(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: GCD5
public class GCD5 {
public static int gcd(int a, int b) {
int tmp;
while(b > 0 && a > 0) {
tmp = b;
b = a % b;
a = tmp;
}
return a;
}

public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
gcd(x, y);
}
}


public class Random {
static String[] args;
static int index = 0;

public static int random() {
String string = args[index];
index++;
return string.length();
}
}


(1) JBC2FIG (SOUND transformation)

Constructed FIGraph.

(2) Obligation:

FIGraph based on JBC Program:
Graph of 202 nodes with 1 SCC.

(3) FIGtoITRSProof (SOUND transformation)

Transformed FIGraph to ITRS rules

(4) Obligation:

ITRS problem:

The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean

The TRS R consists of the following rules:
Load1230(i225, i223) → Cond_Load1230(i225 > 0 && i223 > 0, i225, i223)
Cond_Load1230(TRUE, i225, i223) → Load1230(i223, i225 % i223)
The set Q consists of the following terms:
Load1230(x0, x1)
Cond_Load1230(TRUE, x0, x1)

(5) ITRStoIDPProof (EQUIVALENT transformation)

Added dependency pairs

(6) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


The ITRS R consists of the following rules:
Load1230(i225, i223) → Cond_Load1230(i225 > 0 && i223 > 0, i225, i223)
Cond_Load1230(TRUE, i225, i223) → Load1230(i223, i225 % i223)

The integer pair graph contains the following rules and edges:
(0): LOAD1230(i225[0], i223[0]) → COND_LOAD1230(i225[0] > 0 && i223[0] > 0, i225[0], i223[0])
(1): COND_LOAD1230(TRUE, i225[1], i223[1]) → LOAD1230(i223[1], i225[1] % i223[1])

(0) -> (1), if ((i225[0] > 0 && i223[0] > 0* TRUE)∧(i223[0]* i223[1])∧(i225[0]* i225[1]))


(1) -> (0), if ((i223[1]* i225[0])∧(i225[1] % i223[1]* i223[0]))



The set Q consists of the following terms:
Load1230(x0, x1)
Cond_Load1230(TRUE, x0, x1)

(7) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(8) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): LOAD1230(i225[0], i223[0]) → COND_LOAD1230(i225[0] > 0 && i223[0] > 0, i225[0], i223[0])
(1): COND_LOAD1230(TRUE, i225[1], i223[1]) → LOAD1230(i223[1], i225[1] % i223[1])

(0) -> (1), if ((i225[0] > 0 && i223[0] > 0* TRUE)∧(i223[0]* i223[1])∧(i225[0]* i225[1]))


(1) -> (0), if ((i223[1]* i225[0])∧(i225[1] % i223[1]* i223[0]))



The set Q consists of the following terms:
Load1230(x0, x1)
Cond_Load1230(TRUE, x0, x1)

(9) IDPtoQDPProof (SOUND transformation)

Represented integers and predefined function symbols by Terms

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LOAD1230(i225[0], i223[0]) → COND_LOAD1230(and(greater_int(i225[0], pos(01)), greater_int(i223[0], pos(01))), i225[0], i223[0])
COND_LOAD1230(true, i225[1], i223[1]) → LOAD1230(i223[1], mod_int(i225[1], i223[1]))

The TRS R consists of the following rules:

and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greater_int(pos(01), pos(01)) → false
greater_int(pos(01), neg(01)) → false
greater_int(neg(01), pos(01)) → false
greater_int(neg(01), neg(01)) → false
greater_int(pos(01), pos(s(y))) → false
greater_int(neg(01), pos(s(y))) → false
greater_int(pos(01), neg(s(y))) → true
greater_int(neg(01), neg(s(y))) → true
greater_int(pos(s(x)), pos(01)) → true
greater_int(neg(s(x)), pos(01)) → false
greater_int(pos(s(x)), neg(01)) → true
greater_int(neg(s(x)), neg(01)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
mod_int(pos(x), pos(y)) → pos(mod_nat(x, y))
mod_int(pos(x), neg(y)) → pos(mod_nat(x, y))
mod_int(neg(x), pos(y)) → neg(mod_nat(x, y))
mod_int(neg(x), neg(y)) → neg(mod_nat(x, y))
mod_nat(01, s(x)) → 01
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
if(true, x, y) → x
if(false, x, y) → y
minus_nat_s(x, 01) → x
minus_nat_s(01, s(y)) → 01
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)

The set Q consists of the following terms:

Load1230(x0, x1)
Cond_Load1230(true, x0, x1)
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(01), pos(01))
greater_int(pos(01), neg(01))
greater_int(neg(01), pos(01))
greater_int(neg(01), neg(01))
greater_int(pos(01), pos(s(x0)))
greater_int(neg(01), pos(s(x0)))
greater_int(pos(01), neg(s(x0)))
greater_int(neg(01), neg(s(x0)))
greater_int(pos(s(x0)), pos(01))
greater_int(neg(s(x0)), pos(01))
greater_int(pos(s(x0)), neg(01))
greater_int(neg(s(x0)), neg(01))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(01, s(x0))
mod_nat(s(x0), s(x1))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 01)
minus_nat_s(01, s(x0))
minus_nat_s(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(11) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LOAD1230(i225[0], i223[0]) → COND_LOAD1230(and(greater_int(i225[0], pos(01)), greater_int(i223[0], pos(01))), i225[0], i223[0])
COND_LOAD1230(true, i225[1], i223[1]) → LOAD1230(i223[1], mod_int(i225[1], i223[1]))

The TRS R consists of the following rules:

mod_int(pos(x), pos(y)) → pos(mod_nat(x, y))
mod_int(pos(x), neg(y)) → pos(mod_nat(x, y))
mod_int(neg(x), pos(y)) → neg(mod_nat(x, y))
mod_int(neg(x), neg(y)) → neg(mod_nat(x, y))
mod_nat(01, s(x)) → 01
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
minus_nat_s(x, 01) → x
minus_nat_s(01, s(y)) → 01
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
greater_int(pos(01), pos(01)) → false
greater_int(neg(01), pos(01)) → false
greater_int(pos(s(x)), pos(01)) → true
greater_int(neg(s(x)), pos(01)) → false
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true

The set Q consists of the following terms:

Load1230(x0, x1)
Cond_Load1230(true, x0, x1)
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(01), pos(01))
greater_int(pos(01), neg(01))
greater_int(neg(01), pos(01))
greater_int(neg(01), neg(01))
greater_int(pos(01), pos(s(x0)))
greater_int(neg(01), pos(s(x0)))
greater_int(pos(01), neg(s(x0)))
greater_int(neg(01), neg(s(x0)))
greater_int(pos(s(x0)), pos(01))
greater_int(neg(s(x0)), pos(01))
greater_int(pos(s(x0)), neg(01))
greater_int(neg(s(x0)), neg(01))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(01, s(x0))
mod_nat(s(x0), s(x1))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 01)
minus_nat_s(01, s(x0))
minus_nat_s(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(13) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

Load1230(x0, x1)
Cond_Load1230(true, x0, x1)

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LOAD1230(i225[0], i223[0]) → COND_LOAD1230(and(greater_int(i225[0], pos(01)), greater_int(i223[0], pos(01))), i225[0], i223[0])
COND_LOAD1230(true, i225[1], i223[1]) → LOAD1230(i223[1], mod_int(i225[1], i223[1]))

The TRS R consists of the following rules:

mod_int(pos(x), pos(y)) → pos(mod_nat(x, y))
mod_int(pos(x), neg(y)) → pos(mod_nat(x, y))
mod_int(neg(x), pos(y)) → neg(mod_nat(x, y))
mod_int(neg(x), neg(y)) → neg(mod_nat(x, y))
mod_nat(01, s(x)) → 01
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
minus_nat_s(x, 01) → x
minus_nat_s(01, s(y)) → 01
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
greater_int(pos(01), pos(01)) → false
greater_int(neg(01), pos(01)) → false
greater_int(pos(s(x)), pos(01)) → true
greater_int(neg(s(x)), pos(01)) → false
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(01), pos(01))
greater_int(pos(01), neg(01))
greater_int(neg(01), pos(01))
greater_int(neg(01), neg(01))
greater_int(pos(01), pos(s(x0)))
greater_int(neg(01), pos(s(x0)))
greater_int(pos(01), neg(s(x0)))
greater_int(neg(01), neg(s(x0)))
greater_int(pos(s(x0)), pos(01))
greater_int(neg(s(x0)), pos(01))
greater_int(pos(s(x0)), neg(01))
greater_int(neg(s(x0)), neg(01))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(01, s(x0))
mod_nat(s(x0), s(x1))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 01)
minus_nat_s(01, s(x0))
minus_nat_s(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


COND_LOAD1230(true, i225[1], i223[1]) → LOAD1230(i223[1], mod_int(i225[1], i223[1]))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(01) = 0   
POL(COND_LOAD1230(x1, x2, x3)) = x1 + x3   
POL(LOAD1230(x1, x2)) = x1 + x2   
POL(and(x1, x2)) = x1   
POL(false) = 0   
POL(greater_int(x1, x2)) = x1   
POL(greatereq_int(x1, x2)) = 0   
POL(if(x1, x2, x3)) = 0   
POL(minus_nat_s(x1, x2)) = 0   
POL(mod_int(x1, x2)) = 0   
POL(mod_nat(x1, x2)) = 0   
POL(neg(x1)) = 0   
POL(pos(x1)) = x1   
POL(s(x1)) = 1   
POL(true) = 1   

The following usable rules [FROCOS05] were oriented:

greater_int(pos(01), pos(01)) → false
greater_int(neg(01), pos(01)) → false
greater_int(pos(s(x)), pos(01)) → true
greater_int(neg(s(x)), pos(01)) → false
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
mod_int(pos(x), pos(y)) → pos(mod_nat(x, y))
mod_int(pos(x), neg(y)) → pos(mod_nat(x, y))
mod_int(neg(x), pos(y)) → neg(mod_nat(x, y))
mod_int(neg(x), neg(y)) → neg(mod_nat(x, y))
mod_nat(01, s(x)) → 01
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LOAD1230(i225[0], i223[0]) → COND_LOAD1230(and(greater_int(i225[0], pos(01)), greater_int(i223[0], pos(01))), i225[0], i223[0])

The TRS R consists of the following rules:

mod_int(pos(x), pos(y)) → pos(mod_nat(x, y))
mod_int(pos(x), neg(y)) → pos(mod_nat(x, y))
mod_int(neg(x), pos(y)) → neg(mod_nat(x, y))
mod_int(neg(x), neg(y)) → neg(mod_nat(x, y))
mod_nat(01, s(x)) → 01
mod_nat(s(x), s(y)) → if(greatereq_int(pos(x), pos(y)), mod_nat(minus_nat_s(x, y), s(y)), s(x))
minus_nat_s(x, 01) → x
minus_nat_s(01, s(y)) → 01
minus_nat_s(s(x), s(y)) → minus_nat_s(x, y)
greater_int(pos(01), pos(01)) → false
greater_int(neg(01), pos(01)) → false
greater_int(pos(s(x)), pos(01)) → true
greater_int(neg(s(x)), pos(01)) → false
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true

The set Q consists of the following terms:

and(false, false)
and(false, true)
and(true, false)
and(true, true)
greater_int(pos(01), pos(01))
greater_int(pos(01), neg(01))
greater_int(neg(01), pos(01))
greater_int(neg(01), neg(01))
greater_int(pos(01), pos(s(x0)))
greater_int(neg(01), pos(s(x0)))
greater_int(pos(01), neg(s(x0)))
greater_int(neg(01), neg(s(x0)))
greater_int(pos(s(x0)), pos(01))
greater_int(neg(s(x0)), pos(01))
greater_int(pos(s(x0)), neg(01))
greater_int(neg(s(x0)), neg(01))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
mod_int(pos(x0), pos(x1))
mod_int(pos(x0), neg(x1))
mod_int(neg(x0), pos(x1))
mod_int(neg(x0), neg(x1))
mod_nat(01, s(x0))
mod_nat(s(x0), s(x1))
if(true, x0, x1)
if(false, x0, x1)
minus_nat_s(x0, 01)
minus_nat_s(01, s(x0))
minus_nat_s(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

(17) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(18) TRUE