0 JBC
↳1 JBC2FIG (⇐)
↳2 FIGraph
↳3 FIGtoITRSProof (⇐)
↳4 ITRS
↳5 DuplicateArgsRemoverProof (⇔)
↳6 ITRS
↳7 ITRStoIDPProof (⇔)
↳8 IDP
↳9 UsableRulesProof (⇔)
↳10 IDP
↳11 IDPNonInfProof (⇐)
↳12 AND
↳13 IDP
↳14 IDependencyGraphProof (⇔)
↳15 IDP
↳16 IDPNonInfProof (⇐)
↳17 AND
↳18 IDP
↳19 IDependencyGraphProof (⇔)
↳20 TRUE
↳21 IDP
↳22 IDependencyGraphProof (⇔)
↳23 TRUE
↳24 IDP
↳25 IDependencyGraphProof (⇔)
↳26 TRUE
public class GCD3 {
public static int mod(int a, int b) {
if(b == 0) {
return b;
}
if(b < 0) {
a = -a;
}
if(a > 0) {
while(a>=b) {
a -= b;
}
return a;
} else {
while(a < 0) {
a -= b;
}
return a;
}
}
public static int gcd(int a, int b) {
int tmp;
while(b > 0 && a > 0) {
tmp = b;
b = mod(a, b);
a = tmp;
}
return a;
}
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
gcd(x, y);
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Cond_Load14891(x1, x2, x3, x4, x5, x6) → Cond_Load14891(x1, x5, x6)
Load1489(x1, x2, x3, x4, x5) → Load1489(x4, x5)
Cond_Load1489(x1, x2, x3, x4, x5, x6) → Cond_Load1489(x1, x5, x6)
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i268[0] →* i268[1])∧(i270[0] →* i270[1])∧(i270[0] > 0 && i268[0] > 0 →* TRUE))
(1) -> (2), if ((i270[1] →* i313[2])∧(i268[1] →* i268[2]))
(1) -> (4), if ((i270[1] →* i313[4])∧(i268[1] →* i268[4]))
(2) -> (3), if ((i313[2] →* i313[3])∧(i268[2] > 0 && i313[2] >= i268[2] →* TRUE)∧(i268[2] →* i268[3]))
(3) -> (2), if ((i268[3] →* i268[2])∧(i313[3] - i268[3] →* i313[2]))
(3) -> (4), if ((i313[3] - i268[3] →* i313[4])∧(i268[3] →* i268[4]))
(4) -> (5), if ((i313[4] < i268[4] →* TRUE)∧(i268[4] →* i268[5])∧(i313[4] →* i313[5]))
(5) -> (0), if ((i268[5] →* i270[0])∧(i313[5] →* i268[0]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i268[0] →* i268[1])∧(i270[0] →* i270[1])∧(i270[0] > 0 && i268[0] > 0 →* TRUE))
(1) -> (2), if ((i270[1] →* i313[2])∧(i268[1] →* i268[2]))
(1) -> (4), if ((i270[1] →* i313[4])∧(i268[1] →* i268[4]))
(2) -> (3), if ((i313[2] →* i313[3])∧(i268[2] > 0 && i313[2] >= i268[2] →* TRUE)∧(i268[2] →* i268[3]))
(3) -> (2), if ((i268[3] →* i268[2])∧(i313[3] - i268[3] →* i313[2]))
(3) -> (4), if ((i313[3] - i268[3] →* i313[4])∧(i268[3] →* i268[4]))
(4) -> (5), if ((i313[4] < i268[4] →* TRUE)∧(i268[4] →* i268[5])∧(i313[4] →* i313[5]))
(5) -> (0), if ((i268[5] →* i270[0])∧(i313[5] →* i268[0]))
(1) (i268[0]=i268[1]∧i270[0]=i270[1]∧&&(>(i270[0], 0), >(i268[0], 0))=TRUE ⇒ LOAD1366(i270[0], i268[0])≥NonInfC∧LOAD1366(i270[0], i268[0])≥COND_LOAD1366(&&(>(i270[0], 0), >(i268[0], 0)), i270[0], i268[0])∧(UIncreasing(COND_LOAD1366(&&(>(i270[0], 0), >(i268[0], 0)), i270[0], i268[0])), ≥))
(2) (>(i270[0], 0)=TRUE∧>(i268[0], 0)=TRUE ⇒ LOAD1366(i270[0], i268[0])≥NonInfC∧LOAD1366(i270[0], i268[0])≥COND_LOAD1366(&&(>(i270[0], 0), >(i268[0], 0)), i270[0], i268[0])∧(UIncreasing(COND_LOAD1366(&&(>(i270[0], 0), >(i268[0], 0)), i270[0], i268[0])), ≥))
(3) (i270[0] + [-1] ≥ 0∧i268[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1366(&&(>(i270[0], 0), >(i268[0], 0)), i270[0], i268[0])), ≥)∧[(-1)Bound*bni_25] + [bni_25]i268[0] ≥ 0∧[(-1)bso_26] ≥ 0)
(4) (i270[0] + [-1] ≥ 0∧i268[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1366(&&(>(i270[0], 0), >(i268[0], 0)), i270[0], i268[0])), ≥)∧[(-1)Bound*bni_25] + [bni_25]i268[0] ≥ 0∧[(-1)bso_26] ≥ 0)
(5) (i270[0] + [-1] ≥ 0∧i268[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1366(&&(>(i270[0], 0), >(i268[0], 0)), i270[0], i268[0])), ≥)∧[(-1)Bound*bni_25] + [bni_25]i268[0] ≥ 0∧[(-1)bso_26] ≥ 0)
(6) (i270[0] ≥ 0∧i268[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1366(&&(>(i270[0], 0), >(i268[0], 0)), i270[0], i268[0])), ≥)∧[(-1)Bound*bni_25] + [bni_25]i268[0] ≥ 0∧[(-1)bso_26] ≥ 0)
(7) (i270[0] ≥ 0∧i268[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1366(&&(>(i270[0], 0), >(i268[0], 0)), i270[0], i268[0])), ≥)∧[(-1)Bound*bni_25 + bni_25] + [bni_25]i268[0] ≥ 0∧[(-1)bso_26] ≥ 0)
(8) (i270[1]=i313[2]∧i268[1]=i268[2] ⇒ COND_LOAD1366(TRUE, i270[1], i268[1])≥NonInfC∧COND_LOAD1366(TRUE, i270[1], i268[1])≥LOAD1489(i270[1], i268[1])∧(UIncreasing(LOAD1489(i270[1], i268[1])), ≥))
(9) (COND_LOAD1366(TRUE, i270[1], i268[1])≥NonInfC∧COND_LOAD1366(TRUE, i270[1], i268[1])≥LOAD1489(i270[1], i268[1])∧(UIncreasing(LOAD1489(i270[1], i268[1])), ≥))
(10) ((UIncreasing(LOAD1489(i270[1], i268[1])), ≥)∧[1 + (-1)bso_28] ≥ 0)
(11) ((UIncreasing(LOAD1489(i270[1], i268[1])), ≥)∧[1 + (-1)bso_28] ≥ 0)
(12) ((UIncreasing(LOAD1489(i270[1], i268[1])), ≥)∧[1 + (-1)bso_28] ≥ 0)
(13) ((UIncreasing(LOAD1489(i270[1], i268[1])), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_28] ≥ 0)
(14) (i270[1]=i313[4]∧i268[1]=i268[4] ⇒ COND_LOAD1366(TRUE, i270[1], i268[1])≥NonInfC∧COND_LOAD1366(TRUE, i270[1], i268[1])≥LOAD1489(i270[1], i268[1])∧(UIncreasing(LOAD1489(i270[1], i268[1])), ≥))
(15) (COND_LOAD1366(TRUE, i270[1], i268[1])≥NonInfC∧COND_LOAD1366(TRUE, i270[1], i268[1])≥LOAD1489(i270[1], i268[1])∧(UIncreasing(LOAD1489(i270[1], i268[1])), ≥))
(16) ((UIncreasing(LOAD1489(i270[1], i268[1])), ≥)∧[1 + (-1)bso_28] ≥ 0)
(17) ((UIncreasing(LOAD1489(i270[1], i268[1])), ≥)∧[1 + (-1)bso_28] ≥ 0)
(18) ((UIncreasing(LOAD1489(i270[1], i268[1])), ≥)∧[1 + (-1)bso_28] ≥ 0)
(19) ((UIncreasing(LOAD1489(i270[1], i268[1])), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_28] ≥ 0)
(20) (i313[2]=i313[3]∧&&(>(i268[2], 0), >=(i313[2], i268[2]))=TRUE∧i268[2]=i268[3] ⇒ LOAD1489(i313[2], i268[2])≥NonInfC∧LOAD1489(i313[2], i268[2])≥COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2])∧(UIncreasing(COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2])), ≥))
(21) (>(i268[2], 0)=TRUE∧>=(i313[2], i268[2])=TRUE ⇒ LOAD1489(i313[2], i268[2])≥NonInfC∧LOAD1489(i313[2], i268[2])≥COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2])∧(UIncreasing(COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2])), ≥))
(22) (i268[2] + [-1] ≥ 0∧i313[2] + [-1]i268[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2])), ≥)∧[(-1)bni_29 + (-1)Bound*bni_29] + [bni_29]i268[2] ≥ 0∧[(-1)bso_30] ≥ 0)
(23) (i268[2] + [-1] ≥ 0∧i313[2] + [-1]i268[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2])), ≥)∧[(-1)bni_29 + (-1)Bound*bni_29] + [bni_29]i268[2] ≥ 0∧[(-1)bso_30] ≥ 0)
(24) (i268[2] + [-1] ≥ 0∧i313[2] + [-1]i268[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2])), ≥)∧[(-1)bni_29 + (-1)Bound*bni_29] + [bni_29]i268[2] ≥ 0∧[(-1)bso_30] ≥ 0)
(25) (i268[2] ≥ 0∧i313[2] + [-1] + [-1]i268[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2])), ≥)∧[(-1)Bound*bni_29] + [bni_29]i268[2] ≥ 0∧[(-1)bso_30] ≥ 0)
(26) (i268[2] ≥ 0∧i313[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2])), ≥)∧[(-1)Bound*bni_29] + [bni_29]i268[2] ≥ 0∧[(-1)bso_30] ≥ 0)
(27) (i313[2]=i313[3]∧&&(>(i268[2], 0), >=(i313[2], i268[2]))=TRUE∧i268[2]=i268[3]∧i268[3]=i268[2]1∧-(i313[3], i268[3])=i313[2]1 ⇒ COND_LOAD1489(TRUE, i313[3], i268[3])≥NonInfC∧COND_LOAD1489(TRUE, i313[3], i268[3])≥LOAD1489(-(i313[3], i268[3]), i268[3])∧(UIncreasing(LOAD1489(-(i313[3], i268[3]), i268[3])), ≥))
(28) (>(i268[2], 0)=TRUE∧>=(i313[2], i268[2])=TRUE ⇒ COND_LOAD1489(TRUE, i313[2], i268[2])≥NonInfC∧COND_LOAD1489(TRUE, i313[2], i268[2])≥LOAD1489(-(i313[2], i268[2]), i268[2])∧(UIncreasing(LOAD1489(-(i313[3], i268[3]), i268[3])), ≥))
(29) (i268[2] + [-1] ≥ 0∧i313[2] + [-1]i268[2] ≥ 0 ⇒ (UIncreasing(LOAD1489(-(i313[3], i268[3]), i268[3])), ≥)∧[(-1)bni_31 + (-1)Bound*bni_31] + [bni_31]i268[2] ≥ 0∧[(-1)bso_32] ≥ 0)
(30) (i268[2] + [-1] ≥ 0∧i313[2] + [-1]i268[2] ≥ 0 ⇒ (UIncreasing(LOAD1489(-(i313[3], i268[3]), i268[3])), ≥)∧[(-1)bni_31 + (-1)Bound*bni_31] + [bni_31]i268[2] ≥ 0∧[(-1)bso_32] ≥ 0)
(31) (i268[2] + [-1] ≥ 0∧i313[2] + [-1]i268[2] ≥ 0 ⇒ (UIncreasing(LOAD1489(-(i313[3], i268[3]), i268[3])), ≥)∧[(-1)bni_31 + (-1)Bound*bni_31] + [bni_31]i268[2] ≥ 0∧[(-1)bso_32] ≥ 0)
(32) (i268[2] ≥ 0∧i313[2] + [-1] + [-1]i268[2] ≥ 0 ⇒ (UIncreasing(LOAD1489(-(i313[3], i268[3]), i268[3])), ≥)∧[(-1)Bound*bni_31] + [bni_31]i268[2] ≥ 0∧[(-1)bso_32] ≥ 0)
(33) (i268[2] ≥ 0∧i313[2] ≥ 0 ⇒ (UIncreasing(LOAD1489(-(i313[3], i268[3]), i268[3])), ≥)∧[(-1)Bound*bni_31] + [bni_31]i268[2] ≥ 0∧[(-1)bso_32] ≥ 0)
(34) (i313[2]=i313[3]∧&&(>(i268[2], 0), >=(i313[2], i268[2]))=TRUE∧i268[2]=i268[3]∧-(i313[3], i268[3])=i313[4]∧i268[3]=i268[4] ⇒ COND_LOAD1489(TRUE, i313[3], i268[3])≥NonInfC∧COND_LOAD1489(TRUE, i313[3], i268[3])≥LOAD1489(-(i313[3], i268[3]), i268[3])∧(UIncreasing(LOAD1489(-(i313[3], i268[3]), i268[3])), ≥))
(35) (>(i268[2], 0)=TRUE∧>=(i313[2], i268[2])=TRUE ⇒ COND_LOAD1489(TRUE, i313[2], i268[2])≥NonInfC∧COND_LOAD1489(TRUE, i313[2], i268[2])≥LOAD1489(-(i313[2], i268[2]), i268[2])∧(UIncreasing(LOAD1489(-(i313[3], i268[3]), i268[3])), ≥))
(36) (i268[2] + [-1] ≥ 0∧i313[2] + [-1]i268[2] ≥ 0 ⇒ (UIncreasing(LOAD1489(-(i313[3], i268[3]), i268[3])), ≥)∧[(-1)bni_31 + (-1)Bound*bni_31] + [bni_31]i268[2] ≥ 0∧[(-1)bso_32] ≥ 0)
(37) (i268[2] + [-1] ≥ 0∧i313[2] + [-1]i268[2] ≥ 0 ⇒ (UIncreasing(LOAD1489(-(i313[3], i268[3]), i268[3])), ≥)∧[(-1)bni_31 + (-1)Bound*bni_31] + [bni_31]i268[2] ≥ 0∧[(-1)bso_32] ≥ 0)
(38) (i268[2] + [-1] ≥ 0∧i313[2] + [-1]i268[2] ≥ 0 ⇒ (UIncreasing(LOAD1489(-(i313[3], i268[3]), i268[3])), ≥)∧[(-1)bni_31 + (-1)Bound*bni_31] + [bni_31]i268[2] ≥ 0∧[(-1)bso_32] ≥ 0)
(39) (i268[2] ≥ 0∧i313[2] + [-1] + [-1]i268[2] ≥ 0 ⇒ (UIncreasing(LOAD1489(-(i313[3], i268[3]), i268[3])), ≥)∧[(-1)Bound*bni_31] + [bni_31]i268[2] ≥ 0∧[(-1)bso_32] ≥ 0)
(40) (i268[2] ≥ 0∧i313[2] ≥ 0 ⇒ (UIncreasing(LOAD1489(-(i313[3], i268[3]), i268[3])), ≥)∧[(-1)Bound*bni_31] + [bni_31]i268[2] ≥ 0∧[(-1)bso_32] ≥ 0)
(41) (<(i313[4], i268[4])=TRUE∧i268[4]=i268[5]∧i313[4]=i313[5] ⇒ LOAD1489(i313[4], i268[4])≥NonInfC∧LOAD1489(i313[4], i268[4])≥COND_LOAD14891(<(i313[4], i268[4]), i313[4], i268[4])∧(UIncreasing(COND_LOAD14891(<(i313[4], i268[4]), i313[4], i268[4])), ≥))
(42) (<(i313[4], i268[4])=TRUE ⇒ LOAD1489(i313[4], i268[4])≥NonInfC∧LOAD1489(i313[4], i268[4])≥COND_LOAD14891(<(i313[4], i268[4]), i313[4], i268[4])∧(UIncreasing(COND_LOAD14891(<(i313[4], i268[4]), i313[4], i268[4])), ≥))
(43) (i268[4] + [-1] + [-1]i313[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD14891(<(i313[4], i268[4]), i313[4], i268[4])), ≥)∧[(-1)bni_33 + (-1)Bound*bni_33] + [bni_33]i268[4] ≥ 0∧[-1 + (-1)bso_34] + i268[4] + [-1]i313[4] ≥ 0)
(44) (i268[4] + [-1] + [-1]i313[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD14891(<(i313[4], i268[4]), i313[4], i268[4])), ≥)∧[(-1)bni_33 + (-1)Bound*bni_33] + [bni_33]i268[4] ≥ 0∧[-1 + (-1)bso_34] + i268[4] + [-1]i313[4] ≥ 0)
(45) (i268[4] + [-1] + [-1]i313[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD14891(<(i313[4], i268[4]), i313[4], i268[4])), ≥)∧[(-1)bni_33 + (-1)Bound*bni_33] + [bni_33]i268[4] ≥ 0∧[-1 + (-1)bso_34] + i268[4] + [-1]i313[4] ≥ 0)
(46) (i268[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD14891(<(i313[4], i268[4]), i313[4], i268[4])), ≥)∧[(-1)Bound*bni_33] + [bni_33]i313[4] + [bni_33]i268[4] ≥ 0∧[(-1)bso_34] + i268[4] ≥ 0)
(47) (i268[4] ≥ 0∧i313[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD14891(<(i313[4], i268[4]), i313[4], i268[4])), ≥)∧[(-1)Bound*bni_33] + [bni_33]i313[4] + [bni_33]i268[4] ≥ 0∧[(-1)bso_34] + i268[4] ≥ 0)
(48) (i268[4] ≥ 0∧i313[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD14891(<(i313[4], i268[4]), i313[4], i268[4])), ≥)∧[(-1)Bound*bni_33] + [(-1)bni_33]i313[4] + [bni_33]i268[4] ≥ 0∧[(-1)bso_34] + i268[4] ≥ 0)
(49) (i268[5]=i270[0]∧i313[5]=i268[0] ⇒ COND_LOAD14891(TRUE, i313[5], i268[5])≥NonInfC∧COND_LOAD14891(TRUE, i313[5], i268[5])≥LOAD1366(i268[5], i313[5])∧(UIncreasing(LOAD1366(i268[5], i313[5])), ≥))
(50) (COND_LOAD14891(TRUE, i313[5], i268[5])≥NonInfC∧COND_LOAD14891(TRUE, i313[5], i268[5])≥LOAD1366(i268[5], i313[5])∧(UIncreasing(LOAD1366(i268[5], i313[5])), ≥))
(51) ((UIncreasing(LOAD1366(i268[5], i313[5])), ≥)∧[(-1)bso_36] ≥ 0)
(52) ((UIncreasing(LOAD1366(i268[5], i313[5])), ≥)∧[(-1)bso_36] ≥ 0)
(53) ((UIncreasing(LOAD1366(i268[5], i313[5])), ≥)∧[(-1)bso_36] ≥ 0)
(54) ((UIncreasing(LOAD1366(i268[5], i313[5])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_36] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = [3]
POL(LOAD1366(x1, x2)) = x2
POL(COND_LOAD1366(x1, x2, x3)) = x3
POL(&&(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(LOAD1489(x1, x2)) = [-1] + x2
POL(COND_LOAD1489(x1, x2, x3)) = [-1] + x3
POL(>=(x1, x2)) = [-1]
POL(-(x1, x2)) = x1 + [-1]x2
POL(COND_LOAD14891(x1, x2, x3)) = x2
POL(<(x1, x2)) = [-1]
COND_LOAD1366(TRUE, i270[1], i268[1]) → LOAD1489(i270[1], i268[1])
LOAD1366(i270[0], i268[0]) → COND_LOAD1366(&&(>(i270[0], 0), >(i268[0], 0)), i270[0], i268[0])
LOAD1489(i313[2], i268[2]) → COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2])
COND_LOAD1489(TRUE, i313[3], i268[3]) → LOAD1489(-(i313[3], i268[3]), i268[3])
LOAD1366(i270[0], i268[0]) → COND_LOAD1366(&&(>(i270[0], 0), >(i268[0], 0)), i270[0], i268[0])
LOAD1489(i313[2], i268[2]) → COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2])
COND_LOAD1489(TRUE, i313[3], i268[3]) → LOAD1489(-(i313[3], i268[3]), i268[3])
LOAD1489(i313[4], i268[4]) → COND_LOAD14891(<(i313[4], i268[4]), i313[4], i268[4])
COND_LOAD14891(TRUE, i313[5], i268[5]) → LOAD1366(i268[5], i313[5])
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, FALSE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(5) -> (0), if ((i268[5] →* i270[0])∧(i313[5] →* i268[0]))
(3) -> (2), if ((i268[3] →* i268[2])∧(i313[3] - i268[3] →* i313[2]))
(2) -> (3), if ((i313[2] →* i313[3])∧(i268[2] > 0 && i313[2] >= i268[2] →* TRUE)∧(i268[2] →* i268[3]))
(3) -> (4), if ((i313[3] - i268[3] →* i313[4])∧(i268[3] →* i268[4]))
(4) -> (5), if ((i313[4] < i268[4] →* TRUE)∧(i268[4] →* i268[5])∧(i313[4] →* i313[5]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(3) -> (2), if ((i268[3] →* i268[2])∧(i313[3] - i268[3] →* i313[2]))
(2) -> (3), if ((i313[2] →* i313[3])∧(i268[2] > 0 && i313[2] >= i268[2] →* TRUE)∧(i268[2] →* i268[3]))
(1) (i313[2]=i313[3]∧&&(>(i268[2], 0), >=(i313[2], i268[2]))=TRUE∧i268[2]=i268[3]∧i268[3]=i268[2]1∧-(i313[3], i268[3])=i313[2]1 ⇒ COND_LOAD1489(TRUE, i313[3], i268[3])≥NonInfC∧COND_LOAD1489(TRUE, i313[3], i268[3])≥LOAD1489(-(i313[3], i268[3]), i268[3])∧(UIncreasing(LOAD1489(-(i313[3], i268[3]), i268[3])), ≥))
(2) (>(i268[2], 0)=TRUE∧>=(i313[2], i268[2])=TRUE ⇒ COND_LOAD1489(TRUE, i313[2], i268[2])≥NonInfC∧COND_LOAD1489(TRUE, i313[2], i268[2])≥LOAD1489(-(i313[2], i268[2]), i268[2])∧(UIncreasing(LOAD1489(-(i313[3], i268[3]), i268[3])), ≥))
(3) (i268[2] + [-1] ≥ 0∧i313[2] + [-1]i268[2] ≥ 0 ⇒ (UIncreasing(LOAD1489(-(i313[3], i268[3]), i268[3])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]i268[2] + [bni_13]i313[2] ≥ 0∧[(-1)bso_14] + i268[2] ≥ 0)
(4) (i268[2] + [-1] ≥ 0∧i313[2] + [-1]i268[2] ≥ 0 ⇒ (UIncreasing(LOAD1489(-(i313[3], i268[3]), i268[3])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]i268[2] + [bni_13]i313[2] ≥ 0∧[(-1)bso_14] + i268[2] ≥ 0)
(5) (i268[2] + [-1] ≥ 0∧i313[2] + [-1]i268[2] ≥ 0 ⇒ (UIncreasing(LOAD1489(-(i313[3], i268[3]), i268[3])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]i268[2] + [bni_13]i313[2] ≥ 0∧[(-1)bso_14] + i268[2] ≥ 0)
(6) (i268[2] ≥ 0∧i313[2] + [-1] + [-1]i268[2] ≥ 0 ⇒ (UIncreasing(LOAD1489(-(i313[3], i268[3]), i268[3])), ≥)∧[(-2)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]i268[2] + [bni_13]i313[2] ≥ 0∧[1 + (-1)bso_14] + i268[2] ≥ 0)
(7) (i268[2] ≥ 0∧i313[2] ≥ 0 ⇒ (UIncreasing(LOAD1489(-(i313[3], i268[3]), i268[3])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]i313[2] ≥ 0∧[1 + (-1)bso_14] + i268[2] ≥ 0)
(8) (i313[2]=i313[3]∧&&(>(i268[2], 0), >=(i313[2], i268[2]))=TRUE∧i268[2]=i268[3] ⇒ LOAD1489(i313[2], i268[2])≥NonInfC∧LOAD1489(i313[2], i268[2])≥COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2])∧(UIncreasing(COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2])), ≥))
(9) (>(i268[2], 0)=TRUE∧>=(i313[2], i268[2])=TRUE ⇒ LOAD1489(i313[2], i268[2])≥NonInfC∧LOAD1489(i313[2], i268[2])≥COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2])∧(UIncreasing(COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2])), ≥))
(10) (i268[2] + [-1] ≥ 0∧i313[2] + [-1]i268[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]i268[2] + [bni_15]i313[2] ≥ 0∧[(-1)bso_16] ≥ 0)
(11) (i268[2] + [-1] ≥ 0∧i313[2] + [-1]i268[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]i268[2] + [bni_15]i313[2] ≥ 0∧[(-1)bso_16] ≥ 0)
(12) (i268[2] + [-1] ≥ 0∧i313[2] + [-1]i268[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]i268[2] + [bni_15]i313[2] ≥ 0∧[(-1)bso_16] ≥ 0)
(13) (i268[2] ≥ 0∧i313[2] + [-1] + [-1]i268[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2])), ≥)∧[(-2)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]i268[2] + [bni_15]i313[2] ≥ 0∧[(-1)bso_16] ≥ 0)
(14) (i268[2] ≥ 0∧i313[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]i313[2] ≥ 0∧[(-1)bso_16] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_LOAD1489(x1, x2, x3)) = [-1] + [-1]x3 + x2 + [-1]x1
POL(LOAD1489(x1, x2)) = [-1] + [-1]x2 + x1
POL(-(x1, x2)) = x1 + [-1]x2
POL(&&(x1, x2)) = 0
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(>=(x1, x2)) = [-1]
COND_LOAD1489(TRUE, i313[3], i268[3]) → LOAD1489(-(i313[3], i268[3]), i268[3])
COND_LOAD1489(TRUE, i313[3], i268[3]) → LOAD1489(-(i313[3], i268[3]), i268[3])
LOAD1489(i313[2], i268[2]) → COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2])
LOAD1489(i313[2], i268[2]) → COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2])
&&(TRUE, TRUE)1 ↔ TRUE1
&&(TRUE, FALSE)1 ↔ FALSE1
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(FALSE, FALSE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(1) -> (4), if ((i270[1] →* i313[4])∧(i268[1] →* i268[4]))
(4) -> (5), if ((i313[4] < i268[4] →* TRUE)∧(i268[4] →* i268[5])∧(i313[4] →* i313[5]))