(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: GCD4
public class GCD4 {
public static int mod(int a, int b) {
while(a>=b && b > 0) {
a -= b;
}
return a;
}

public static int gcd(int a, int b) {
int tmp;
while(b > 0 && a > 0) {
tmp = b;
b = mod(a, b);
a = tmp;
}
return a;
}

public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
gcd(x, y);
}
}


public class Random {
static String[] args;
static int index = 0;

public static int random() {
String string = args[index];
index++;
return string.length();
}
}


(1) JBC2FIG (SOUND transformation)

Constructed FIGraph.

(2) Obligation:

FIGraph based on JBC Program:
Graph of 218 nodes with 1 SCC.

(3) FIGtoITRSProof (SOUND transformation)

Transformed FIGraph to ITRS rules

(4) Obligation:

ITRS problem:

The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean

The TRS R consists of the following rules:
Load1303(i427, i421) → Cond_Load1303(i427 > 0 && i421 > 0, i427, i421)
Cond_Load1303(TRUE, i427, i421) → Load1438(i421, i421, i421, i427, i421)
Load1438(i421, i421, i421, i507, i421) → Cond_Load1438(i421 > 0 && i507 >= i421, i421, i421, i421, i507, i421)
Cond_Load1438(TRUE, i421, i421, i421, i507, i421) → Load1438(i421, i421, i421, i507 - i421, i421)
Load1438(i421, i421, i421, i507, i421) → Cond_Load14381(i507 < i421, i421, i421, i421, i507, i421)
Cond_Load14381(TRUE, i421, i421, i421, i507, i421) → Load1303(i421, i507)
The set Q consists of the following terms:
Load1303(x0, x1)
Cond_Load1303(TRUE, x0, x1)
Load1438(x0, x0, x0, x1, x0)
Cond_Load1438(TRUE, x0, x0, x0, x1, x0)
Cond_Load14381(TRUE, x0, x0, x0, x1, x0)

(5) DuplicateArgsRemoverProof (EQUIVALENT transformation)

Some arguments are removed because they only appear as duplicates.
We removed arguments according to the following replacements:

Cond_Load14381(x1, x2, x3, x4, x5, x6) → Cond_Load14381(x1, x5, x6)
Load1438(x1, x2, x3, x4, x5) → Load1438(x4, x5)
Cond_Load1438(x1, x2, x3, x4, x5, x6) → Cond_Load1438(x1, x5, x6)

(6) Obligation:

ITRS problem:

The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean

The TRS R consists of the following rules:
Load1303(i427, i421) → Cond_Load1303(i427 > 0 && i421 > 0, i427, i421)
Cond_Load1303(TRUE, i427, i421) → Load1438(i427, i421)
Load1438(i507, i421) → Cond_Load1438(i421 > 0 && i507 >= i421, i507, i421)
Cond_Load1438(TRUE, i507, i421) → Load1438(i507 - i421, i421)
Load1438(i507, i421) → Cond_Load14381(i507 < i421, i507, i421)
Cond_Load14381(TRUE, i507, i421) → Load1303(i421, i507)
The set Q consists of the following terms:
Load1303(x0, x1)
Cond_Load1303(TRUE, x0, x1)
Load1438(x0, x1)
Cond_Load1438(TRUE, x0, x1)
Cond_Load14381(TRUE, x0, x1)

(7) ITRStoIDPProof (EQUIVALENT transformation)

Added dependency pairs

(8) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


The ITRS R consists of the following rules:
Load1303(i427, i421) → Cond_Load1303(i427 > 0 && i421 > 0, i427, i421)
Cond_Load1303(TRUE, i427, i421) → Load1438(i427, i421)
Load1438(i507, i421) → Cond_Load1438(i421 > 0 && i507 >= i421, i507, i421)
Cond_Load1438(TRUE, i507, i421) → Load1438(i507 - i421, i421)
Load1438(i507, i421) → Cond_Load14381(i507 < i421, i507, i421)
Cond_Load14381(TRUE, i507, i421) → Load1303(i421, i507)

The integer pair graph contains the following rules and edges:
(0): LOAD1303(i427[0], i421[0]) → COND_LOAD1303(i427[0] > 0 && i421[0] > 0, i427[0], i421[0])
(1): COND_LOAD1303(TRUE, i427[1], i421[1]) → LOAD1438(i427[1], i421[1])
(2): LOAD1438(i507[2], i421[2]) → COND_LOAD1438(i421[2] > 0 && i507[2] >= i421[2], i507[2], i421[2])
(3): COND_LOAD1438(TRUE, i507[3], i421[3]) → LOAD1438(i507[3] - i421[3], i421[3])
(4): LOAD1438(i507[4], i421[4]) → COND_LOAD14381(i507[4] < i421[4], i507[4], i421[4])
(5): COND_LOAD14381(TRUE, i507[5], i421[5]) → LOAD1303(i421[5], i507[5])

(0) -> (1), if ((i427[0] > 0 && i421[0] > 0* TRUE)∧(i421[0]* i421[1])∧(i427[0]* i427[1]))


(1) -> (2), if ((i427[1]* i507[2])∧(i421[1]* i421[2]))


(1) -> (4), if ((i421[1]* i421[4])∧(i427[1]* i507[4]))


(2) -> (3), if ((i507[2]* i507[3])∧(i421[2] > 0 && i507[2] >= i421[2]* TRUE)∧(i421[2]* i421[3]))


(3) -> (2), if ((i421[3]* i421[2])∧(i507[3] - i421[3]* i507[2]))


(3) -> (4), if ((i421[3]* i421[4])∧(i507[3] - i421[3]* i507[4]))


(4) -> (5), if ((i421[4]* i421[5])∧(i507[4]* i507[5])∧(i507[4] < i421[4]* TRUE))


(5) -> (0), if ((i507[5]* i421[0])∧(i421[5]* i427[0]))



The set Q consists of the following terms:
Load1303(x0, x1)
Cond_Load1303(TRUE, x0, x1)
Load1438(x0, x1)
Cond_Load1438(TRUE, x0, x1)
Cond_Load14381(TRUE, x0, x1)

(9) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(10) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): LOAD1303(i427[0], i421[0]) → COND_LOAD1303(i427[0] > 0 && i421[0] > 0, i427[0], i421[0])
(1): COND_LOAD1303(TRUE, i427[1], i421[1]) → LOAD1438(i427[1], i421[1])
(2): LOAD1438(i507[2], i421[2]) → COND_LOAD1438(i421[2] > 0 && i507[2] >= i421[2], i507[2], i421[2])
(3): COND_LOAD1438(TRUE, i507[3], i421[3]) → LOAD1438(i507[3] - i421[3], i421[3])
(4): LOAD1438(i507[4], i421[4]) → COND_LOAD14381(i507[4] < i421[4], i507[4], i421[4])
(5): COND_LOAD14381(TRUE, i507[5], i421[5]) → LOAD1303(i421[5], i507[5])

(0) -> (1), if ((i427[0] > 0 && i421[0] > 0* TRUE)∧(i421[0]* i421[1])∧(i427[0]* i427[1]))


(1) -> (2), if ((i427[1]* i507[2])∧(i421[1]* i421[2]))


(1) -> (4), if ((i421[1]* i421[4])∧(i427[1]* i507[4]))


(2) -> (3), if ((i507[2]* i507[3])∧(i421[2] > 0 && i507[2] >= i421[2]* TRUE)∧(i421[2]* i421[3]))


(3) -> (2), if ((i421[3]* i421[2])∧(i507[3] - i421[3]* i507[2]))


(3) -> (4), if ((i421[3]* i421[4])∧(i507[3] - i421[3]* i507[4]))


(4) -> (5), if ((i421[4]* i421[5])∧(i507[4]* i507[5])∧(i507[4] < i421[4]* TRUE))


(5) -> (0), if ((i507[5]* i421[0])∧(i421[5]* i427[0]))



The set Q consists of the following terms:
Load1303(x0, x1)
Cond_Load1303(TRUE, x0, x1)
Load1438(x0, x1)
Cond_Load1438(TRUE, x0, x1)
Cond_Load14381(TRUE, x0, x1)

(11) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair LOAD1303(i427, i421) → COND_LOAD1303(&&(>(i427, 0), >(i421, 0)), i427, i421) the following chains were created:
  • We consider the chain LOAD1303(i427[0], i421[0]) → COND_LOAD1303(&&(>(i427[0], 0), >(i421[0], 0)), i427[0], i421[0]), COND_LOAD1303(TRUE, i427[1], i421[1]) → LOAD1438(i427[1], i421[1]) which results in the following constraint:

    (1)    (&&(>(i427[0], 0), >(i421[0], 0))=TRUEi421[0]=i421[1]i427[0]=i427[1]LOAD1303(i427[0], i421[0])≥NonInfC∧LOAD1303(i427[0], i421[0])≥COND_LOAD1303(&&(>(i427[0], 0), >(i421[0], 0)), i427[0], i421[0])∧(UIncreasing(COND_LOAD1303(&&(>(i427[0], 0), >(i421[0], 0)), i427[0], i421[0])), ≥))



    We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (>(i427[0], 0)=TRUE>(i421[0], 0)=TRUELOAD1303(i427[0], i421[0])≥NonInfC∧LOAD1303(i427[0], i421[0])≥COND_LOAD1303(&&(>(i427[0], 0), >(i421[0], 0)), i427[0], i421[0])∧(UIncreasing(COND_LOAD1303(&&(>(i427[0], 0), >(i421[0], 0)), i427[0], i421[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (i427[0] + [-1] ≥ 0∧i421[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1303(&&(>(i427[0], 0), >(i421[0], 0)), i427[0], i421[0])), ≥)∧[(-1)bni_25 + (-1)Bound*bni_25] + [bni_25]i421[0] + [bni_25]i427[0] ≥ 0∧[(-1)bso_26] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (i427[0] + [-1] ≥ 0∧i421[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1303(&&(>(i427[0], 0), >(i421[0], 0)), i427[0], i421[0])), ≥)∧[(-1)bni_25 + (-1)Bound*bni_25] + [bni_25]i421[0] + [bni_25]i427[0] ≥ 0∧[(-1)bso_26] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (i427[0] + [-1] ≥ 0∧i421[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1303(&&(>(i427[0], 0), >(i421[0], 0)), i427[0], i421[0])), ≥)∧[(-1)bni_25 + (-1)Bound*bni_25] + [bni_25]i421[0] + [bni_25]i427[0] ≥ 0∧[(-1)bso_26] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (i427[0] ≥ 0∧i421[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1303(&&(>(i427[0], 0), >(i421[0], 0)), i427[0], i421[0])), ≥)∧[(-1)Bound*bni_25] + [bni_25]i421[0] + [bni_25]i427[0] ≥ 0∧[(-1)bso_26] ≥ 0)



    We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (7)    (i427[0] ≥ 0∧i421[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1303(&&(>(i427[0], 0), >(i421[0], 0)), i427[0], i421[0])), ≥)∧[(-1)Bound*bni_25 + bni_25] + [bni_25]i421[0] + [bni_25]i427[0] ≥ 0∧[(-1)bso_26] ≥ 0)







For Pair COND_LOAD1303(TRUE, i427, i421) → LOAD1438(i427, i421) the following chains were created:
  • We consider the chain COND_LOAD1303(TRUE, i427[1], i421[1]) → LOAD1438(i427[1], i421[1]), LOAD1438(i507[2], i421[2]) → COND_LOAD1438(&&(>(i421[2], 0), >=(i507[2], i421[2])), i507[2], i421[2]) which results in the following constraint:

    (8)    (i427[1]=i507[2]i421[1]=i421[2]COND_LOAD1303(TRUE, i427[1], i421[1])≥NonInfC∧COND_LOAD1303(TRUE, i427[1], i421[1])≥LOAD1438(i427[1], i421[1])∧(UIncreasing(LOAD1438(i427[1], i421[1])), ≥))



    We simplified constraint (8) using rule (IV) which results in the following new constraint:

    (9)    (COND_LOAD1303(TRUE, i427[1], i421[1])≥NonInfC∧COND_LOAD1303(TRUE, i427[1], i421[1])≥LOAD1438(i427[1], i421[1])∧(UIncreasing(LOAD1438(i427[1], i421[1])), ≥))



    We simplified constraint (9) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (10)    ((UIncreasing(LOAD1438(i427[1], i421[1])), ≥)∧[(-1)bso_28] ≥ 0)



    We simplified constraint (10) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (11)    ((UIncreasing(LOAD1438(i427[1], i421[1])), ≥)∧[(-1)bso_28] ≥ 0)



    We simplified constraint (11) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (12)    ((UIncreasing(LOAD1438(i427[1], i421[1])), ≥)∧[(-1)bso_28] ≥ 0)



    We simplified constraint (12) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (13)    ((UIncreasing(LOAD1438(i427[1], i421[1])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_28] ≥ 0)



  • We consider the chain COND_LOAD1303(TRUE, i427[1], i421[1]) → LOAD1438(i427[1], i421[1]), LOAD1438(i507[4], i421[4]) → COND_LOAD14381(<(i507[4], i421[4]), i507[4], i421[4]) which results in the following constraint:

    (14)    (i421[1]=i421[4]i427[1]=i507[4]COND_LOAD1303(TRUE, i427[1], i421[1])≥NonInfC∧COND_LOAD1303(TRUE, i427[1], i421[1])≥LOAD1438(i427[1], i421[1])∧(UIncreasing(LOAD1438(i427[1], i421[1])), ≥))



    We simplified constraint (14) using rule (IV) which results in the following new constraint:

    (15)    (COND_LOAD1303(TRUE, i427[1], i421[1])≥NonInfC∧COND_LOAD1303(TRUE, i427[1], i421[1])≥LOAD1438(i427[1], i421[1])∧(UIncreasing(LOAD1438(i427[1], i421[1])), ≥))



    We simplified constraint (15) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (16)    ((UIncreasing(LOAD1438(i427[1], i421[1])), ≥)∧[(-1)bso_28] ≥ 0)



    We simplified constraint (16) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (17)    ((UIncreasing(LOAD1438(i427[1], i421[1])), ≥)∧[(-1)bso_28] ≥ 0)



    We simplified constraint (17) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (18)    ((UIncreasing(LOAD1438(i427[1], i421[1])), ≥)∧[(-1)bso_28] ≥ 0)



    We simplified constraint (18) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (19)    ((UIncreasing(LOAD1438(i427[1], i421[1])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_28] ≥ 0)







For Pair LOAD1438(i507, i421) → COND_LOAD1438(&&(>(i421, 0), >=(i507, i421)), i507, i421) the following chains were created:
  • We consider the chain LOAD1438(i507[2], i421[2]) → COND_LOAD1438(&&(>(i421[2], 0), >=(i507[2], i421[2])), i507[2], i421[2]), COND_LOAD1438(TRUE, i507[3], i421[3]) → LOAD1438(-(i507[3], i421[3]), i421[3]) which results in the following constraint:

    (20)    (i507[2]=i507[3]&&(>(i421[2], 0), >=(i507[2], i421[2]))=TRUEi421[2]=i421[3]LOAD1438(i507[2], i421[2])≥NonInfC∧LOAD1438(i507[2], i421[2])≥COND_LOAD1438(&&(>(i421[2], 0), >=(i507[2], i421[2])), i507[2], i421[2])∧(UIncreasing(COND_LOAD1438(&&(>(i421[2], 0), >=(i507[2], i421[2])), i507[2], i421[2])), ≥))



    We simplified constraint (20) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (21)    (>(i421[2], 0)=TRUE>=(i507[2], i421[2])=TRUELOAD1438(i507[2], i421[2])≥NonInfC∧LOAD1438(i507[2], i421[2])≥COND_LOAD1438(&&(>(i421[2], 0), >=(i507[2], i421[2])), i507[2], i421[2])∧(UIncreasing(COND_LOAD1438(&&(>(i421[2], 0), >=(i507[2], i421[2])), i507[2], i421[2])), ≥))



    We simplified constraint (21) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (22)    (i421[2] + [-1] ≥ 0∧i507[2] + [-1]i421[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD1438(&&(>(i421[2], 0), >=(i507[2], i421[2])), i507[2], i421[2])), ≥)∧[(-1)bni_29 + (-1)Bound*bni_29] + [bni_29]i421[2] + [bni_29]i507[2] ≥ 0∧[-1 + (-1)bso_30] + i421[2] ≥ 0)



    We simplified constraint (22) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (23)    (i421[2] + [-1] ≥ 0∧i507[2] + [-1]i421[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD1438(&&(>(i421[2], 0), >=(i507[2], i421[2])), i507[2], i421[2])), ≥)∧[(-1)bni_29 + (-1)Bound*bni_29] + [bni_29]i421[2] + [bni_29]i507[2] ≥ 0∧[-1 + (-1)bso_30] + i421[2] ≥ 0)



    We simplified constraint (23) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (24)    (i421[2] + [-1] ≥ 0∧i507[2] + [-1]i421[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD1438(&&(>(i421[2], 0), >=(i507[2], i421[2])), i507[2], i421[2])), ≥)∧[(-1)bni_29 + (-1)Bound*bni_29] + [bni_29]i421[2] + [bni_29]i507[2] ≥ 0∧[-1 + (-1)bso_30] + i421[2] ≥ 0)



    We simplified constraint (24) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (25)    (i421[2] ≥ 0∧i507[2] + [-1] + [-1]i421[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD1438(&&(>(i421[2], 0), >=(i507[2], i421[2])), i507[2], i421[2])), ≥)∧[(-1)Bound*bni_29] + [bni_29]i421[2] + [bni_29]i507[2] ≥ 0∧[(-1)bso_30] + i421[2] ≥ 0)



    We simplified constraint (25) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (26)    (i421[2] ≥ 0∧i507[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD1438(&&(>(i421[2], 0), >=(i507[2], i421[2])), i507[2], i421[2])), ≥)∧[(-1)Bound*bni_29 + bni_29] + [(2)bni_29]i421[2] + [bni_29]i507[2] ≥ 0∧[(-1)bso_30] + i421[2] ≥ 0)







For Pair COND_LOAD1438(TRUE, i507, i421) → LOAD1438(-(i507, i421), i421) the following chains were created:
  • We consider the chain LOAD1438(i507[2], i421[2]) → COND_LOAD1438(&&(>(i421[2], 0), >=(i507[2], i421[2])), i507[2], i421[2]), COND_LOAD1438(TRUE, i507[3], i421[3]) → LOAD1438(-(i507[3], i421[3]), i421[3]), LOAD1438(i507[2], i421[2]) → COND_LOAD1438(&&(>(i421[2], 0), >=(i507[2], i421[2])), i507[2], i421[2]) which results in the following constraint:

    (27)    (i507[2]=i507[3]&&(>(i421[2], 0), >=(i507[2], i421[2]))=TRUEi421[2]=i421[3]i421[3]=i421[2]1-(i507[3], i421[3])=i507[2]1COND_LOAD1438(TRUE, i507[3], i421[3])≥NonInfC∧COND_LOAD1438(TRUE, i507[3], i421[3])≥LOAD1438(-(i507[3], i421[3]), i421[3])∧(UIncreasing(LOAD1438(-(i507[3], i421[3]), i421[3])), ≥))



    We simplified constraint (27) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (28)    (>(i421[2], 0)=TRUE>=(i507[2], i421[2])=TRUECOND_LOAD1438(TRUE, i507[2], i421[2])≥NonInfC∧COND_LOAD1438(TRUE, i507[2], i421[2])≥LOAD1438(-(i507[2], i421[2]), i421[2])∧(UIncreasing(LOAD1438(-(i507[3], i421[3]), i421[3])), ≥))



    We simplified constraint (28) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (29)    (i421[2] + [-1] ≥ 0∧i507[2] + [-1]i421[2] ≥ 0 ⇒ (UIncreasing(LOAD1438(-(i507[3], i421[3]), i421[3])), ≥)∧[(-1)Bound*bni_31] + [bni_31]i507[2] ≥ 0∧[1 + (-1)bso_32] ≥ 0)



    We simplified constraint (29) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (30)    (i421[2] + [-1] ≥ 0∧i507[2] + [-1]i421[2] ≥ 0 ⇒ (UIncreasing(LOAD1438(-(i507[3], i421[3]), i421[3])), ≥)∧[(-1)Bound*bni_31] + [bni_31]i507[2] ≥ 0∧[1 + (-1)bso_32] ≥ 0)



    We simplified constraint (30) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (31)    (i421[2] + [-1] ≥ 0∧i507[2] + [-1]i421[2] ≥ 0 ⇒ (UIncreasing(LOAD1438(-(i507[3], i421[3]), i421[3])), ≥)∧[(-1)Bound*bni_31] + [bni_31]i507[2] ≥ 0∧[1 + (-1)bso_32] ≥ 0)



    We simplified constraint (31) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (32)    (i421[2] ≥ 0∧i507[2] + [-1] + [-1]i421[2] ≥ 0 ⇒ (UIncreasing(LOAD1438(-(i507[3], i421[3]), i421[3])), ≥)∧[(-1)Bound*bni_31] + [bni_31]i507[2] ≥ 0∧[1 + (-1)bso_32] ≥ 0)



    We simplified constraint (32) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (33)    (i421[2] ≥ 0∧i507[2] ≥ 0 ⇒ (UIncreasing(LOAD1438(-(i507[3], i421[3]), i421[3])), ≥)∧[(-1)Bound*bni_31 + bni_31] + [bni_31]i421[2] + [bni_31]i507[2] ≥ 0∧[1 + (-1)bso_32] ≥ 0)



  • We consider the chain LOAD1438(i507[2], i421[2]) → COND_LOAD1438(&&(>(i421[2], 0), >=(i507[2], i421[2])), i507[2], i421[2]), COND_LOAD1438(TRUE, i507[3], i421[3]) → LOAD1438(-(i507[3], i421[3]), i421[3]), LOAD1438(i507[4], i421[4]) → COND_LOAD14381(<(i507[4], i421[4]), i507[4], i421[4]) which results in the following constraint:

    (34)    (i507[2]=i507[3]&&(>(i421[2], 0), >=(i507[2], i421[2]))=TRUEi421[2]=i421[3]i421[3]=i421[4]-(i507[3], i421[3])=i507[4]COND_LOAD1438(TRUE, i507[3], i421[3])≥NonInfC∧COND_LOAD1438(TRUE, i507[3], i421[3])≥LOAD1438(-(i507[3], i421[3]), i421[3])∧(UIncreasing(LOAD1438(-(i507[3], i421[3]), i421[3])), ≥))



    We simplified constraint (34) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (35)    (>(i421[2], 0)=TRUE>=(i507[2], i421[2])=TRUECOND_LOAD1438(TRUE, i507[2], i421[2])≥NonInfC∧COND_LOAD1438(TRUE, i507[2], i421[2])≥LOAD1438(-(i507[2], i421[2]), i421[2])∧(UIncreasing(LOAD1438(-(i507[3], i421[3]), i421[3])), ≥))



    We simplified constraint (35) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (36)    (i421[2] + [-1] ≥ 0∧i507[2] + [-1]i421[2] ≥ 0 ⇒ (UIncreasing(LOAD1438(-(i507[3], i421[3]), i421[3])), ≥)∧[(-1)Bound*bni_31] + [bni_31]i507[2] ≥ 0∧[1 + (-1)bso_32] ≥ 0)



    We simplified constraint (36) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (37)    (i421[2] + [-1] ≥ 0∧i507[2] + [-1]i421[2] ≥ 0 ⇒ (UIncreasing(LOAD1438(-(i507[3], i421[3]), i421[3])), ≥)∧[(-1)Bound*bni_31] + [bni_31]i507[2] ≥ 0∧[1 + (-1)bso_32] ≥ 0)



    We simplified constraint (37) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (38)    (i421[2] + [-1] ≥ 0∧i507[2] + [-1]i421[2] ≥ 0 ⇒ (UIncreasing(LOAD1438(-(i507[3], i421[3]), i421[3])), ≥)∧[(-1)Bound*bni_31] + [bni_31]i507[2] ≥ 0∧[1 + (-1)bso_32] ≥ 0)



    We simplified constraint (38) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (39)    (i421[2] ≥ 0∧i507[2] + [-1] + [-1]i421[2] ≥ 0 ⇒ (UIncreasing(LOAD1438(-(i507[3], i421[3]), i421[3])), ≥)∧[(-1)Bound*bni_31] + [bni_31]i507[2] ≥ 0∧[1 + (-1)bso_32] ≥ 0)



    We simplified constraint (39) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (40)    (i421[2] ≥ 0∧i507[2] ≥ 0 ⇒ (UIncreasing(LOAD1438(-(i507[3], i421[3]), i421[3])), ≥)∧[(-1)Bound*bni_31 + bni_31] + [bni_31]i421[2] + [bni_31]i507[2] ≥ 0∧[1 + (-1)bso_32] ≥ 0)







For Pair LOAD1438(i507, i421) → COND_LOAD14381(<(i507, i421), i507, i421) the following chains were created:
  • We consider the chain LOAD1438(i507[4], i421[4]) → COND_LOAD14381(<(i507[4], i421[4]), i507[4], i421[4]), COND_LOAD14381(TRUE, i507[5], i421[5]) → LOAD1303(i421[5], i507[5]) which results in the following constraint:

    (41)    (i421[4]=i421[5]i507[4]=i507[5]<(i507[4], i421[4])=TRUELOAD1438(i507[4], i421[4])≥NonInfC∧LOAD1438(i507[4], i421[4])≥COND_LOAD14381(<(i507[4], i421[4]), i507[4], i421[4])∧(UIncreasing(COND_LOAD14381(<(i507[4], i421[4]), i507[4], i421[4])), ≥))



    We simplified constraint (41) using rule (IV) which results in the following new constraint:

    (42)    (<(i507[4], i421[4])=TRUELOAD1438(i507[4], i421[4])≥NonInfC∧LOAD1438(i507[4], i421[4])≥COND_LOAD14381(<(i507[4], i421[4]), i507[4], i421[4])∧(UIncreasing(COND_LOAD14381(<(i507[4], i421[4]), i507[4], i421[4])), ≥))



    We simplified constraint (42) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (43)    (i421[4] + [-1] + [-1]i507[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD14381(<(i507[4], i421[4]), i507[4], i421[4])), ≥)∧[(-1)bni_33 + (-1)Bound*bni_33] + [bni_33]i421[4] + [bni_33]i507[4] ≥ 0∧[(-1)bso_34] ≥ 0)



    We simplified constraint (43) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (44)    (i421[4] + [-1] + [-1]i507[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD14381(<(i507[4], i421[4]), i507[4], i421[4])), ≥)∧[(-1)bni_33 + (-1)Bound*bni_33] + [bni_33]i421[4] + [bni_33]i507[4] ≥ 0∧[(-1)bso_34] ≥ 0)



    We simplified constraint (44) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (45)    (i421[4] + [-1] + [-1]i507[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD14381(<(i507[4], i421[4]), i507[4], i421[4])), ≥)∧[(-1)bni_33 + (-1)Bound*bni_33] + [bni_33]i421[4] + [bni_33]i507[4] ≥ 0∧[(-1)bso_34] ≥ 0)



    We simplified constraint (45) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (46)    (i421[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD14381(<(i507[4], i421[4]), i507[4], i421[4])), ≥)∧[(-1)Bound*bni_33] + [(2)bni_33]i507[4] + [bni_33]i421[4] ≥ 0∧[(-1)bso_34] ≥ 0)



    We simplified constraint (46) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (47)    (i421[4] ≥ 0∧i507[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD14381(<(i507[4], i421[4]), i507[4], i421[4])), ≥)∧[(-1)Bound*bni_33] + [(-2)bni_33]i507[4] + [bni_33]i421[4] ≥ 0∧[(-1)bso_34] ≥ 0)


    (48)    (i421[4] ≥ 0∧i507[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD14381(<(i507[4], i421[4]), i507[4], i421[4])), ≥)∧[(-1)Bound*bni_33] + [(2)bni_33]i507[4] + [bni_33]i421[4] ≥ 0∧[(-1)bso_34] ≥ 0)







For Pair COND_LOAD14381(TRUE, i507, i421) → LOAD1303(i421, i507) the following chains were created:
  • We consider the chain COND_LOAD14381(TRUE, i507[5], i421[5]) → LOAD1303(i421[5], i507[5]), LOAD1303(i427[0], i421[0]) → COND_LOAD1303(&&(>(i427[0], 0), >(i421[0], 0)), i427[0], i421[0]) which results in the following constraint:

    (49)    (i507[5]=i421[0]i421[5]=i427[0]COND_LOAD14381(TRUE, i507[5], i421[5])≥NonInfC∧COND_LOAD14381(TRUE, i507[5], i421[5])≥LOAD1303(i421[5], i507[5])∧(UIncreasing(LOAD1303(i421[5], i507[5])), ≥))



    We simplified constraint (49) using rule (IV) which results in the following new constraint:

    (50)    (COND_LOAD14381(TRUE, i507[5], i421[5])≥NonInfC∧COND_LOAD14381(TRUE, i507[5], i421[5])≥LOAD1303(i421[5], i507[5])∧(UIncreasing(LOAD1303(i421[5], i507[5])), ≥))



    We simplified constraint (50) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (51)    ((UIncreasing(LOAD1303(i421[5], i507[5])), ≥)∧[(-1)bso_36] ≥ 0)



    We simplified constraint (51) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (52)    ((UIncreasing(LOAD1303(i421[5], i507[5])), ≥)∧[(-1)bso_36] ≥ 0)



    We simplified constraint (52) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (53)    ((UIncreasing(LOAD1303(i421[5], i507[5])), ≥)∧[(-1)bso_36] ≥ 0)



    We simplified constraint (53) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (54)    ((UIncreasing(LOAD1303(i421[5], i507[5])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_36] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • LOAD1303(i427, i421) → COND_LOAD1303(&&(>(i427, 0), >(i421, 0)), i427, i421)
    • (i427[0] ≥ 0∧i421[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1303(&&(>(i427[0], 0), >(i421[0], 0)), i427[0], i421[0])), ≥)∧[(-1)Bound*bni_25 + bni_25] + [bni_25]i421[0] + [bni_25]i427[0] ≥ 0∧[(-1)bso_26] ≥ 0)

  • COND_LOAD1303(TRUE, i427, i421) → LOAD1438(i427, i421)
    • ((UIncreasing(LOAD1438(i427[1], i421[1])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_28] ≥ 0)
    • ((UIncreasing(LOAD1438(i427[1], i421[1])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_28] ≥ 0)

  • LOAD1438(i507, i421) → COND_LOAD1438(&&(>(i421, 0), >=(i507, i421)), i507, i421)
    • (i421[2] ≥ 0∧i507[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD1438(&&(>(i421[2], 0), >=(i507[2], i421[2])), i507[2], i421[2])), ≥)∧[(-1)Bound*bni_29 + bni_29] + [(2)bni_29]i421[2] + [bni_29]i507[2] ≥ 0∧[(-1)bso_30] + i421[2] ≥ 0)

  • COND_LOAD1438(TRUE, i507, i421) → LOAD1438(-(i507, i421), i421)
    • (i421[2] ≥ 0∧i507[2] ≥ 0 ⇒ (UIncreasing(LOAD1438(-(i507[3], i421[3]), i421[3])), ≥)∧[(-1)Bound*bni_31 + bni_31] + [bni_31]i421[2] + [bni_31]i507[2] ≥ 0∧[1 + (-1)bso_32] ≥ 0)
    • (i421[2] ≥ 0∧i507[2] ≥ 0 ⇒ (UIncreasing(LOAD1438(-(i507[3], i421[3]), i421[3])), ≥)∧[(-1)Bound*bni_31 + bni_31] + [bni_31]i421[2] + [bni_31]i507[2] ≥ 0∧[1 + (-1)bso_32] ≥ 0)

  • LOAD1438(i507, i421) → COND_LOAD14381(<(i507, i421), i507, i421)
    • (i421[4] ≥ 0∧i507[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD14381(<(i507[4], i421[4]), i507[4], i421[4])), ≥)∧[(-1)Bound*bni_33] + [(-2)bni_33]i507[4] + [bni_33]i421[4] ≥ 0∧[(-1)bso_34] ≥ 0)
    • (i421[4] ≥ 0∧i507[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD14381(<(i507[4], i421[4]), i507[4], i421[4])), ≥)∧[(-1)Bound*bni_33] + [(2)bni_33]i507[4] + [bni_33]i421[4] ≥ 0∧[(-1)bso_34] ≥ 0)

  • COND_LOAD14381(TRUE, i507, i421) → LOAD1303(i421, i507)
    • ((UIncreasing(LOAD1303(i421[5], i507[5])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_36] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = [1]   
POL(LOAD1303(x1, x2)) = [-1] + x2 + x1   
POL(COND_LOAD1303(x1, x2, x3)) = [-1] + x3 + x2   
POL(&&(x1, x2)) = [-1]   
POL(>(x1, x2)) = [-1]   
POL(0) = 0   
POL(LOAD1438(x1, x2)) = [-1] + x2 + x1   
POL(COND_LOAD1438(x1, x2, x3)) = x2   
POL(>=(x1, x2)) = [-1]   
POL(-(x1, x2)) = x1 + [-1]x2   
POL(COND_LOAD14381(x1, x2, x3)) = [-1] + x3 + x2   
POL(<(x1, x2)) = [-1]   

The following pairs are in P>:

COND_LOAD1438(TRUE, i507[3], i421[3]) → LOAD1438(-(i507[3], i421[3]), i421[3])

The following pairs are in Pbound:

LOAD1303(i427[0], i421[0]) → COND_LOAD1303(&&(>(i427[0], 0), >(i421[0], 0)), i427[0], i421[0])
LOAD1438(i507[2], i421[2]) → COND_LOAD1438(&&(>(i421[2], 0), >=(i507[2], i421[2])), i507[2], i421[2])
COND_LOAD1438(TRUE, i507[3], i421[3]) → LOAD1438(-(i507[3], i421[3]), i421[3])

The following pairs are in P:

LOAD1303(i427[0], i421[0]) → COND_LOAD1303(&&(>(i427[0], 0), >(i421[0], 0)), i427[0], i421[0])
COND_LOAD1303(TRUE, i427[1], i421[1]) → LOAD1438(i427[1], i421[1])
LOAD1438(i507[2], i421[2]) → COND_LOAD1438(&&(>(i421[2], 0), >=(i507[2], i421[2])), i507[2], i421[2])
LOAD1438(i507[4], i421[4]) → COND_LOAD14381(<(i507[4], i421[4]), i507[4], i421[4])
COND_LOAD14381(TRUE, i507[5], i421[5]) → LOAD1303(i421[5], i507[5])

At least the following rules have been oriented under context sensitive arithmetic replacement:

TRUE1&&(TRUE, TRUE)1
FALSE1&&(TRUE, FALSE)1
FALSE1&&(FALSE, TRUE)1
FALSE1&&(FALSE, FALSE)1

(12) Complex Obligation (AND)

(13) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): LOAD1303(i427[0], i421[0]) → COND_LOAD1303(i427[0] > 0 && i421[0] > 0, i427[0], i421[0])
(1): COND_LOAD1303(TRUE, i427[1], i421[1]) → LOAD1438(i427[1], i421[1])
(2): LOAD1438(i507[2], i421[2]) → COND_LOAD1438(i421[2] > 0 && i507[2] >= i421[2], i507[2], i421[2])
(4): LOAD1438(i507[4], i421[4]) → COND_LOAD14381(i507[4] < i421[4], i507[4], i421[4])
(5): COND_LOAD14381(TRUE, i507[5], i421[5]) → LOAD1303(i421[5], i507[5])

(5) -> (0), if ((i507[5]* i421[0])∧(i421[5]* i427[0]))


(0) -> (1), if ((i427[0] > 0 && i421[0] > 0* TRUE)∧(i421[0]* i421[1])∧(i427[0]* i427[1]))


(1) -> (2), if ((i427[1]* i507[2])∧(i421[1]* i421[2]))


(1) -> (4), if ((i421[1]* i421[4])∧(i427[1]* i507[4]))


(4) -> (5), if ((i421[4]* i421[5])∧(i507[4]* i507[5])∧(i507[4] < i421[4]* TRUE))



The set Q consists of the following terms:
Load1303(x0, x1)
Cond_Load1303(TRUE, x0, x1)
Load1438(x0, x1)
Cond_Load1438(TRUE, x0, x1)
Cond_Load14381(TRUE, x0, x1)

(14) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(15) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


R is empty.

The integer pair graph contains the following rules and edges:
(5): COND_LOAD14381(TRUE, i507[5], i421[5]) → LOAD1303(i421[5], i507[5])
(4): LOAD1438(i507[4], i421[4]) → COND_LOAD14381(i507[4] < i421[4], i507[4], i421[4])
(1): COND_LOAD1303(TRUE, i427[1], i421[1]) → LOAD1438(i427[1], i421[1])
(0): LOAD1303(i427[0], i421[0]) → COND_LOAD1303(i427[0] > 0 && i421[0] > 0, i427[0], i421[0])

(5) -> (0), if ((i507[5]* i421[0])∧(i421[5]* i427[0]))


(0) -> (1), if ((i427[0] > 0 && i421[0] > 0* TRUE)∧(i421[0]* i421[1])∧(i427[0]* i427[1]))


(1) -> (4), if ((i421[1]* i421[4])∧(i427[1]* i507[4]))


(4) -> (5), if ((i421[4]* i421[5])∧(i507[4]* i507[5])∧(i507[4] < i421[4]* TRUE))



The set Q consists of the following terms:
Load1303(x0, x1)
Cond_Load1303(TRUE, x0, x1)
Load1438(x0, x1)
Cond_Load1438(TRUE, x0, x1)
Cond_Load14381(TRUE, x0, x1)

(16) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair COND_LOAD14381(TRUE, i507[5], i421[5]) → LOAD1303(i421[5], i507[5]) the following chains were created:
  • We consider the chain LOAD1438(i507[4], i421[4]) → COND_LOAD14381(<(i507[4], i421[4]), i507[4], i421[4]), COND_LOAD14381(TRUE, i507[5], i421[5]) → LOAD1303(i421[5], i507[5]), LOAD1303(i427[0], i421[0]) → COND_LOAD1303(&&(>(i427[0], 0), >(i421[0], 0)), i427[0], i421[0]) which results in the following constraint:

    (1)    (i421[4]=i421[5]i507[4]=i507[5]<(i507[4], i421[4])=TRUEi507[5]=i421[0]i421[5]=i427[0]COND_LOAD14381(TRUE, i507[5], i421[5])≥NonInfC∧COND_LOAD14381(TRUE, i507[5], i421[5])≥LOAD1303(i421[5], i507[5])∧(UIncreasing(LOAD1303(i421[5], i507[5])), ≥))



    We simplified constraint (1) using rules (III), (IV) which results in the following new constraint:

    (2)    (<(i507[4], i421[4])=TRUECOND_LOAD14381(TRUE, i507[4], i421[4])≥NonInfC∧COND_LOAD14381(TRUE, i507[4], i421[4])≥LOAD1303(i421[4], i507[4])∧(UIncreasing(LOAD1303(i421[5], i507[5])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (i421[4] + [-1] + [-1]i507[4] ≥ 0 ⇒ (UIncreasing(LOAD1303(i421[5], i507[5])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]i421[4] + [(-1)bni_20]i507[4] ≥ 0∧[(-1)bso_21] + [2]i421[4] + [-2]i507[4] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (i421[4] + [-1] + [-1]i507[4] ≥ 0 ⇒ (UIncreasing(LOAD1303(i421[5], i507[5])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]i421[4] + [(-1)bni_20]i507[4] ≥ 0∧[(-1)bso_21] + [2]i421[4] + [-2]i507[4] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (i421[4] + [-1] + [-1]i507[4] ≥ 0 ⇒ (UIncreasing(LOAD1303(i421[5], i507[5])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]i421[4] + [(-1)bni_20]i507[4] ≥ 0∧[(-1)bso_21] + [2]i421[4] + [-2]i507[4] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (i421[4] ≥ 0 ⇒ (UIncreasing(LOAD1303(i421[5], i507[5])), ≥)∧[(-1)Bound*bni_20] + [bni_20]i421[4] ≥ 0∧[2 + (-1)bso_21] + [2]i421[4] ≥ 0)



    We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (7)    (i421[4] ≥ 0∧i507[4] ≥ 0 ⇒ (UIncreasing(LOAD1303(i421[5], i507[5])), ≥)∧[(-1)Bound*bni_20] + [bni_20]i421[4] ≥ 0∧[2 + (-1)bso_21] + [2]i421[4] ≥ 0)


    (8)    (i421[4] ≥ 0∧i507[4] ≥ 0 ⇒ (UIncreasing(LOAD1303(i421[5], i507[5])), ≥)∧[(-1)Bound*bni_20] + [bni_20]i421[4] ≥ 0∧[2 + (-1)bso_21] + [2]i421[4] ≥ 0)







For Pair LOAD1438(i507[4], i421[4]) → COND_LOAD14381(<(i507[4], i421[4]), i507[4], i421[4]) the following chains were created:
  • We consider the chain COND_LOAD1303(TRUE, i427[1], i421[1]) → LOAD1438(i427[1], i421[1]), LOAD1438(i507[4], i421[4]) → COND_LOAD14381(<(i507[4], i421[4]), i507[4], i421[4]), COND_LOAD14381(TRUE, i507[5], i421[5]) → LOAD1303(i421[5], i507[5]) which results in the following constraint:

    (9)    (i421[1]=i421[4]i427[1]=i507[4]i421[4]=i421[5]i507[4]=i507[5]<(i507[4], i421[4])=TRUELOAD1438(i507[4], i421[4])≥NonInfC∧LOAD1438(i507[4], i421[4])≥COND_LOAD14381(<(i507[4], i421[4]), i507[4], i421[4])∧(UIncreasing(COND_LOAD14381(<(i507[4], i421[4]), i507[4], i421[4])), ≥))



    We simplified constraint (9) using rules (III), (IV) which results in the following new constraint:

    (10)    (<(i507[4], i421[4])=TRUELOAD1438(i507[4], i421[4])≥NonInfC∧LOAD1438(i507[4], i421[4])≥COND_LOAD14381(<(i507[4], i421[4]), i507[4], i421[4])∧(UIncreasing(COND_LOAD14381(<(i507[4], i421[4]), i507[4], i421[4])), ≥))



    We simplified constraint (10) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (11)    (i421[4] + [-1] + [-1]i507[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD14381(<(i507[4], i421[4]), i507[4], i421[4])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]i421[4] + [(-1)bni_22]i507[4] ≥ 0∧[(-1)bso_23] ≥ 0)



    We simplified constraint (11) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (12)    (i421[4] + [-1] + [-1]i507[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD14381(<(i507[4], i421[4]), i507[4], i421[4])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]i421[4] + [(-1)bni_22]i507[4] ≥ 0∧[(-1)bso_23] ≥ 0)



    We simplified constraint (12) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (13)    (i421[4] + [-1] + [-1]i507[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD14381(<(i507[4], i421[4]), i507[4], i421[4])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]i421[4] + [(-1)bni_22]i507[4] ≥ 0∧[(-1)bso_23] ≥ 0)



    We simplified constraint (13) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (14)    (i421[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD14381(<(i507[4], i421[4]), i507[4], i421[4])), ≥)∧[(-1)Bound*bni_22] + [bni_22]i421[4] ≥ 0∧[(-1)bso_23] ≥ 0)



    We simplified constraint (14) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (15)    (i421[4] ≥ 0∧i507[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD14381(<(i507[4], i421[4]), i507[4], i421[4])), ≥)∧[(-1)Bound*bni_22] + [bni_22]i421[4] ≥ 0∧[(-1)bso_23] ≥ 0)


    (16)    (i421[4] ≥ 0∧i507[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD14381(<(i507[4], i421[4]), i507[4], i421[4])), ≥)∧[(-1)Bound*bni_22] + [bni_22]i421[4] ≥ 0∧[(-1)bso_23] ≥ 0)







For Pair COND_LOAD1303(TRUE, i427[1], i421[1]) → LOAD1438(i427[1], i421[1]) the following chains were created:
  • We consider the chain LOAD1303(i427[0], i421[0]) → COND_LOAD1303(&&(>(i427[0], 0), >(i421[0], 0)), i427[0], i421[0]), COND_LOAD1303(TRUE, i427[1], i421[1]) → LOAD1438(i427[1], i421[1]), LOAD1438(i507[4], i421[4]) → COND_LOAD14381(<(i507[4], i421[4]), i507[4], i421[4]) which results in the following constraint:

    (17)    (&&(>(i427[0], 0), >(i421[0], 0))=TRUEi421[0]=i421[1]i427[0]=i427[1]i421[1]=i421[4]i427[1]=i507[4]COND_LOAD1303(TRUE, i427[1], i421[1])≥NonInfC∧COND_LOAD1303(TRUE, i427[1], i421[1])≥LOAD1438(i427[1], i421[1])∧(UIncreasing(LOAD1438(i427[1], i421[1])), ≥))



    We simplified constraint (17) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (18)    (>(i427[0], 0)=TRUE>(i421[0], 0)=TRUECOND_LOAD1303(TRUE, i427[0], i421[0])≥NonInfC∧COND_LOAD1303(TRUE, i427[0], i421[0])≥LOAD1438(i427[0], i421[0])∧(UIncreasing(LOAD1438(i427[1], i421[1])), ≥))



    We simplified constraint (18) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (19)    (i427[0] + [-1] ≥ 0∧i421[0] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD1438(i427[1], i421[1])), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]i421[0] + [(-1)bni_24]i427[0] ≥ 0∧[(-1)bso_25] ≥ 0)



    We simplified constraint (19) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (20)    (i427[0] + [-1] ≥ 0∧i421[0] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD1438(i427[1], i421[1])), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]i421[0] + [(-1)bni_24]i427[0] ≥ 0∧[(-1)bso_25] ≥ 0)



    We simplified constraint (20) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (21)    (i427[0] + [-1] ≥ 0∧i421[0] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD1438(i427[1], i421[1])), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]i421[0] + [(-1)bni_24]i427[0] ≥ 0∧[(-1)bso_25] ≥ 0)



    We simplified constraint (21) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (22)    (i427[0] ≥ 0∧i421[0] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD1438(i427[1], i421[1])), ≥)∧[(-2)bni_24 + (-1)Bound*bni_24] + [bni_24]i421[0] + [(-1)bni_24]i427[0] ≥ 0∧[(-1)bso_25] ≥ 0)



    We simplified constraint (22) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (23)    (i427[0] ≥ 0∧i421[0] ≥ 0 ⇒ (UIncreasing(LOAD1438(i427[1], i421[1])), ≥)∧[(-1)Bound*bni_24 + (-1)bni_24] + [bni_24]i421[0] + [(-1)bni_24]i427[0] ≥ 0∧[(-1)bso_25] ≥ 0)







For Pair LOAD1303(i427[0], i421[0]) → COND_LOAD1303(&&(>(i427[0], 0), >(i421[0], 0)), i427[0], i421[0]) the following chains were created:
  • We consider the chain COND_LOAD14381(TRUE, i507[5], i421[5]) → LOAD1303(i421[5], i507[5]), LOAD1303(i427[0], i421[0]) → COND_LOAD1303(&&(>(i427[0], 0), >(i421[0], 0)), i427[0], i421[0]), COND_LOAD1303(TRUE, i427[1], i421[1]) → LOAD1438(i427[1], i421[1]) which results in the following constraint:

    (24)    (i507[5]=i421[0]i421[5]=i427[0]&&(>(i427[0], 0), >(i421[0], 0))=TRUEi421[0]=i421[1]i427[0]=i427[1]LOAD1303(i427[0], i421[0])≥NonInfC∧LOAD1303(i427[0], i421[0])≥COND_LOAD1303(&&(>(i427[0], 0), >(i421[0], 0)), i427[0], i421[0])∧(UIncreasing(COND_LOAD1303(&&(>(i427[0], 0), >(i421[0], 0)), i427[0], i421[0])), ≥))



    We simplified constraint (24) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (25)    (>(i427[0], 0)=TRUE>(i421[0], 0)=TRUELOAD1303(i427[0], i421[0])≥NonInfC∧LOAD1303(i427[0], i421[0])≥COND_LOAD1303(&&(>(i427[0], 0), >(i421[0], 0)), i427[0], i421[0])∧(UIncreasing(COND_LOAD1303(&&(>(i427[0], 0), >(i421[0], 0)), i427[0], i421[0])), ≥))



    We simplified constraint (25) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (26)    (i427[0] + [-1] ≥ 0∧i421[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1303(&&(>(i427[0], 0), >(i421[0], 0)), i427[0], i421[0])), ≥)∧[(-1)bni_26 + (-1)Bound*bni_26] + [bni_26]i421[0] + [(-1)bni_26]i427[0] ≥ 0∧[(-1)bso_27] ≥ 0)



    We simplified constraint (26) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (27)    (i427[0] + [-1] ≥ 0∧i421[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1303(&&(>(i427[0], 0), >(i421[0], 0)), i427[0], i421[0])), ≥)∧[(-1)bni_26 + (-1)Bound*bni_26] + [bni_26]i421[0] + [(-1)bni_26]i427[0] ≥ 0∧[(-1)bso_27] ≥ 0)



    We simplified constraint (27) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (28)    (i427[0] + [-1] ≥ 0∧i421[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1303(&&(>(i427[0], 0), >(i421[0], 0)), i427[0], i421[0])), ≥)∧[(-1)bni_26 + (-1)Bound*bni_26] + [bni_26]i421[0] + [(-1)bni_26]i427[0] ≥ 0∧[(-1)bso_27] ≥ 0)



    We simplified constraint (28) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (29)    (i427[0] ≥ 0∧i421[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1303(&&(>(i427[0], 0), >(i421[0], 0)), i427[0], i421[0])), ≥)∧[(-2)bni_26 + (-1)Bound*bni_26] + [bni_26]i421[0] + [(-1)bni_26]i427[0] ≥ 0∧[(-1)bso_27] ≥ 0)



    We simplified constraint (29) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (30)    (i427[0] ≥ 0∧i421[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1303(&&(>(i427[0], 0), >(i421[0], 0)), i427[0], i421[0])), ≥)∧[(-1)Bound*bni_26 + (-1)bni_26] + [bni_26]i421[0] + [(-1)bni_26]i427[0] ≥ 0∧[(-1)bso_27] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • COND_LOAD14381(TRUE, i507[5], i421[5]) → LOAD1303(i421[5], i507[5])
    • (i421[4] ≥ 0∧i507[4] ≥ 0 ⇒ (UIncreasing(LOAD1303(i421[5], i507[5])), ≥)∧[(-1)Bound*bni_20] + [bni_20]i421[4] ≥ 0∧[2 + (-1)bso_21] + [2]i421[4] ≥ 0)
    • (i421[4] ≥ 0∧i507[4] ≥ 0 ⇒ (UIncreasing(LOAD1303(i421[5], i507[5])), ≥)∧[(-1)Bound*bni_20] + [bni_20]i421[4] ≥ 0∧[2 + (-1)bso_21] + [2]i421[4] ≥ 0)

  • LOAD1438(i507[4], i421[4]) → COND_LOAD14381(<(i507[4], i421[4]), i507[4], i421[4])
    • (i421[4] ≥ 0∧i507[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD14381(<(i507[4], i421[4]), i507[4], i421[4])), ≥)∧[(-1)Bound*bni_22] + [bni_22]i421[4] ≥ 0∧[(-1)bso_23] ≥ 0)
    • (i421[4] ≥ 0∧i507[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD14381(<(i507[4], i421[4]), i507[4], i421[4])), ≥)∧[(-1)Bound*bni_22] + [bni_22]i421[4] ≥ 0∧[(-1)bso_23] ≥ 0)

  • COND_LOAD1303(TRUE, i427[1], i421[1]) → LOAD1438(i427[1], i421[1])
    • (i427[0] ≥ 0∧i421[0] ≥ 0 ⇒ (UIncreasing(LOAD1438(i427[1], i421[1])), ≥)∧[(-1)Bound*bni_24 + (-1)bni_24] + [bni_24]i421[0] + [(-1)bni_24]i427[0] ≥ 0∧[(-1)bso_25] ≥ 0)

  • LOAD1303(i427[0], i421[0]) → COND_LOAD1303(&&(>(i427[0], 0), >(i421[0], 0)), i427[0], i421[0])
    • (i427[0] ≥ 0∧i421[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1303(&&(>(i427[0], 0), >(i421[0], 0)), i427[0], i421[0])), ≥)∧[(-1)Bound*bni_26 + (-1)bni_26] + [bni_26]i421[0] + [(-1)bni_26]i427[0] ≥ 0∧[(-1)bso_27] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = [2]   
POL(FALSE) = [3]   
POL(COND_LOAD14381(x1, x2, x3)) = [-1] + x3 + [-1]x2   
POL(LOAD1303(x1, x2)) = [-1] + x2 + [-1]x1   
POL(LOAD1438(x1, x2)) = [-1] + x2 + [-1]x1   
POL(<(x1, x2)) = [-1]   
POL(COND_LOAD1303(x1, x2, x3)) = [-1] + x3 + [-1]x2   
POL(&&(x1, x2)) = [-1]   
POL(>(x1, x2)) = [-1]   
POL(0) = 0   

The following pairs are in P>:

COND_LOAD14381(TRUE, i507[5], i421[5]) → LOAD1303(i421[5], i507[5])

The following pairs are in Pbound:

COND_LOAD14381(TRUE, i507[5], i421[5]) → LOAD1303(i421[5], i507[5])
LOAD1438(i507[4], i421[4]) → COND_LOAD14381(<(i507[4], i421[4]), i507[4], i421[4])

The following pairs are in P:

LOAD1438(i507[4], i421[4]) → COND_LOAD14381(<(i507[4], i421[4]), i507[4], i421[4])
COND_LOAD1303(TRUE, i427[1], i421[1]) → LOAD1438(i427[1], i421[1])
LOAD1303(i427[0], i421[0]) → COND_LOAD1303(&&(>(i427[0], 0), >(i421[0], 0)), i427[0], i421[0])

At least the following rules have been oriented under context sensitive arithmetic replacement:

TRUE1&&(TRUE, TRUE)1
FALSE1&&(FALSE, TRUE)1

(17) Complex Obligation (AND)

(18) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


R is empty.

The integer pair graph contains the following rules and edges:
(4): LOAD1438(i507[4], i421[4]) → COND_LOAD14381(i507[4] < i421[4], i507[4], i421[4])
(1): COND_LOAD1303(TRUE, i427[1], i421[1]) → LOAD1438(i427[1], i421[1])
(0): LOAD1303(i427[0], i421[0]) → COND_LOAD1303(i427[0] > 0 && i421[0] > 0, i427[0], i421[0])

(0) -> (1), if ((i427[0] > 0 && i421[0] > 0* TRUE)∧(i421[0]* i421[1])∧(i427[0]* i427[1]))


(1) -> (4), if ((i421[1]* i421[4])∧(i427[1]* i507[4]))



The set Q consists of the following terms:
Load1303(x0, x1)
Cond_Load1303(TRUE, x0, x1)
Load1438(x0, x1)
Cond_Load1438(TRUE, x0, x1)
Cond_Load14381(TRUE, x0, x1)

(19) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 3 less nodes.

(20) TRUE

(21) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_LOAD1303(TRUE, i427[1], i421[1]) → LOAD1438(i427[1], i421[1])
(0): LOAD1303(i427[0], i421[0]) → COND_LOAD1303(i427[0] > 0 && i421[0] > 0, i427[0], i421[0])

(0) -> (1), if ((i427[0] > 0 && i421[0] > 0* TRUE)∧(i421[0]* i421[1])∧(i427[0]* i427[1]))



The set Q consists of the following terms:
Load1303(x0, x1)
Cond_Load1303(TRUE, x0, x1)
Load1438(x0, x1)
Cond_Load1438(TRUE, x0, x1)
Cond_Load14381(TRUE, x0, x1)

(22) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(23) TRUE

(24) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_LOAD1303(TRUE, i427[1], i421[1]) → LOAD1438(i427[1], i421[1])
(4): LOAD1438(i507[4], i421[4]) → COND_LOAD14381(i507[4] < i421[4], i507[4], i421[4])
(5): COND_LOAD14381(TRUE, i507[5], i421[5]) → LOAD1303(i421[5], i507[5])

(1) -> (4), if ((i421[1]* i421[4])∧(i427[1]* i507[4]))


(4) -> (5), if ((i421[4]* i421[5])∧(i507[4]* i507[5])∧(i507[4] < i421[4]* TRUE))



The set Q consists of the following terms:
Load1303(x0, x1)
Cond_Load1303(TRUE, x0, x1)
Load1438(x0, x1)
Cond_Load1438(TRUE, x0, x1)
Cond_Load14381(TRUE, x0, x1)

(25) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 3 less nodes.

(26) TRUE