
(32) (i63[0] ≥ 0∧i53[7] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[1], i63[1], 0)), ≥)∧[(-1)Bound*bni_37 + (2)bni_37] + [bni_37]i63[0] ≥ 0∧[(-1)bso_38] ≥ 0)
(33) (i90[7]=i90[8]∧&&(<=(i90[7], 1), >(+(i53[7], 1), 0))=TRUE∧i84[7]=i84[8]∧i53[7]=i53[8]∧+(i53[8], 1)=i53[0]∧i84[8]=i63[0]∧i63[0]=i63[1]∧>(i63[0], 1)=TRUE∧i53[0]=i53[1]∧i53[1]=i53[4]∧0=i84[4]∧i63[1]=i91[4]∧i84[4]=i84[5]∧&&(>(i91[4], 0), <=(i91[4], 1))=TRUE∧i91[4]=i91[5]∧i53[4]=i53[5] ⇒ COND_LOAD872(TRUE, i63[1], i53[1])≥NonInfC∧COND_LOAD872(TRUE, i63[1], i53[1])≥LOAD1049(i53[1], i63[1], 0)∧(UIncreasing(LOAD1049(i53[1], i63[1], 0)), ≥))
(34) (>(i63[0], 1)=TRUE∧<=(i90[7], 1)=TRUE∧>(+(i53[7], 1), 0)=TRUE∧>(i63[0], 0)=TRUE∧<=(i63[0], 1)=TRUE ⇒ COND_LOAD872(TRUE, i63[0], +(i53[7], 1))≥NonInfC∧COND_LOAD872(TRUE, i63[0], +(i53[7], 1))≥LOAD1049(+(i53[7], 1), i63[0], 0)∧(UIncreasing(LOAD1049(i53[1], i63[1], 0)), ≥))
(35) (i63[0] + [-2] ≥ 0∧[1] + [-1]i90[7] ≥ 0∧i53[7] ≥ 0∧i63[0] + [-1] ≥ 0∧[1] + [-1]i63[0] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[1], i63[1], 0)), ≥)∧[(-1)Bound*bni_37] + [bni_37]i63[0] ≥ 0∧[(-1)bso_38] ≥ 0)
(36) (i63[0] + [-2] ≥ 0∧[1] + [-1]i90[7] ≥ 0∧i53[7] ≥ 0∧i63[0] + [-1] ≥ 0∧[1] + [-1]i63[0] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[1], i63[1], 0)), ≥)∧[(-1)Bound*bni_37] + [bni_37]i63[0] ≥ 0∧[(-1)bso_38] ≥ 0)
(37) (i63[0] + [-2] ≥ 0∧[1] + [-1]i90[7] ≥ 0∧i53[7] ≥ 0∧i63[0] + [-1] ≥ 0∧[1] + [-1]i63[0] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[1], i63[1], 0)), ≥)∧[(-1)Bound*bni_37] + [bni_37]i63[0] ≥ 0∧[(-1)bso_38] ≥ 0)
(38) (i90[7]=i90[8]∧&&(<=(i90[7], 1), >(+(i53[7], 1), 0))=TRUE∧i84[7]=i84[8]∧i53[7]=i53[8]∧+(i53[8], 1)=i53[0]∧i84[8]=i63[0]∧i63[0]=i63[1]∧>(i63[0], 1)=TRUE∧i53[0]=i53[1]∧i53[1]=i53[7]1∧i63[1]=i90[7]1∧0=i84[7]1∧i90[7]1=i90[8]1∧&&(<=(i90[7]1, 1), >(+(i53[7]1, 1), 0))=TRUE∧i84[7]1=i84[8]1∧i53[7]1=i53[8]1 ⇒ COND_LOAD872(TRUE, i63[1], i53[1])≥NonInfC∧COND_LOAD872(TRUE, i63[1], i53[1])≥LOAD1049(i53[1], i63[1], 0)∧(UIncreasing(LOAD1049(i53[1], i63[1], 0)), ≥))
(39) (>(i63[0], 1)=TRUE∧<=(i90[7], 1)=TRUE∧>(+(i53[7], 1), 0)=TRUE∧<=(i63[0], 1)=TRUE∧>(+(+(i53[7], 1), 1), 0)=TRUE ⇒ COND_LOAD872(TRUE, i63[0], +(i53[7], 1))≥NonInfC∧COND_LOAD872(TRUE, i63[0], +(i53[7], 1))≥LOAD1049(+(i53[7], 1), i63[0], 0)∧(UIncreasing(LOAD1049(i53[1], i63[1], 0)), ≥))
(40) (i63[0] + [-2] ≥ 0∧[1] + [-1]i90[7] ≥ 0∧i53[7] ≥ 0∧[1] + [-1]i63[0] ≥ 0∧i53[7] + [1] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[1], i63[1], 0)), ≥)∧[(-1)Bound*bni_37] + [bni_37]i63[0] ≥ 0∧[(-1)bso_38] ≥ 0)
(41) (i63[0] + [-2] ≥ 0∧[1] + [-1]i90[7] ≥ 0∧i53[7] ≥ 0∧[1] + [-1]i63[0] ≥ 0∧i53[7] + [1] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[1], i63[1], 0)), ≥)∧[(-1)Bound*bni_37] + [bni_37]i63[0] ≥ 0∧[(-1)bso_38] ≥ 0)
(42) (i63[0] + [-2] ≥ 0∧[1] + [-1]i90[7] ≥ 0∧i53[7] ≥ 0∧[1] + [-1]i63[0] ≥ 0∧i53[7] + [1] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[1], i63[1], 0)), ≥)∧[(-1)Bound*bni_37] + [bni_37]i63[0] ≥ 0∧[(-1)bso_38] ≥ 0)
(43) (i84[2]=i84[3]∧i91[2]=i91[3]∧i53[2]=i53[3]∧&&(>(i91[2], 1), >(+(i84[2], 1), 0))=TRUE ⇒ LOAD1049(i53[2], i91[2], i84[2])≥NonInfC∧LOAD1049(i53[2], i91[2], i84[2])≥COND_LOAD1049(&&(>(i91[2], 1), >(+(i84[2], 1), 0)), i53[2], i91[2], i84[2])∧(UIncreasing(COND_LOAD1049(&&(>(i91[2], 1), >(+(i84[2], 1), 0)), i53[2], i91[2], i84[2])), ≥))
(44) (>(i91[2], 1)=TRUE∧>(+(i84[2], 1), 0)=TRUE ⇒ LOAD1049(i53[2], i91[2], i84[2])≥NonInfC∧LOAD1049(i53[2], i91[2], i84[2])≥COND_LOAD1049(&&(>(i91[2], 1), >(+(i84[2], 1), 0)), i53[2], i91[2], i84[2])∧(UIncreasing(COND_LOAD1049(&&(>(i91[2], 1), >(+(i84[2], 1), 0)), i53[2], i91[2], i84[2])), ≥))
(45) (i91[2] + [-2] ≥ 0∧i84[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD1049(&&(>(i91[2], 1), >(+(i84[2], 1), 0)), i53[2], i91[2], i84[2])), ≥)∧[(-1)Bound*bni_39] + [bni_39]i84[2] + [bni_39]i91[2] ≥ 0∧[1 + (-1)bso_40] ≥ 0)
(46) (i91[2] + [-2] ≥ 0∧i84[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD1049(&&(>(i91[2], 1), >(+(i84[2], 1), 0)), i53[2], i91[2], i84[2])), ≥)∧[(-1)Bound*bni_39] + [bni_39]i84[2] + [bni_39]i91[2] ≥ 0∧[1 + (-1)bso_40] ≥ 0)
(47) (i91[2] + [-2] ≥ 0∧i84[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD1049(&&(>(i91[2], 1), >(+(i84[2], 1), 0)), i53[2], i91[2], i84[2])), ≥)∧[(-1)Bound*bni_39] + [bni_39]i84[2] + [bni_39]i91[2] ≥ 0∧[1 + (-1)bso_40] ≥ 0)
(48) (i91[2] + [-2] ≥ 0∧i84[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD1049(&&(>(i91[2], 1), >(+(i84[2], 1), 0)), i53[2], i91[2], i84[2])), ≥)∧0 = 0∧[(-1)Bound*bni_39] + [bni_39]i84[2] + [bni_39]i91[2] ≥ 0∧0 = 0∧[1 + (-1)bso_40] ≥ 0)
(49) (i91[2] ≥ 0∧i84[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD1049(&&(>(i91[2], 1), >(+(i84[2], 1), 0)), i53[2], i91[2], i84[2])), ≥)∧0 = 0∧[(-1)Bound*bni_39 + (2)bni_39] + [bni_39]i84[2] + [bni_39]i91[2] ≥ 0∧0 = 0∧[1 + (-1)bso_40] ≥ 0)
(50) (i63[0]=i63[1]∧>(i63[0], 1)=TRUE∧i53[0]=i53[1]∧i53[1]=i53[2]∧0=i84[2]∧i63[1]=i91[2]∧i84[2]=i84[3]∧i91[2]=i91[3]∧i53[2]=i53[3]∧&&(>(i91[2], 1), >(+(i84[2], 1), 0))=TRUE∧-(i91[3], 2)=i91[2]1∧+(i84[3], 1)=i84[2]1∧i53[3]=i53[2]1∧i84[2]1=i84[3]1∧i91[2]1=i91[3]1∧i53[2]1=i53[3]1∧&&(>(i91[2]1, 1), >(+(i84[2]1, 1), 0))=TRUE ⇒ COND_LOAD1049(TRUE, i53[3], i91[3], i84[3])≥NonInfC∧COND_LOAD1049(TRUE, i53[3], i91[3], i84[3])≥LOAD1049(i53[3], -(i91[3], 2), +(i84[3], 1))∧(UIncreasing(LOAD1049(i53[3], -(i91[3], 2), +(i84[3], 1))), ≥))
(51) (>(i63[0], 1)=TRUE∧>(-(i63[0], 2), 1)=TRUE ⇒ COND_LOAD1049(TRUE, i53[0], i63[0], 0)≥NonInfC∧COND_LOAD1049(TRUE, i53[0], i63[0], 0)≥LOAD1049(i53[0], -(i63[0], 2), +(0, 1))∧(UIncreasing(LOAD1049(i53[3], -(i91[3], 2), +(i84[3], 1))), ≥))
(52) (i63[0] + [-2] ≥ 0∧i63[0] + [-4] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[3], -(i91[3], 2), +(i84[3], 1))), ≥)∧[(-1)bni_41 + (-1)Bound*bni_41] + [bni_41]i63[0] ≥ 0∧[(-1)bso_42] ≥ 0)
(53) (i63[0] + [-2] ≥ 0∧i63[0] + [-4] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[3], -(i91[3], 2), +(i84[3], 1))), ≥)∧[(-1)bni_41 + (-1)Bound*bni_41] + [bni_41]i63[0] ≥ 0∧[(-1)bso_42] ≥ 0)
(54) (i63[0] + [-2] ≥ 0∧i63[0] + [-4] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[3], -(i91[3], 2), +(i84[3], 1))), ≥)∧[(-1)bni_41 + (-1)Bound*bni_41] + [bni_41]i63[0] ≥ 0∧[(-1)bso_42] ≥ 0)
(55) (i63[0] + [-2] ≥ 0∧i63[0] + [-4] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[3], -(i91[3], 2), +(i84[3], 1))), ≥)∧0 = 0∧[(-1)bni_41 + (-1)Bound*bni_41] + [bni_41]i63[0] ≥ 0∧0 = 0∧[(-1)bso_42] ≥ 0)
(56) (i63[0] ≥ 0∧[-2] + i63[0] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[3], -(i91[3], 2), +(i84[3], 1))), ≥)∧0 = 0∧[bni_41 + (-1)Bound*bni_41] + [bni_41]i63[0] ≥ 0∧0 = 0∧[(-1)bso_42] ≥ 0)
(57) ([2] + i63[0] ≥ 0∧i63[0] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[3], -(i91[3], 2), +(i84[3], 1))), ≥)∧0 = 0∧[(3)bni_41 + (-1)Bound*bni_41] + [bni_41]i63[0] ≥ 0∧0 = 0∧[(-1)bso_42] ≥ 0)
(58) (i63[0]=i63[1]∧>(i63[0], 1)=TRUE∧i53[0]=i53[1]∧i53[1]=i53[2]∧0=i84[2]∧i63[1]=i91[2]∧i84[2]=i84[3]∧i91[2]=i91[3]∧i53[2]=i53[3]∧&&(>(i91[2], 1), >(+(i84[2], 1), 0))=TRUE∧+(i84[3], 1)=i84[4]∧-(i91[3], 2)=i91[4]∧i53[3]=i53[4]∧i84[4]=i84[5]∧&&(>(i91[4], 0), <=(i91[4], 1))=TRUE∧i91[4]=i91[5]∧i53[4]=i53[5] ⇒ COND_LOAD1049(TRUE, i53[3], i91[3], i84[3])≥NonInfC∧COND_LOAD1049(TRUE, i53[3], i91[3], i84[3])≥LOAD1049(i53[3], -(i91[3], 2), +(i84[3], 1))∧(UIncreasing(LOAD1049(i53[3], -(i91[3], 2), +(i84[3], 1))), ≥))
(59) (>(i63[0], 1)=TRUE∧>(-(i63[0], 2), 0)=TRUE∧<=(-(i63[0], 2), 1)=TRUE ⇒ COND_LOAD1049(TRUE, i53[0], i63[0], 0)≥NonInfC∧COND_LOAD1049(TRUE, i53[0], i63[0], 0)≥LOAD1049(i53[0], -(i63[0], 2), +(0, 1))∧(UIncreasing(LOAD1049(i53[3], -(i91[3], 2), +(i84[3], 1))), ≥))
(60) (i63[0] + [-2] ≥ 0∧i63[0] + [-3] ≥ 0∧[3] + [-1]i63[0] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[3], -(i91[3], 2), +(i84[3], 1))), ≥)∧[(-1)bni_41 + (-1)Bound*bni_41] + [bni_41]i63[0] ≥ 0∧[(-1)bso_42] ≥ 0)
(61) (i63[0] + [-2] ≥ 0∧i63[0] + [-3] ≥ 0∧[3] + [-1]i63[0] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[3], -(i91[3], 2), +(i84[3], 1))), ≥)∧[(-1)bni_41 + (-1)Bound*bni_41] + [bni_41]i63[0] ≥ 0∧[(-1)bso_42] ≥ 0)
(62) (i63[0] + [-2] ≥ 0∧i63[0] + [-3] ≥ 0∧[3] + [-1]i63[0] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[3], -(i91[3], 2), +(i84[3], 1))), ≥)∧[(-1)bni_41 + (-1)Bound*bni_41] + [bni_41]i63[0] ≥ 0∧[(-1)bso_42] ≥ 0)
(63) (i63[0] + [-2] ≥ 0∧i63[0] + [-3] ≥ 0∧[3] + [-1]i63[0] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[3], -(i91[3], 2), +(i84[3], 1))), ≥)∧0 = 0∧[(-1)bni_41 + (-1)Bound*bni_41] + [bni_41]i63[0] ≥ 0∧0 = 0∧[(-1)bso_42] ≥ 0)
(64) (i63[0] ≥ 0∧[-1] + i63[0] ≥ 0∧[1] + [-1]i63[0] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[3], -(i91[3], 2), +(i84[3], 1))), ≥)∧0 = 0∧[bni_41 + (-1)Bound*bni_41] + [bni_41]i63[0] ≥ 0∧0 = 0∧[(-1)bso_42] ≥ 0)
(65) ([1] + i63[0] ≥ 0∧i63[0] ≥ 0∧[-1]i63[0] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[3], -(i91[3], 2), +(i84[3], 1))), ≥)∧0 = 0∧[(2)bni_41 + (-1)Bound*bni_41] + [bni_41]i63[0] ≥ 0∧0 = 0∧[(-1)bso_42] ≥ 0)
(66) ([1] ≥ 0∧0 ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[3], -(i91[3], 2), +(i84[3], 1))), ≥)∧0 = 0∧[(2)bni_41 + (-1)Bound*bni_41] ≥ 0∧0 = 0∧[(-1)bso_42] ≥ 0)
(67) (i63[0]=i63[1]∧>(i63[0], 1)=TRUE∧i53[0]=i53[1]∧i53[1]=i53[2]∧0=i84[2]∧i63[1]=i91[2]∧i84[2]=i84[3]∧i91[2]=i91[3]∧i53[2]=i53[3]∧&&(>(i91[2], 1), >(+(i84[2], 1), 0))=TRUE∧+(i84[3], 1)=i84[7]∧i53[3]=i53[7]∧-(i91[3], 2)=i90[7]∧i90[7]=i90[8]∧&&(<=(i90[7], 1), >(+(i53[7], 1), 0))=TRUE∧i84[7]=i84[8]∧i53[7]=i53[8] ⇒ COND_LOAD1049(TRUE, i53[3], i91[3], i84[3])≥NonInfC∧COND_LOAD1049(TRUE, i53[3], i91[3], i84[3])≥LOAD1049(i53[3], -(i91[3], 2), +(i84[3], 1))∧(UIncreasing(LOAD1049(i53[3], -(i91[3], 2), +(i84[3], 1))), ≥))
(68) (>(i63[0], 1)=TRUE∧<=(-(i63[0], 2), 1)=TRUE∧>(+(i53[7], 1), 0)=TRUE ⇒ COND_LOAD1049(TRUE, i53[7], i63[0], 0)≥NonInfC∧COND_LOAD1049(TRUE, i53[7], i63[0], 0)≥LOAD1049(i53[7], -(i63[0], 2), +(0, 1))∧(UIncreasing(LOAD1049(i53[3], -(i91[3], 2), +(i84[3], 1))), ≥))
(69) (i63[0] + [-2] ≥ 0∧[3] + [-1]i63[0] ≥ 0∧i53[7] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[3], -(i91[3], 2), +(i84[3], 1))), ≥)∧[(-1)bni_41 + (-1)Bound*bni_41] + [bni_41]i63[0] ≥ 0∧[(-1)bso_42] ≥ 0)
(70) (i63[0] + [-2] ≥ 0∧[3] + [-1]i63[0] ≥ 0∧i53[7] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[3], -(i91[3], 2), +(i84[3], 1))), ≥)∧[(-1)bni_41 + (-1)Bound*bni_41] + [bni_41]i63[0] ≥ 0∧[(-1)bso_42] ≥ 0)
(71) (i63[0] + [-2] ≥ 0∧[3] + [-1]i63[0] ≥ 0∧i53[7] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[3], -(i91[3], 2), +(i84[3], 1))), ≥)∧[(-1)bni_41 + (-1)Bound*bni_41] + [bni_41]i63[0] ≥ 0∧[(-1)bso_42] ≥ 0)
(72) (i63[0] ≥ 0∧[1] + [-1]i63[0] ≥ 0∧i53[7] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[3], -(i91[3], 2), +(i84[3], 1))), ≥)∧[bni_41 + (-1)Bound*bni_41] + [bni_41]i63[0] ≥ 0∧[(-1)bso_42] ≥ 0)
(73) (i84[2]=i84[3]∧i91[2]=i91[3]∧i53[2]=i53[3]∧&&(>(i91[2], 1), >(+(i84[2], 1), 0))=TRUE∧-(i91[3], 2)=i91[2]1∧+(i84[3], 1)=i84[2]1∧i53[3]=i53[2]1∧i84[2]1=i84[3]1∧i91[2]1=i91[3]1∧i53[2]1=i53[3]1∧&&(>(i91[2]1, 1), >(+(i84[2]1, 1), 0))=TRUE∧-(i91[3]1, 2)=i91[2]2∧+(i84[3]1, 1)=i84[2]2∧i53[3]1=i53[2]2∧i84[2]2=i84[3]2∧i91[2]2=i91[3]2∧i53[2]2=i53[3]2∧&&(>(i91[2]2, 1), >(+(i84[2]2, 1), 0))=TRUE ⇒ COND_LOAD1049(TRUE, i53[3]1, i91[3]1, i84[3]1)≥NonInfC∧COND_LOAD1049(TRUE, i53[3]1, i91[3]1, i84[3]1)≥LOAD1049(i53[3]1, -(i91[3]1, 2), +(i84[3]1, 1))∧(UIncreasing(LOAD1049(i53[3]1, -(i91[3]1, 2), +(i84[3]1, 1))), ≥))
(74) (>(i91[2], 1)=TRUE∧>(+(i84[2], 1), 0)=TRUE∧>(-(i91[2], 2), 1)=TRUE∧>(+(+(i84[2], 1), 1), 0)=TRUE∧>(-(-(i91[2], 2), 2), 1)=TRUE∧>(+(+(+(i84[2], 1), 1), 1), 0)=TRUE ⇒ COND_LOAD1049(TRUE, i53[2], -(i91[2], 2), +(i84[2], 1))≥NonInfC∧COND_LOAD1049(TRUE, i53[2], -(i91[2], 2), +(i84[2], 1))≥LOAD1049(i53[2], -(-(i91[2], 2), 2), +(+(i84[2], 1), 1))∧(UIncreasing(LOAD1049(i53[3]1, -(i91[3]1, 2), +(i84[3]1, 1))), ≥))
(75) (i91[2] + [-2] ≥ 0∧i84[2] ≥ 0∧i91[2] + [-4] ≥ 0∧i84[2] + [1] ≥ 0∧i91[2] + [-6] ≥ 0∧i84[2] + [2] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[3]1, -(i91[3]1, 2), +(i84[3]1, 1))), ≥)∧[(-2)bni_41 + (-1)Bound*bni_41] + [bni_41]i84[2] + [bni_41]i91[2] ≥ 0∧[(-1)bso_42] ≥ 0)
(76) (i91[2] + [-2] ≥ 0∧i84[2] ≥ 0∧i91[2] + [-4] ≥ 0∧i84[2] + [1] ≥ 0∧i91[2] + [-6] ≥ 0∧i84[2] + [2] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[3]1, -(i91[3]1, 2), +(i84[3]1, 1))), ≥)∧[(-2)bni_41 + (-1)Bound*bni_41] + [bni_41]i84[2] + [bni_41]i91[2] ≥ 0∧[(-1)bso_42] ≥ 0)
(77) (i91[2] + [-2] ≥ 0∧i84[2] ≥ 0∧i91[2] + [-4] ≥ 0∧i84[2] + [1] ≥ 0∧i91[2] + [-6] ≥ 0∧i84[2] + [2] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[3]1, -(i91[3]1, 2), +(i84[3]1, 1))), ≥)∧[(-2)bni_41 + (-1)Bound*bni_41] + [bni_41]i84[2] + [bni_41]i91[2] ≥ 0∧[(-1)bso_42] ≥ 0)
(78) (i91[2] + [-2] ≥ 0∧i84[2] ≥ 0∧i91[2] + [-4] ≥ 0∧i84[2] + [1] ≥ 0∧i91[2] + [-6] ≥ 0∧i84[2] + [2] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[3]1, -(i91[3]1, 2), +(i84[3]1, 1))), ≥)∧0 = 0∧[(-2)bni_41 + (-1)Bound*bni_41] + [bni_41]i84[2] + [bni_41]i91[2] ≥ 0∧0 = 0∧[(-1)bso_42] ≥ 0)
(79) (i91[2] ≥ 0∧i84[2] ≥ 0∧[-2] + i91[2] ≥ 0∧i84[2] + [1] ≥ 0∧[-4] + i91[2] ≥ 0∧i84[2] + [2] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[3]1, -(i91[3]1, 2), +(i84[3]1, 1))), ≥)∧0 = 0∧[(-1)Bound*bni_41] + [bni_41]i84[2] + [bni_41]i91[2] ≥ 0∧0 = 0∧[(-1)bso_42] ≥ 0)
(80) ([2] + i91[2] ≥ 0∧i84[2] ≥ 0∧i91[2] ≥ 0∧i84[2] + [1] ≥ 0∧[-2] + i91[2] ≥ 0∧i84[2] + [2] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[3]1, -(i91[3]1, 2), +(i84[3]1, 1))), ≥)∧0 = 0∧[(2)bni_41 + (-1)Bound*bni_41] + [bni_41]i84[2] + [bni_41]i91[2] ≥ 0∧0 = 0∧[(-1)bso_42] ≥ 0)
(81) ([4] + i91[2] ≥ 0∧i84[2] ≥ 0∧[2] + i91[2] ≥ 0∧i84[2] + [1] ≥ 0∧i91[2] ≥ 0∧i84[2] + [2] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[3]1, -(i91[3]1, 2), +(i84[3]1, 1))), ≥)∧0 = 0∧[(4)bni_41 + (-1)Bound*bni_41] + [bni_41]i84[2] + [bni_41]i91[2] ≥ 0∧0 = 0∧[(-1)bso_42] ≥ 0)
(82) ([4] + i91[2] ≥ 0∧i84[2] ≥ 0∧[2] + i91[2] ≥ 0∧i84[2] + [1] ≥ 0∧i91[2] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[3]1, -(i91[3]1, 2), +(i84[3]1, 1))), ≥)∧0 = 0∧[(4)bni_41 + (-1)Bound*bni_41] + [bni_41]i84[2] + [bni_41]i91[2] ≥ 0∧0 = 0∧[(-1)bso_42] ≥ 0)
(83) (i84[2]=i84[3]∧i91[2]=i91[3]∧i53[2]=i53[3]∧&&(>(i91[2], 1), >(+(i84[2], 1), 0))=TRUE∧-(i91[3], 2)=i91[2]1∧+(i84[3], 1)=i84[2]1∧i53[3]=i53[2]1∧i84[2]1=i84[3]1∧i91[2]1=i91[3]1∧i53[2]1=i53[3]1∧&&(>(i91[2]1, 1), >(+(i84[2]1, 1), 0))=TRUE∧+(i84[3]1, 1)=i84[4]∧-(i91[3]1, 2)=i91[4]∧i53[3]1=i53[4]∧i84[4]=i84[5]∧&&(>(i91[4], 0), <=(i91[4], 1))=TRUE∧i91[4]=i91[5]∧i53[4]=i53[5] ⇒ COND_LOAD1049(TRUE, i53[3]1, i91[3]1, i84[3]1)≥NonInfC∧COND_LOAD1049(TRUE, i53[3]1, i91[3]1, i84[3]1)≥LOAD1049(i53[3]1, -(i91[3]1, 2), +(i84[3]1, 1))∧(UIncreasing(LOAD1049(i53[3]1, -(i91[3]1, 2), +(i84[3]1, 1))), ≥))
(84) (>(i91[2], 1)=TRUE∧>(+(i84[2], 1), 0)=TRUE∧>(-(i91[2], 2), 1)=TRUE∧>(+(+(i84[2], 1), 1), 0)=TRUE∧>(-(-(i91[2], 2), 2), 0)=TRUE∧<=(-(-(i91[2], 2), 2), 1)=TRUE ⇒ COND_LOAD1049(TRUE, i53[2], -(i91[2], 2), +(i84[2], 1))≥NonInfC∧COND_LOAD1049(TRUE, i53[2], -(i91[2], 2), +(i84[2], 1))≥LOAD1049(i53[2], -(-(i91[2], 2), 2), +(+(i84[2], 1), 1))∧(UIncreasing(LOAD1049(i53[3]1, -(i91[3]1, 2), +(i84[3]1, 1))), ≥))
(85) (i91[2] + [-2] ≥ 0∧i84[2] ≥ 0∧i91[2] + [-4] ≥ 0∧i84[2] + [1] ≥ 0∧i91[2] + [-5] ≥ 0∧[5] + [-1]i91[2] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[3]1, -(i91[3]1, 2), +(i84[3]1, 1))), ≥)∧[(-2)bni_41 + (-1)Bound*bni_41] + [bni_41]i84[2] + [bni_41]i91[2] ≥ 0∧[(-1)bso_42] ≥ 0)
(86) (i91[2] + [-2] ≥ 0∧i84[2] ≥ 0∧i91[2] + [-4] ≥ 0∧i84[2] + [1] ≥ 0∧i91[2] + [-5] ≥ 0∧[5] + [-1]i91[2] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[3]1, -(i91[3]1, 2), +(i84[3]1, 1))), ≥)∧[(-2)bni_41 + (-1)Bound*bni_41] + [bni_41]i84[2] + [bni_41]i91[2] ≥ 0∧[(-1)bso_42] ≥ 0)
(87) (i91[2] + [-2] ≥ 0∧i84[2] ≥ 0∧i91[2] + [-4] ≥ 0∧i84[2] + [1] ≥ 0∧i91[2] + [-5] ≥ 0∧[5] + [-1]i91[2] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[3]1, -(i91[3]1, 2), +(i84[3]1, 1))), ≥)∧[(-2)bni_41 + (-1)Bound*bni_41] + [bni_41]i84[2] + [bni_41]i91[2] ≥ 0∧[(-1)bso_42] ≥ 0)
(88) (i91[2] + [-2] ≥ 0∧i84[2] ≥ 0∧i91[2] + [-4] ≥ 0∧i84[2] + [1] ≥ 0∧i91[2] + [-5] ≥ 0∧[5] + [-1]i91[2] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[3]1, -(i91[3]1, 2), +(i84[3]1, 1))), ≥)∧0 = 0∧[(-2)bni_41 + (-1)Bound*bni_41] + [bni_41]i84[2] + [bni_41]i91[2] ≥ 0∧0 = 0∧[(-1)bso_42] ≥ 0)
(89) (i91[2] ≥ 0∧i84[2] ≥ 0∧[-2] + i91[2] ≥ 0∧i84[2] + [1] ≥ 0∧[-3] + i91[2] ≥ 0∧[3] + [-1]i91[2] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[3]1, -(i91[3]1, 2), +(i84[3]1, 1))), ≥)∧0 = 0∧[(-1)Bound*bni_41] + [bni_41]i84[2] + [bni_41]i91[2] ≥ 0∧0 = 0∧[(-1)bso_42] ≥ 0)
(90) ([2] + i91[2] ≥ 0∧i84[2] ≥ 0∧i91[2] ≥ 0∧i84[2] + [1] ≥ 0∧[-1] + i91[2] ≥ 0∧[1] + [-1]i91[2] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[3]1, -(i91[3]1, 2), +(i84[3]1, 1))), ≥)∧0 = 0∧[(2)bni_41 + (-1)Bound*bni_41] + [bni_41]i84[2] + [bni_41]i91[2] ≥ 0∧0 = 0∧[(-1)bso_42] ≥ 0)
(91) ([3] + i91[2] ≥ 0∧i84[2] ≥ 0∧[1] + i91[2] ≥ 0∧i84[2] + [1] ≥ 0∧i91[2] ≥ 0∧[-1]i91[2] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[3]1, -(i91[3]1, 2), +(i84[3]1, 1))), ≥)∧0 = 0∧[(3)bni_41 + (-1)Bound*bni_41] + [bni_41]i84[2] + [bni_41]i91[2] ≥ 0∧0 = 0∧[(-1)bso_42] ≥ 0)
(92) ([3] ≥ 0∧i84[2] ≥ 0∧[1] ≥ 0∧i84[2] + [1] ≥ 0∧0 ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[3]1, -(i91[3]1, 2), +(i84[3]1, 1))), ≥)∧0 = 0∧[(3)bni_41 + (-1)Bound*bni_41] + [bni_41]i84[2] ≥ 0∧0 = 0∧[(-1)bso_42] ≥ 0)
(93) (i84[2] ≥ 0∧[1] ≥ 0∧i84[2] + [1] ≥ 0∧0 ≥ 0∧0 ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[3]1, -(i91[3]1, 2), +(i84[3]1, 1))), ≥)∧0 = 0∧[(3)bni_41 + (-1)Bound*bni_41] + [bni_41]i84[2] ≥ 0∧0 = 0∧[(-1)bso_42] ≥ 0)
(94) (i84[2]=i84[3]∧i91[2]=i91[3]∧i53[2]=i53[3]∧&&(>(i91[2], 1), >(+(i84[2], 1), 0))=TRUE∧-(i91[3], 2)=i91[2]1∧+(i84[3], 1)=i84[2]1∧i53[3]=i53[2]1∧i84[2]1=i84[3]1∧i91[2]1=i91[3]1∧i53[2]1=i53[3]1∧&&(>(i91[2]1, 1), >(+(i84[2]1, 1), 0))=TRUE∧+(i84[3]1, 1)=i84[7]∧i53[3]1=i53[7]∧-(i91[3]1, 2)=i90[7]∧i90[7]=i90[8]∧&&(<=(i90[7], 1), >(+(i53[7], 1), 0))=TRUE∧i84[7]=i84[8]∧i53[7]=i53[8] ⇒ COND_LOAD1049(TRUE, i53[3]1, i91[3]1, i84[3]1)≥NonInfC∧COND_LOAD1049(TRUE, i53[3]1, i91[3]1, i84[3]1)≥LOAD1049(i53[3]1, -(i91[3]1, 2), +(i84[3]1, 1))∧(UIncreasing(LOAD1049(i53[3]1, -(i91[3]1, 2), +(i84[3]1, 1))), ≥))
(95) (>(i91[2], 1)=TRUE∧>(+(i84[2], 1), 0)=TRUE∧>(-(i91[2], 2), 1)=TRUE∧>(+(+(i84[2], 1), 1), 0)=TRUE∧<=(-(-(i91[2], 2), 2), 1)=TRUE∧>(+(i53[7], 1), 0)=TRUE ⇒ COND_LOAD1049(TRUE, i53[7], -(i91[2], 2), +(i84[2], 1))≥NonInfC∧COND_LOAD1049(TRUE, i53[7], -(i91[2], 2), +(i84[2], 1))≥LOAD1049(i53[7], -(-(i91[2], 2), 2), +(+(i84[2], 1), 1))∧(UIncreasing(LOAD1049(i53[3]1, -(i91[3]1, 2), +(i84[3]1, 1))), ≥))
(96) (i91[2] + [-2] ≥ 0∧i84[2] ≥ 0∧i91[2] + [-4] ≥ 0∧i84[2] + [1] ≥ 0∧[5] + [-1]i91[2] ≥ 0∧i53[7] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[3]1, -(i91[3]1, 2), +(i84[3]1, 1))), ≥)∧[(-2)bni_41 + (-1)Bound*bni_41] + [bni_41]i84[2] + [bni_41]i91[2] ≥ 0∧[(-1)bso_42] ≥ 0)
(97) (i91[2] + [-2] ≥ 0∧i84[2] ≥ 0∧i91[2] + [-4] ≥ 0∧i84[2] + [1] ≥ 0∧[5] + [-1]i91[2] ≥ 0∧i53[7] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[3]1, -(i91[3]1, 2), +(i84[3]1, 1))), ≥)∧[(-2)bni_41 + (-1)Bound*bni_41] + [bni_41]i84[2] + [bni_41]i91[2] ≥ 0∧[(-1)bso_42] ≥ 0)
(98) (i91[2] + [-2] ≥ 0∧i84[2] ≥ 0∧i91[2] + [-4] ≥ 0∧i84[2] + [1] ≥ 0∧[5] + [-1]i91[2] ≥ 0∧i53[7] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[3]1, -(i91[3]1, 2), +(i84[3]1, 1))), ≥)∧[(-2)bni_41 + (-1)Bound*bni_41] + [bni_41]i84[2] + [bni_41]i91[2] ≥ 0∧[(-1)bso_42] ≥ 0)
(99) (i91[2] ≥ 0∧i84[2] ≥ 0∧[-2] + i91[2] ≥ 0∧i84[2] + [1] ≥ 0∧[3] + [-1]i91[2] ≥ 0∧i53[7] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[3]1, -(i91[3]1, 2), +(i84[3]1, 1))), ≥)∧[(-1)Bound*bni_41] + [bni_41]i84[2] + [bni_41]i91[2] ≥ 0∧[(-1)bso_42] ≥ 0)
(100) ([2] + i91[2] ≥ 0∧i84[2] ≥ 0∧i91[2] ≥ 0∧i84[2] + [1] ≥ 0∧[1] + [-1]i91[2] ≥ 0∧i53[7] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[3]1, -(i91[3]1, 2), +(i84[3]1, 1))), ≥)∧[(2)bni_41 + (-1)Bound*bni_41] + [bni_41]i84[2] + [bni_41]i91[2] ≥ 0∧[(-1)bso_42] ≥ 0)
(101) (i84[4]=i84[5]∧&&(>(i91[4], 0), <=(i91[4], 1))=TRUE∧i91[4]=i91[5]∧i53[4]=i53[5] ⇒ LOAD1049(i53[4], i91[4], i84[4])≥NonInfC∧LOAD1049(i53[4], i91[4], i84[4])≥COND_LOAD10491(&&(>(i91[4], 0), <=(i91[4], 1)), i53[4], i91[4], i84[4])∧(UIncreasing(COND_LOAD10491(&&(>(i91[4], 0), <=(i91[4], 1)), i53[4], i91[4], i84[4])), ≥))
(102) (>(i91[4], 0)=TRUE∧<=(i91[4], 1)=TRUE ⇒ LOAD1049(i53[4], i91[4], i84[4])≥NonInfC∧LOAD1049(i53[4], i91[4], i84[4])≥COND_LOAD10491(&&(>(i91[4], 0), <=(i91[4], 1)), i53[4], i91[4], i84[4])∧(UIncreasing(COND_LOAD10491(&&(>(i91[4], 0), <=(i91[4], 1)), i53[4], i91[4], i84[4])), ≥))
(103) (i91[4] + [-1] ≥ 0∧[1] + [-1]i91[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD10491(&&(>(i91[4], 0), <=(i91[4], 1)), i53[4], i91[4], i84[4])), ≥)∧[(-1)Bound*bni_43] + [bni_43]i84[4] + [bni_43]i91[4] ≥ 0∧[-1 + (-1)bso_44] + i91[4] ≥ 0)
(104) (i91[4] + [-1] ≥ 0∧[1] + [-1]i91[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD10491(&&(>(i91[4], 0), <=(i91[4], 1)), i53[4], i91[4], i84[4])), ≥)∧[(-1)Bound*bni_43] + [bni_43]i84[4] + [bni_43]i91[4] ≥ 0∧[-1 + (-1)bso_44] + i91[4] ≥ 0)
(105) (i91[4] + [-1] ≥ 0∧[1] + [-1]i91[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD10491(&&(>(i91[4], 0), <=(i91[4], 1)), i53[4], i91[4], i84[4])), ≥)∧[(-1)Bound*bni_43] + [bni_43]i84[4] + [bni_43]i91[4] ≥ 0∧[-1 + (-1)bso_44] + i91[4] ≥ 0)
(106) (i91[4] + [-1] ≥ 0∧[1] + [-1]i91[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD10491(&&(>(i91[4], 0), <=(i91[4], 1)), i53[4], i91[4], i84[4])), ≥)∧[bni_43] = 0∧0 = 0∧[(-1)Bound*bni_43] + [bni_43]i91[4] ≥ 0∧0 = 0∧0 = 0∧[-1 + (-1)bso_44] + i91[4] ≥ 0)
(107) (i91[4] ≥ 0∧[-1]i91[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD10491(&&(>(i91[4], 0), <=(i91[4], 1)), i53[4], i91[4], i84[4])), ≥)∧[bni_43] = 0∧0 = 0∧[(-1)Bound*bni_43 + bni_43] + [bni_43]i91[4] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_44] + i91[4] ≥ 0)
(108) (0 ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(COND_LOAD10491(&&(>(i91[4], 0), <=(i91[4], 1)), i53[4], i91[4], i84[4])), ≥)∧[bni_43] = 0∧0 = 0∧[(-1)Bound*bni_43 + bni_43] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_44] ≥ 0)
(109) (i53[5]=i53[6]∧i84[5]=i84[6] ⇒ COND_LOAD10491(TRUE, i53[5], i91[5], i84[5])≥NonInfC∧COND_LOAD10491(TRUE, i53[5], i91[5], i84[5])≥LOAD1065(i53[5], i84[5])∧(UIncreasing(LOAD1065(i53[5], i84[5])), ≥))
(110) (COND_LOAD10491(TRUE, i53[5], i91[5], i84[5])≥NonInfC∧COND_LOAD10491(TRUE, i53[5], i91[5], i84[5])≥LOAD1065(i53[5], i84[5])∧(UIncreasing(LOAD1065(i53[5], i84[5])), ≥))
(111) ((UIncreasing(LOAD1065(i53[5], i84[5])), ≥)∧[(-1)bso_46] ≥ 0)
(112) ((UIncreasing(LOAD1065(i53[5], i84[5])), ≥)∧[(-1)bso_46] ≥ 0)
(113) ((UIncreasing(LOAD1065(i53[5], i84[5])), ≥)∧[(-1)bso_46] ≥ 0)
(114) ((UIncreasing(LOAD1065(i53[5], i84[5])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_46] ≥ 0)
(115) (i53[1]=i53[4]∧0=i84[4]∧i63[1]=i91[4]∧i84[4]=i84[5]∧&&(>(i91[4], 0), <=(i91[4], 1))=TRUE∧i91[4]=i91[5]∧i53[4]=i53[5]∧i53[5]=i53[6]∧i84[5]=i84[6]∧+(i53[6], 1)=i53[0]∧i84[6]=i63[0]∧i63[0]=i63[1]1∧>(i63[0], 1)=TRUE∧i53[0]=i53[1]1 ⇒ LOAD1065(i53[6], i84[6])≥NonInfC∧LOAD1065(i53[6], i84[6])≥LOAD872(i84[6], +(i53[6], 1))∧(UIncreasing(LOAD872(i84[6], +(i53[6], 1))), ≥))
(116) (+(i84[3], 1)=i84[4]∧-(i91[3], 2)=i91[4]∧i53[3]=i53[4]∧i84[4]=i84[5]∧&&(>(i91[4], 0), <=(i91[4], 1))=TRUE∧i91[4]=i91[5]∧i53[4]=i53[5]∧i53[5]=i53[6]∧i84[5]=i84[6]∧+(i53[6], 1)=i53[0]∧i84[6]=i63[0]∧i63[0]=i63[1]∧>(i63[0], 1)=TRUE∧i53[0]=i53[1] ⇒ LOAD1065(i53[6], i84[6])≥NonInfC∧LOAD1065(i53[6], i84[6])≥LOAD872(i84[6], +(i53[6], 1))∧(UIncreasing(LOAD872(i84[6], +(i53[6], 1))), ≥))
(117) (>(+(i84[3], 1), 1)=TRUE∧>(-(i91[3], 2), 0)=TRUE∧<=(-(i91[3], 2), 1)=TRUE ⇒ LOAD1065(i53[3], +(i84[3], 1))≥NonInfC∧LOAD1065(i53[3], +(i84[3], 1))≥LOAD872(+(i84[3], 1), +(i53[3], 1))∧(UIncreasing(LOAD872(i84[6], +(i53[6], 1))), ≥))
(118) (i84[3] + [-1] ≥ 0∧i91[3] + [-3] ≥ 0∧[3] + [-1]i91[3] ≥ 0 ⇒ (UIncreasing(LOAD872(i84[6], +(i53[6], 1))), ≥)∧[(2)bni_47 + (-1)Bound*bni_47] + [bni_47]i84[3] ≥ 0∧[1 + (-1)bso_48] ≥ 0)
(119) (i84[3] + [-1] ≥ 0∧i91[3] + [-3] ≥ 0∧[3] + [-1]i91[3] ≥ 0 ⇒ (UIncreasing(LOAD872(i84[6], +(i53[6], 1))), ≥)∧[(2)bni_47 + (-1)Bound*bni_47] + [bni_47]i84[3] ≥ 0∧[1 + (-1)bso_48] ≥ 0)
(120) (i84[3] + [-1] ≥ 0∧i91[3] + [-3] ≥ 0∧[3] + [-1]i91[3] ≥ 0 ⇒ (UIncreasing(LOAD872(i84[6], +(i53[6], 1))), ≥)∧[(2)bni_47 + (-1)Bound*bni_47] + [bni_47]i84[3] ≥ 0∧[1 + (-1)bso_48] ≥ 0)
(121) (i84[3] + [-1] ≥ 0∧i91[3] + [-3] ≥ 0∧[3] + [-1]i91[3] ≥ 0 ⇒ (UIncreasing(LOAD872(i84[6], +(i53[6], 1))), ≥)∧0 = 0∧[(2)bni_47 + (-1)Bound*bni_47] + [bni_47]i84[3] ≥ 0∧0 = 0∧[1 + (-1)bso_48] ≥ 0)
(122) (i84[3] ≥ 0∧i91[3] + [-3] ≥ 0∧[3] + [-1]i91[3] ≥ 0 ⇒ (UIncreasing(LOAD872(i84[6], +(i53[6], 1))), ≥)∧0 = 0∧[(3)bni_47 + (-1)Bound*bni_47] + [bni_47]i84[3] ≥ 0∧0 = 0∧[1 + (-1)bso_48] ≥ 0)
(123) (i84[3] ≥ 0∧[3] + [-1]i91[3] ≥ 0∧[-1] ≥ 0 ⇒ (UIncreasing(LOAD872(i84[6], +(i53[6], 1))), ≥)∧0 = 0∧[(3)bni_47 + (-1)Bound*bni_47] + [bni_47]i84[3] ≥ 0∧0 = 0∧[1 + (-1)bso_48] ≥ 0)
(124) (i90[7]=i90[8]∧&&(<=(i90[7], 1), >(+(i53[7], 1), 0))=TRUE∧i84[7]=i84[8]∧i53[7]=i53[8] ⇒ LOAD1049(i53[7], i90[7], i84[7])≥NonInfC∧LOAD1049(i53[7], i90[7], i84[7])≥COND_LOAD10492(&&(<=(i90[7], 1), >(+(i53[7], 1), 0)), i53[7], i90[7], i84[7])∧(UIncreasing(COND_LOAD10492(&&(<=(i90[7], 1), >(+(i53[7], 1), 0)), i53[7], i90[7], i84[7])), ≥))
(125) (<=(i90[7], 1)=TRUE∧>(+(i53[7], 1), 0)=TRUE ⇒ LOAD1049(i53[7], i90[7], i84[7])≥NonInfC∧LOAD1049(i53[7], i90[7], i84[7])≥COND_LOAD10492(&&(<=(i90[7], 1), >(+(i53[7], 1), 0)), i53[7], i90[7], i84[7])∧(UIncreasing(COND_LOAD10492(&&(<=(i90[7], 1), >(+(i53[7], 1), 0)), i53[7], i90[7], i84[7])), ≥))
(126) ([1] + [-1]i90[7] ≥ 0∧i53[7] ≥ 0 ⇒ (UIncreasing(COND_LOAD10492(&&(<=(i90[7], 1), >(+(i53[7], 1), 0)), i53[7], i90[7], i84[7])), ≥)∧[(-1)Bound*bni_49] + [bni_49]i84[7] + [bni_49]i90[7] ≥ 0∧[(-1)bso_50] ≥ 0)
(127) ([1] + [-1]i90[7] ≥ 0∧i53[7] ≥ 0 ⇒ (UIncreasing(COND_LOAD10492(&&(<=(i90[7], 1), >(+(i53[7], 1), 0)), i53[7], i90[7], i84[7])), ≥)∧[(-1)Bound*bni_49] + [bni_49]i84[7] + [bni_49]i90[7] ≥ 0∧[(-1)bso_50] ≥ 0)
(128) ([1] + [-1]i90[7] ≥ 0∧i53[7] ≥ 0 ⇒ (UIncreasing(COND_LOAD10492(&&(<=(i90[7], 1), >(+(i53[7], 1), 0)), i53[7], i90[7], i84[7])), ≥)∧[(-1)Bound*bni_49] + [bni_49]i84[7] + [bni_49]i90[7] ≥ 0∧[(-1)bso_50] ≥ 0)
(129) ([1] + [-1]i90[7] ≥ 0∧i53[7] ≥ 0 ⇒ (UIncreasing(COND_LOAD10492(&&(<=(i90[7], 1), >(+(i53[7], 1), 0)), i53[7], i90[7], i84[7])), ≥)∧[bni_49] = 0∧[(-1)Bound*bni_49] + [bni_49]i90[7] ≥ 0∧0 = 0∧[(-1)bso_50] ≥ 0)
(130) ([1] + i90[7] ≥ 0∧i53[7] ≥ 0∧i90[7] ≥ 0 ⇒ (UIncreasing(COND_LOAD10492(&&(<=(i90[7], 1), >(+(i53[7], 1), 0)), i53[7], i90[7], i84[7])), ≥)∧[bni_49] = 0∧[(-1)Bound*bni_49] + [(-1)bni_49]i90[7] ≥ 0∧0 = 0∧[(-1)bso_50] ≥ 0)
(131) ([1] + [-1]i90[7] ≥ 0∧i53[7] ≥ 0∧i90[7] ≥ 0 ⇒ (UIncreasing(COND_LOAD10492(&&(<=(i90[7], 1), >(+(i53[7], 1), 0)), i53[7], i90[7], i84[7])), ≥)∧[bni_49] = 0∧[(-1)Bound*bni_49] + [bni_49]i90[7] ≥ 0∧0 = 0∧[(-1)bso_50] ≥ 0)
(132) (i63[0]=i63[1]∧>(i63[0], 1)=TRUE∧i53[0]=i53[1]∧i53[1]=i53[7]∧i63[1]=i90[7]∧0=i84[7]∧i90[7]=i90[8]∧&&(<=(i90[7], 1), >(+(i53[7], 1), 0))=TRUE∧i84[7]=i84[8]∧i53[7]=i53[8]∧+(i53[8], 1)=i53[0]1∧i84[8]=i63[0]1∧i63[0]1=i63[1]1∧>(i63[0]1, 1)=TRUE∧i53[0]1=i53[1]1 ⇒ COND_LOAD10492(TRUE, i53[8], i90[8], i84[8])≥NonInfC∧COND_LOAD10492(TRUE, i53[8], i90[8], i84[8])≥LOAD872(i84[8], +(i53[8], 1))∧(UIncreasing(LOAD872(i84[8], +(i53[8], 1))), ≥))
(133) (i84[2]=i84[3]∧i91[2]=i91[3]∧i53[2]=i53[3]∧&&(>(i91[2], 1), >(+(i84[2], 1), 0))=TRUE∧+(i84[3], 1)=i84[7]∧i53[3]=i53[7]∧-(i91[3], 2)=i90[7]∧i90[7]=i90[8]∧&&(<=(i90[7], 1), >(+(i53[7], 1), 0))=TRUE∧i84[7]=i84[8]∧i53[7]=i53[8]∧+(i53[8], 1)=i53[0]∧i84[8]=i63[0]∧i63[0]=i63[1]∧>(i63[0], 1)=TRUE∧i53[0]=i53[1] ⇒ COND_LOAD10492(TRUE, i53[8], i90[8], i84[8])≥NonInfC∧COND_LOAD10492(TRUE, i53[8], i90[8], i84[8])≥LOAD872(i84[8], +(i53[8], 1))∧(UIncreasing(LOAD872(i84[8], +(i53[8], 1))), ≥))
(134) (>(+(i84[2], 1), 1)=TRUE∧>(i91[2], 1)=TRUE∧>(+(i84[2], 1), 0)=TRUE∧<=(-(i91[2], 2), 1)=TRUE∧>(+(i53[7], 1), 0)=TRUE ⇒ COND_LOAD10492(TRUE, i53[7], -(i91[2], 2), +(i84[2], 1))≥NonInfC∧COND_LOAD10492(TRUE, i53[7], -(i91[2], 2), +(i84[2], 1))≥LOAD872(+(i84[2], 1), +(i53[7], 1))∧(UIncreasing(LOAD872(i84[8], +(i53[8], 1))), ≥))
(135) (i84[2] + [-1] ≥ 0∧i91[2] + [-2] ≥ 0∧i84[2] ≥ 0∧[3] + [-1]i91[2] ≥ 0∧i53[7] ≥ 0 ⇒ (UIncreasing(LOAD872(i84[8], +(i53[8], 1))), ≥)∧[(-1)bni_51 + (-1)Bound*bni_51] + [bni_51]i84[2] + [bni_51]i91[2] ≥ 0∧[-2 + (-1)bso_52] + i91[2] ≥ 0)
(136) (i84[2] + [-1] ≥ 0∧i91[2] + [-2] ≥ 0∧i84[2] ≥ 0∧[3] + [-1]i91[2] ≥ 0∧i53[7] ≥ 0 ⇒ (UIncreasing(LOAD872(i84[8], +(i53[8], 1))), ≥)∧[(-1)bni_51 + (-1)Bound*bni_51] + [bni_51]i84[2] + [bni_51]i91[2] ≥ 0∧[-2 + (-1)bso_52] + i91[2] ≥ 0)
(137) (i84[2] + [-1] ≥ 0∧i91[2] + [-2] ≥ 0∧i84[2] ≥ 0∧[3] + [-1]i91[2] ≥ 0∧i53[7] ≥ 0 ⇒ (UIncreasing(LOAD872(i84[8], +(i53[8], 1))), ≥)∧[(-1)bni_51 + (-1)Bound*bni_51] + [bni_51]i84[2] + [bni_51]i91[2] ≥ 0∧[-2 + (-1)bso_52] + i91[2] ≥ 0)
(138) (i84[2] ≥ 0∧i91[2] + [-2] ≥ 0∧[1] + i84[2] ≥ 0∧[3] + [-1]i91[2] ≥ 0∧i53[7] ≥ 0 ⇒ (UIncreasing(LOAD872(i84[8], +(i53[8], 1))), ≥)∧[(-1)Bound*bni_51] + [bni_51]i84[2] + [bni_51]i91[2] ≥ 0∧[-2 + (-1)bso_52] + i91[2] ≥ 0)
(139) (i84[2] ≥ 0∧i91[2] ≥ 0∧[1] + i84[2] ≥ 0∧[1] + [-1]i91[2] ≥ 0∧i53[7] ≥ 0 ⇒ (UIncreasing(LOAD872(i84[8], +(i53[8], 1))), ≥)∧[(-1)Bound*bni_51 + (2)bni_51] + [bni_51]i84[2] + [bni_51]i91[2] ≥ 0∧[(-1)bso_52] + i91[2] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(LOAD872(x1, x2)) = x1
POL(COND_LOAD872(x1, x2, x3)) = x2
POL(>(x1, x2)) = [-1]
POL(1) = [1]
POL(LOAD1049(x1, x2, x3)) = x3 + x2
POL(0) = 0
POL(COND_LOAD1049(x1, x2, x3, x4)) = [-1] + x4 + x3
POL(&&(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(-(x1, x2)) = x1 + [-1]x2
POL(2) = [2]
POL(COND_LOAD10491(x1, x2, x3, x4)) = [1] + x4
POL(<=(x1, x2)) = [-1]
POL(LOAD1065(x1, x2)) = [1] + x2
POL(COND_LOAD10492(x1, x2, x3, x4)) = x4 + x3
LOAD1049(i53[2], i91[2], i84[2]) → COND_LOAD1049(&&(>(i91[2], 1), >(+(i84[2], 1), 0)), i53[2], i91[2], i84[2])
LOAD1065(i53[6], i84[6]) → LOAD872(i84[6], +(i53[6], 1))
LOAD872(i63[0], i53[0]) → COND_LOAD872(>(i63[0], 1), i63[0], i53[0])
COND_LOAD872(TRUE, i63[1], i53[1]) → LOAD1049(i53[1], i63[1], 0)
LOAD1049(i53[2], i91[2], i84[2]) → COND_LOAD1049(&&(>(i91[2], 1), >(+(i84[2], 1), 0)), i53[2], i91[2], i84[2])
COND_LOAD1049(TRUE, i53[3], i91[3], i84[3]) → LOAD1049(i53[3], -(i91[3], 2), +(i84[3], 1))
LOAD1065(i53[6], i84[6]) → LOAD872(i84[6], +(i53[6], 1))
COND_LOAD10492(TRUE, i53[8], i90[8], i84[8]) → LOAD872(i84[8], +(i53[8], 1))
LOAD872(i63[0], i53[0]) → COND_LOAD872(>(i63[0], 1), i63[0], i53[0])
COND_LOAD872(TRUE, i63[1], i53[1]) → LOAD1049(i53[1], i63[1], 0)
COND_LOAD1049(TRUE, i53[3], i91[3], i84[3]) → LOAD1049(i53[3], -(i91[3], 2), +(i84[3], 1))
LOAD1049(i53[4], i91[4], i84[4]) → COND_LOAD10491(&&(>(i91[4], 0), <=(i91[4], 1)), i53[4], i91[4], i84[4])
COND_LOAD10491(TRUE, i53[5], i91[5], i84[5]) → LOAD1065(i53[5], i84[5])
LOAD1049(i53[7], i90[7], i84[7]) → COND_LOAD10492(&&(<=(i90[7], 1), >(+(i53[7], 1), 0)), i53[7], i90[7], i84[7])
COND_LOAD10492(TRUE, i53[8], i90[8], i84[8]) → LOAD872(i84[8], +(i53[8], 1))
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(FALSE, FALSE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(8) -> (0), if ((i53[8] + 1 →* i53[0])∧(i84[8] →* i63[0]))
(0) -> (1), if ((i63[0] →* i63[1])∧(i63[0] > 1 →* TRUE)∧(i53[0] →* i53[1]))
(1) -> (4), if ((i53[1] →* i53[4])∧(0 →* i84[4])∧(i63[1] →* i91[4]))
(3) -> (4), if ((i84[3] + 1 →* i84[4])∧(i91[3] - 2 →* i91[4])∧(i53[3] →* i53[4]))
(4) -> (5), if ((i84[4] →* i84[5])∧(i91[4] > 0 && i91[4] <= 1 →* TRUE)∧(i91[4] →* i91[5])∧(i53[4] →* i53[5]))
(1) -> (7), if ((i53[1] →* i53[7])∧(i63[1] →* i90[7])∧(0 →* i84[7]))
(3) -> (7), if ((i84[3] + 1 →* i84[7])∧(i53[3] →* i53[7])∧(i91[3] - 2 →* i90[7]))
(7) -> (8), if ((i90[7] →* i90[8])∧(i90[7] <= 1 && i53[7] + 1 > 0 →* TRUE)∧(i84[7] →* i84[8])∧(i53[7] →* i53[8]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(8) -> (0), if ((i53[8] + 1 →* i53[0])∧(i84[8] →* i63[0]))
(0) -> (1), if ((i63[0] →* i63[1])∧(i63[0] > 1 →* TRUE)∧(i53[0] →* i53[1]))
(1) -> (7), if ((i53[1] →* i53[7])∧(i63[1] →* i90[7])∧(0 →* i84[7]))
(7) -> (8), if ((i90[7] →* i90[8])∧(i90[7] <= 1 && i53[7] + 1 > 0 →* TRUE)∧(i84[7] →* i84[8])∧(i53[7] →* i53[8]))
(1) (i90[7]=i90[8]∧&&(<=(i90[7], 1), >(+(i53[7], 1), 0))=TRUE∧i84[7]=i84[8]∧i53[7]=i53[8]∧+(i53[8], 1)=i53[0]∧i84[8]=i63[0] ⇒ COND_LOAD10492(TRUE, i53[8], i90[8], i84[8])≥NonInfC∧COND_LOAD10492(TRUE, i53[8], i90[8], i84[8])≥LOAD872(i84[8], +(i53[8], 1))∧(UIncreasing(LOAD872(i84[8], +(i53[8], 1))), ≥))
(2) (<=(i90[7], 1)=TRUE∧>(+(i53[7], 1), 0)=TRUE ⇒ COND_LOAD10492(TRUE, i53[7], i90[7], i84[7])≥NonInfC∧COND_LOAD10492(TRUE, i53[7], i90[7], i84[7])≥LOAD872(i84[7], +(i53[7], 1))∧(UIncreasing(LOAD872(i84[8], +(i53[8], 1))), ≥))
(3) ([1] + [-1]i90[7] ≥ 0∧i53[7] ≥ 0 ⇒ (UIncreasing(LOAD872(i84[8], +(i53[8], 1))), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]i84[7] ≥ 0∧[(-1)bso_23] ≥ 0)
(4) ([1] + [-1]i90[7] ≥ 0∧i53[7] ≥ 0 ⇒ (UIncreasing(LOAD872(i84[8], +(i53[8], 1))), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]i84[7] ≥ 0∧[(-1)bso_23] ≥ 0)
(5) ([1] + [-1]i90[7] ≥ 0∧i53[7] ≥ 0 ⇒ (UIncreasing(LOAD872(i84[8], +(i53[8], 1))), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]i84[7] ≥ 0∧[(-1)bso_23] ≥ 0)
(6) ([1] + [-1]i90[7] ≥ 0∧i53[7] ≥ 0 ⇒ (UIncreasing(LOAD872(i84[8], +(i53[8], 1))), ≥)∧[bni_22] = 0∧[(-1)bni_22 + (-1)Bound*bni_22] ≥ 0∧0 = 0∧[(-1)bso_23] ≥ 0)
(7) ([1] + i90[7] ≥ 0∧i53[7] ≥ 0∧i90[7] ≥ 0 ⇒ (UIncreasing(LOAD872(i84[8], +(i53[8], 1))), ≥)∧[bni_22] = 0∧[(-1)bni_22 + (-1)Bound*bni_22] ≥ 0∧0 = 0∧[(-1)bso_23] ≥ 0)
(8) ([1] + [-1]i90[7] ≥ 0∧i53[7] ≥ 0∧i90[7] ≥ 0 ⇒ (UIncreasing(LOAD872(i84[8], +(i53[8], 1))), ≥)∧[bni_22] = 0∧[(-1)bni_22 + (-1)Bound*bni_22] ≥ 0∧0 = 0∧[(-1)bso_23] ≥ 0)
(9) (i90[7]=i90[8]∧&&(<=(i90[7], 1), >(+(i53[7], 1), 0))=TRUE∧i84[7]=i84[8]∧i53[7]=i53[8] ⇒ LOAD1049(i53[7], i90[7], i84[7])≥NonInfC∧LOAD1049(i53[7], i90[7], i84[7])≥COND_LOAD10492(&&(<=(i90[7], 1), >(+(i53[7], 1), 0)), i53[7], i90[7], i84[7])∧(UIncreasing(COND_LOAD10492(&&(<=(i90[7], 1), >(+(i53[7], 1), 0)), i53[7], i90[7], i84[7])), ≥))
(10) (<=(i90[7], 1)=TRUE∧>(+(i53[7], 1), 0)=TRUE ⇒ LOAD1049(i53[7], i90[7], i84[7])≥NonInfC∧LOAD1049(i53[7], i90[7], i84[7])≥COND_LOAD10492(&&(<=(i90[7], 1), >(+(i53[7], 1), 0)), i53[7], i90[7], i84[7])∧(UIncreasing(COND_LOAD10492(&&(<=(i90[7], 1), >(+(i53[7], 1), 0)), i53[7], i90[7], i84[7])), ≥))
(11) ([1] + [-1]i90[7] ≥ 0∧i53[7] ≥ 0 ⇒ (UIncreasing(COND_LOAD10492(&&(<=(i90[7], 1), >(+(i53[7], 1), 0)), i53[7], i90[7], i84[7])), ≥)∧[(2)bni_24 + (-1)Bound*bni_24] + [bni_24]i84[7] + [(-1)bni_24]i90[7] ≥ 0∧[3 + (-1)bso_25] + [-1]i90[7] ≥ 0)
(12) ([1] + [-1]i90[7] ≥ 0∧i53[7] ≥ 0 ⇒ (UIncreasing(COND_LOAD10492(&&(<=(i90[7], 1), >(+(i53[7], 1), 0)), i53[7], i90[7], i84[7])), ≥)∧[(2)bni_24 + (-1)Bound*bni_24] + [bni_24]i84[7] + [(-1)bni_24]i90[7] ≥ 0∧[3 + (-1)bso_25] + [-1]i90[7] ≥ 0)
(13) ([1] + [-1]i90[7] ≥ 0∧i53[7] ≥ 0 ⇒ (UIncreasing(COND_LOAD10492(&&(<=(i90[7], 1), >(+(i53[7], 1), 0)), i53[7], i90[7], i84[7])), ≥)∧[(2)bni_24 + (-1)Bound*bni_24] + [bni_24]i84[7] + [(-1)bni_24]i90[7] ≥ 0∧[3 + (-1)bso_25] + [-1]i90[7] ≥ 0)
(14) ([1] + [-1]i90[7] ≥ 0∧i53[7] ≥ 0 ⇒ (UIncreasing(COND_LOAD10492(&&(<=(i90[7], 1), >(+(i53[7], 1), 0)), i53[7], i90[7], i84[7])), ≥)∧[bni_24] = 0∧[(2)bni_24 + (-1)Bound*bni_24] + [(-1)bni_24]i90[7] ≥ 0∧0 = 0∧[3 + (-1)bso_25] + [-1]i90[7] ≥ 0)
(15) ([1] + [-1]i90[7] ≥ 0∧i53[7] ≥ 0∧i90[7] ≥ 0 ⇒ (UIncreasing(COND_LOAD10492(&&(<=(i90[7], 1), >(+(i53[7], 1), 0)), i53[7], i90[7], i84[7])), ≥)∧[bni_24] = 0∧[(2)bni_24 + (-1)Bound*bni_24] + [(-1)bni_24]i90[7] ≥ 0∧0 = 0∧[3 + (-1)bso_25] + [-1]i90[7] ≥ 0)
(16) ([1] + i90[7] ≥ 0∧i53[7] ≥ 0∧i90[7] ≥ 0 ⇒ (UIncreasing(COND_LOAD10492(&&(<=(i90[7], 1), >(+(i53[7], 1), 0)), i53[7], i90[7], i84[7])), ≥)∧[bni_24] = 0∧[(2)bni_24 + (-1)Bound*bni_24] + [bni_24]i90[7] ≥ 0∧0 = 0∧[3 + (-1)bso_25] + i90[7] ≥ 0)
(17) (i63[0]=i63[1]∧>(i63[0], 1)=TRUE∧i53[0]=i53[1]∧i53[1]=i53[7]∧i63[1]=i90[7]∧0=i84[7] ⇒ COND_LOAD872(TRUE, i63[1], i53[1])≥NonInfC∧COND_LOAD872(TRUE, i63[1], i53[1])≥LOAD1049(i53[1], i63[1], 0)∧(UIncreasing(LOAD1049(i53[1], i63[1], 0)), ≥))
(18) (>(i63[0], 1)=TRUE ⇒ COND_LOAD872(TRUE, i63[0], i53[0])≥NonInfC∧COND_LOAD872(TRUE, i63[0], i53[0])≥LOAD1049(i53[0], i63[0], 0)∧(UIncreasing(LOAD1049(i53[1], i63[1], 0)), ≥))
(19) (i63[0] + [-2] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[1], i63[1], 0)), ≥)∧[(2)bni_26 + (-1)Bound*bni_26] + [(-1)bni_26]i63[0] ≥ 0∧[(-1)bso_27] ≥ 0)
(20) (i63[0] + [-2] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[1], i63[1], 0)), ≥)∧[(2)bni_26 + (-1)Bound*bni_26] + [(-1)bni_26]i63[0] ≥ 0∧[(-1)bso_27] ≥ 0)
(21) (i63[0] + [-2] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[1], i63[1], 0)), ≥)∧[(2)bni_26 + (-1)Bound*bni_26] + [(-1)bni_26]i63[0] ≥ 0∧[(-1)bso_27] ≥ 0)
(22) (i63[0] + [-2] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[1], i63[1], 0)), ≥)∧0 = 0∧[(2)bni_26 + (-1)Bound*bni_26] + [(-1)bni_26]i63[0] ≥ 0∧0 = 0∧[(-1)bso_27] ≥ 0)
(23) (i63[0] ≥ 0 ⇒ (UIncreasing(LOAD1049(i53[1], i63[1], 0)), ≥)∧0 = 0∧[(-1)Bound*bni_26] + [(-1)bni_26]i63[0] ≥ 0∧0 = 0∧[(-1)bso_27] ≥ 0)
(24) (i63[0]=i63[1]∧>(i63[0], 1)=TRUE∧i53[0]=i53[1] ⇒ LOAD872(i63[0], i53[0])≥NonInfC∧LOAD872(i63[0], i53[0])≥COND_LOAD872(>(i63[0], 1), i63[0], i53[0])∧(UIncreasing(COND_LOAD872(>(i63[0], 1), i63[0], i53[0])), ≥))
(25) (>(i63[0], 1)=TRUE ⇒ LOAD872(i63[0], i53[0])≥NonInfC∧LOAD872(i63[0], i53[0])≥COND_LOAD872(>(i63[0], 1), i63[0], i53[0])∧(UIncreasing(COND_LOAD872(>(i63[0], 1), i63[0], i53[0])), ≥))
(26) (i63[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_LOAD872(>(i63[0], 1), i63[0], i53[0])), ≥)∧[(-1)bni_28 + (-1)Bound*bni_28] + [bni_28]i63[0] ≥ 0∧[-3 + (-1)bso_29] + [2]i63[0] ≥ 0)
(27) (i63[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_LOAD872(>(i63[0], 1), i63[0], i53[0])), ≥)∧[(-1)bni_28 + (-1)Bound*bni_28] + [bni_28]i63[0] ≥ 0∧[-3 + (-1)bso_29] + [2]i63[0] ≥ 0)
(28) (i63[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_LOAD872(>(i63[0], 1), i63[0], i53[0])), ≥)∧[(-1)bni_28 + (-1)Bound*bni_28] + [bni_28]i63[0] ≥ 0∧[-3 + (-1)bso_29] + [2]i63[0] ≥ 0)
(29) (i63[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_LOAD872(>(i63[0], 1), i63[0], i53[0])), ≥)∧0 = 0∧[(-1)bni_28 + (-1)Bound*bni_28] + [bni_28]i63[0] ≥ 0∧0 = 0∧[-3 + (-1)bso_29] + [2]i63[0] ≥ 0)
(30) (i63[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD872(>(i63[0], 1), i63[0], i53[0])), ≥)∧0 = 0∧[bni_28 + (-1)Bound*bni_28] + [bni_28]i63[0] ≥ 0∧0 = 0∧[1 + (-1)bso_29] + [2]i63[0] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_LOAD10492(x1, x2, x3, x4)) = [-1] + x4 + [-1]x1
POL(LOAD872(x1, x2)) = [-1] + x1
POL(+(x1, x2)) = x1 + x2
POL(1) = [1]
POL(LOAD1049(x1, x2, x3)) = [2] + x3 + [-1]x2
POL(&&(x1, x2)) = 0
POL(<=(x1, x2)) = [-1]
POL(>(x1, x2)) = [2]
POL(0) = 0
POL(COND_LOAD872(x1, x2, x3)) = [2] + [-1]x2
LOAD1049(i53[7], i90[7], i84[7]) → COND_LOAD10492(&&(<=(i90[7], 1), >(+(i53[7], 1), 0)), i53[7], i90[7], i84[7])
LOAD872(i63[0], i53[0]) → COND_LOAD872(>(i63[0], 1), i63[0], i53[0])
LOAD872(i63[0], i53[0]) → COND_LOAD872(>(i63[0], 1), i63[0], i53[0])
COND_LOAD10492(TRUE, i53[8], i90[8], i84[8]) → LOAD872(i84[8], +(i53[8], 1))
COND_LOAD872(TRUE, i63[1], i53[1]) → LOAD1049(i53[1], i63[1], 0)
&&(TRUE, TRUE)1 ↔ TRUE1
&&(TRUE, FALSE)1 ↔ FALSE1
&&(FALSE, TRUE)1 ↔ FALSE1
&&(FALSE, FALSE)1 ↔ FALSE1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(1) -> (7), if ((i53[1] →* i53[7])∧(i63[1] →* i90[7])∧(0 →* i84[7]))
(7) -> (8), if ((i90[7] →* i90[8])∧(i90[7] <= 1 && i53[7] + 1 > 0 →* TRUE)∧(i84[7] →* i84[8])∧(i53[7] →* i53[8]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(4) -> (5), if ((i84[4] →* i84[5])∧(i91[4] > 0 && i91[4] <= 1 →* TRUE)∧(i91[4] →* i91[5])∧(i53[4] →* i53[5]))