(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: GCD3
public class GCD3 {
public static int mod(int a, int b) {
if(b == 0) {
return b;
}
if(b < 0) {
a = -a;
}
if(a > 0) {
while(a>=b) {
a -= b;
}
return a;
} else {
while(a < 0) {
a -= b;
}
return a;
}
}

public static int gcd(int a, int b) {
int tmp;
while(b > 0 && a > 0) {
tmp = b;
b = mod(a, b);
a = tmp;
}
return a;
}

public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
gcd(x, y);
}
}


public class Random {
static String[] args;
static int index = 0;

public static int random() {
String string = args[index];
index++;
return string.length();
}
}


(1) JBC2FIG (SOUND transformation)

Constructed FIGraph.

(2) Obligation:

FIGraph based on JBC Program:
Graph of 222 nodes with 1 SCC.

(3) FIGtoITRSProof (SOUND transformation)

Transformed FIGraph to ITRS rules

(4) Obligation:

ITRS problem:

The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean

The TRS R consists of the following rules:
Load1366(i270, i268) → Cond_Load1366(i270 > 0 && i268 > 0, i270, i268)
Cond_Load1366(TRUE, i270, i268) → Load1489(i268, i268, i268, i270, i268)
Load1489(i268, i268, i268, i313, i268) → Cond_Load1489(i268 > 0 && i313 >= i268, i268, i268, i268, i313, i268)
Cond_Load1489(TRUE, i268, i268, i268, i313, i268) → Load1489(i268, i268, i268, i313 - i268, i268)
Load1489(i268, i268, i268, i313, i268) → Cond_Load14891(i313 < i268, i268, i268, i268, i313, i268)
Cond_Load14891(TRUE, i268, i268, i268, i313, i268) → Load1366(i268, i313)
The set Q consists of the following terms:
Load1366(x0, x1)
Cond_Load1366(TRUE, x0, x1)
Load1489(x0, x0, x0, x1, x0)
Cond_Load1489(TRUE, x0, x0, x0, x1, x0)
Cond_Load14891(TRUE, x0, x0, x0, x1, x0)

(5) DuplicateArgsRemoverProof (EQUIVALENT transformation)

Some arguments are removed because they only appear as duplicates.
We removed arguments according to the following replacements:

Cond_Load14891(x1, x2, x3, x4, x5, x6) → Cond_Load14891(x1, x5, x6)
Load1489(x1, x2, x3, x4, x5) → Load1489(x4, x5)
Cond_Load1489(x1, x2, x3, x4, x5, x6) → Cond_Load1489(x1, x5, x6)

(6) Obligation:

ITRS problem:

The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean

The TRS R consists of the following rules:
Load1366(i270, i268) → Cond_Load1366(i270 > 0 && i268 > 0, i270, i268)
Cond_Load1366(TRUE, i270, i268) → Load1489(i270, i268)
Load1489(i313, i268) → Cond_Load1489(i268 > 0 && i313 >= i268, i313, i268)
Cond_Load1489(TRUE, i313, i268) → Load1489(i313 - i268, i268)
Load1489(i313, i268) → Cond_Load14891(i313 < i268, i313, i268)
Cond_Load14891(TRUE, i313, i268) → Load1366(i268, i313)
The set Q consists of the following terms:
Load1366(x0, x1)
Cond_Load1366(TRUE, x0, x1)
Load1489(x0, x1)
Cond_Load1489(TRUE, x0, x1)
Cond_Load14891(TRUE, x0, x1)

(7) ITRStoIDPProof (EQUIVALENT transformation)

Added dependency pairs

(8) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


The ITRS R consists of the following rules:
Load1366(i270, i268) → Cond_Load1366(i270 > 0 && i268 > 0, i270, i268)
Cond_Load1366(TRUE, i270, i268) → Load1489(i270, i268)
Load1489(i313, i268) → Cond_Load1489(i268 > 0 && i313 >= i268, i313, i268)
Cond_Load1489(TRUE, i313, i268) → Load1489(i313 - i268, i268)
Load1489(i313, i268) → Cond_Load14891(i313 < i268, i313, i268)
Cond_Load14891(TRUE, i313, i268) → Load1366(i268, i313)

The integer pair graph contains the following rules and edges:
(0): LOAD1366(i270[0], i268[0]) → COND_LOAD1366(i270[0] > 0 && i268[0] > 0, i270[0], i268[0])
(1): COND_LOAD1366(TRUE, i270[1], i268[1]) → LOAD1489(i270[1], i268[1])
(2): LOAD1489(i313[2], i268[2]) → COND_LOAD1489(i268[2] > 0 && i313[2] >= i268[2], i313[2], i268[2])
(3): COND_LOAD1489(TRUE, i313[3], i268[3]) → LOAD1489(i313[3] - i268[3], i268[3])
(4): LOAD1489(i313[4], i268[4]) → COND_LOAD14891(i313[4] < i268[4], i313[4], i268[4])
(5): COND_LOAD14891(TRUE, i313[5], i268[5]) → LOAD1366(i268[5], i313[5])

(0) -> (1), if ((i268[0]* i268[1])∧(i270[0]* i270[1])∧(i270[0] > 0 && i268[0] > 0* TRUE))


(1) -> (2), if ((i270[1]* i313[2])∧(i268[1]* i268[2]))


(1) -> (4), if ((i270[1]* i313[4])∧(i268[1]* i268[4]))


(2) -> (3), if ((i313[2]* i313[3])∧(i268[2] > 0 && i313[2] >= i268[2]* TRUE)∧(i268[2]* i268[3]))


(3) -> (2), if ((i268[3]* i268[2])∧(i313[3] - i268[3]* i313[2]))


(3) -> (4), if ((i313[3] - i268[3]* i313[4])∧(i268[3]* i268[4]))


(4) -> (5), if ((i313[4] < i268[4]* TRUE)∧(i268[4]* i268[5])∧(i313[4]* i313[5]))


(5) -> (0), if ((i268[5]* i270[0])∧(i313[5]* i268[0]))



The set Q consists of the following terms:
Load1366(x0, x1)
Cond_Load1366(TRUE, x0, x1)
Load1489(x0, x1)
Cond_Load1489(TRUE, x0, x1)
Cond_Load14891(TRUE, x0, x1)

(9) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(10) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): LOAD1366(i270[0], i268[0]) → COND_LOAD1366(i270[0] > 0 && i268[0] > 0, i270[0], i268[0])
(1): COND_LOAD1366(TRUE, i270[1], i268[1]) → LOAD1489(i270[1], i268[1])
(2): LOAD1489(i313[2], i268[2]) → COND_LOAD1489(i268[2] > 0 && i313[2] >= i268[2], i313[2], i268[2])
(3): COND_LOAD1489(TRUE, i313[3], i268[3]) → LOAD1489(i313[3] - i268[3], i268[3])
(4): LOAD1489(i313[4], i268[4]) → COND_LOAD14891(i313[4] < i268[4], i313[4], i268[4])
(5): COND_LOAD14891(TRUE, i313[5], i268[5]) → LOAD1366(i268[5], i313[5])

(0) -> (1), if ((i268[0]* i268[1])∧(i270[0]* i270[1])∧(i270[0] > 0 && i268[0] > 0* TRUE))


(1) -> (2), if ((i270[1]* i313[2])∧(i268[1]* i268[2]))


(1) -> (4), if ((i270[1]* i313[4])∧(i268[1]* i268[4]))


(2) -> (3), if ((i313[2]* i313[3])∧(i268[2] > 0 && i313[2] >= i268[2]* TRUE)∧(i268[2]* i268[3]))


(3) -> (2), if ((i268[3]* i268[2])∧(i313[3] - i268[3]* i313[2]))


(3) -> (4), if ((i313[3] - i268[3]* i313[4])∧(i268[3]* i268[4]))


(4) -> (5), if ((i313[4] < i268[4]* TRUE)∧(i268[4]* i268[5])∧(i313[4]* i313[5]))


(5) -> (0), if ((i268[5]* i270[0])∧(i313[5]* i268[0]))



The set Q consists of the following terms:
Load1366(x0, x1)
Cond_Load1366(TRUE, x0, x1)
Load1489(x0, x1)
Cond_Load1489(TRUE, x0, x1)
Cond_Load14891(TRUE, x0, x1)

(11) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair LOAD1366(i270, i268) → COND_LOAD1366(&&(>(i270, 0), >(i268, 0)), i270, i268) the following chains were created:
  • We consider the chain LOAD1366(i270[0], i268[0]) → COND_LOAD1366(&&(>(i270[0], 0), >(i268[0], 0)), i270[0], i268[0]), COND_LOAD1366(TRUE, i270[1], i268[1]) → LOAD1489(i270[1], i268[1]) which results in the following constraint:

    (1)    (i268[0]=i268[1]i270[0]=i270[1]&&(>(i270[0], 0), >(i268[0], 0))=TRUELOAD1366(i270[0], i268[0])≥NonInfC∧LOAD1366(i270[0], i268[0])≥COND_LOAD1366(&&(>(i270[0], 0), >(i268[0], 0)), i270[0], i268[0])∧(UIncreasing(COND_LOAD1366(&&(>(i270[0], 0), >(i268[0], 0)), i270[0], i268[0])), ≥))



    We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (>(i270[0], 0)=TRUE>(i268[0], 0)=TRUELOAD1366(i270[0], i268[0])≥NonInfC∧LOAD1366(i270[0], i268[0])≥COND_LOAD1366(&&(>(i270[0], 0), >(i268[0], 0)), i270[0], i268[0])∧(UIncreasing(COND_LOAD1366(&&(>(i270[0], 0), >(i268[0], 0)), i270[0], i268[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (i270[0] + [-1] ≥ 0∧i268[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1366(&&(>(i270[0], 0), >(i268[0], 0)), i270[0], i268[0])), ≥)∧[(-1)Bound*bni_25] + [bni_25]i268[0] ≥ 0∧[(-1)bso_26] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (i270[0] + [-1] ≥ 0∧i268[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1366(&&(>(i270[0], 0), >(i268[0], 0)), i270[0], i268[0])), ≥)∧[(-1)Bound*bni_25] + [bni_25]i268[0] ≥ 0∧[(-1)bso_26] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (i270[0] + [-1] ≥ 0∧i268[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1366(&&(>(i270[0], 0), >(i268[0], 0)), i270[0], i268[0])), ≥)∧[(-1)Bound*bni_25] + [bni_25]i268[0] ≥ 0∧[(-1)bso_26] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (i270[0] ≥ 0∧i268[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1366(&&(>(i270[0], 0), >(i268[0], 0)), i270[0], i268[0])), ≥)∧[(-1)Bound*bni_25] + [bni_25]i268[0] ≥ 0∧[(-1)bso_26] ≥ 0)



    We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (7)    (i270[0] ≥ 0∧i268[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1366(&&(>(i270[0], 0), >(i268[0], 0)), i270[0], i268[0])), ≥)∧[(-1)Bound*bni_25 + bni_25] + [bni_25]i268[0] ≥ 0∧[(-1)bso_26] ≥ 0)







For Pair COND_LOAD1366(TRUE, i270, i268) → LOAD1489(i270, i268) the following chains were created:
  • We consider the chain COND_LOAD1366(TRUE, i270[1], i268[1]) → LOAD1489(i270[1], i268[1]), LOAD1489(i313[2], i268[2]) → COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2]) which results in the following constraint:

    (8)    (i270[1]=i313[2]i268[1]=i268[2]COND_LOAD1366(TRUE, i270[1], i268[1])≥NonInfC∧COND_LOAD1366(TRUE, i270[1], i268[1])≥LOAD1489(i270[1], i268[1])∧(UIncreasing(LOAD1489(i270[1], i268[1])), ≥))



    We simplified constraint (8) using rule (IV) which results in the following new constraint:

    (9)    (COND_LOAD1366(TRUE, i270[1], i268[1])≥NonInfC∧COND_LOAD1366(TRUE, i270[1], i268[1])≥LOAD1489(i270[1], i268[1])∧(UIncreasing(LOAD1489(i270[1], i268[1])), ≥))



    We simplified constraint (9) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (10)    ((UIncreasing(LOAD1489(i270[1], i268[1])), ≥)∧[1 + (-1)bso_28] ≥ 0)



    We simplified constraint (10) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (11)    ((UIncreasing(LOAD1489(i270[1], i268[1])), ≥)∧[1 + (-1)bso_28] ≥ 0)



    We simplified constraint (11) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (12)    ((UIncreasing(LOAD1489(i270[1], i268[1])), ≥)∧[1 + (-1)bso_28] ≥ 0)



    We simplified constraint (12) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (13)    ((UIncreasing(LOAD1489(i270[1], i268[1])), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_28] ≥ 0)



  • We consider the chain COND_LOAD1366(TRUE, i270[1], i268[1]) → LOAD1489(i270[1], i268[1]), LOAD1489(i313[4], i268[4]) → COND_LOAD14891(<(i313[4], i268[4]), i313[4], i268[4]) which results in the following constraint:

    (14)    (i270[1]=i313[4]i268[1]=i268[4]COND_LOAD1366(TRUE, i270[1], i268[1])≥NonInfC∧COND_LOAD1366(TRUE, i270[1], i268[1])≥LOAD1489(i270[1], i268[1])∧(UIncreasing(LOAD1489(i270[1], i268[1])), ≥))



    We simplified constraint (14) using rule (IV) which results in the following new constraint:

    (15)    (COND_LOAD1366(TRUE, i270[1], i268[1])≥NonInfC∧COND_LOAD1366(TRUE, i270[1], i268[1])≥LOAD1489(i270[1], i268[1])∧(UIncreasing(LOAD1489(i270[1], i268[1])), ≥))



    We simplified constraint (15) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (16)    ((UIncreasing(LOAD1489(i270[1], i268[1])), ≥)∧[1 + (-1)bso_28] ≥ 0)



    We simplified constraint (16) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (17)    ((UIncreasing(LOAD1489(i270[1], i268[1])), ≥)∧[1 + (-1)bso_28] ≥ 0)



    We simplified constraint (17) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (18)    ((UIncreasing(LOAD1489(i270[1], i268[1])), ≥)∧[1 + (-1)bso_28] ≥ 0)



    We simplified constraint (18) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (19)    ((UIncreasing(LOAD1489(i270[1], i268[1])), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_28] ≥ 0)







For Pair LOAD1489(i313, i268) → COND_LOAD1489(&&(>(i268, 0), >=(i313, i268)), i313, i268) the following chains were created:
  • We consider the chain LOAD1489(i313[2], i268[2]) → COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2]), COND_LOAD1489(TRUE, i313[3], i268[3]) → LOAD1489(-(i313[3], i268[3]), i268[3]) which results in the following constraint:

    (20)    (i313[2]=i313[3]&&(>(i268[2], 0), >=(i313[2], i268[2]))=TRUEi268[2]=i268[3]LOAD1489(i313[2], i268[2])≥NonInfC∧LOAD1489(i313[2], i268[2])≥COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2])∧(UIncreasing(COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2])), ≥))



    We simplified constraint (20) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (21)    (>(i268[2], 0)=TRUE>=(i313[2], i268[2])=TRUELOAD1489(i313[2], i268[2])≥NonInfC∧LOAD1489(i313[2], i268[2])≥COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2])∧(UIncreasing(COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2])), ≥))



    We simplified constraint (21) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (22)    (i268[2] + [-1] ≥ 0∧i313[2] + [-1]i268[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2])), ≥)∧[(-1)bni_29 + (-1)Bound*bni_29] + [bni_29]i268[2] ≥ 0∧[(-1)bso_30] ≥ 0)



    We simplified constraint (22) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (23)    (i268[2] + [-1] ≥ 0∧i313[2] + [-1]i268[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2])), ≥)∧[(-1)bni_29 + (-1)Bound*bni_29] + [bni_29]i268[2] ≥ 0∧[(-1)bso_30] ≥ 0)



    We simplified constraint (23) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (24)    (i268[2] + [-1] ≥ 0∧i313[2] + [-1]i268[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2])), ≥)∧[(-1)bni_29 + (-1)Bound*bni_29] + [bni_29]i268[2] ≥ 0∧[(-1)bso_30] ≥ 0)



    We simplified constraint (24) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (25)    (i268[2] ≥ 0∧i313[2] + [-1] + [-1]i268[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2])), ≥)∧[(-1)Bound*bni_29] + [bni_29]i268[2] ≥ 0∧[(-1)bso_30] ≥ 0)



    We simplified constraint (25) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (26)    (i268[2] ≥ 0∧i313[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2])), ≥)∧[(-1)Bound*bni_29] + [bni_29]i268[2] ≥ 0∧[(-1)bso_30] ≥ 0)







For Pair COND_LOAD1489(TRUE, i313, i268) → LOAD1489(-(i313, i268), i268) the following chains were created:
  • We consider the chain LOAD1489(i313[2], i268[2]) → COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2]), COND_LOAD1489(TRUE, i313[3], i268[3]) → LOAD1489(-(i313[3], i268[3]), i268[3]), LOAD1489(i313[2], i268[2]) → COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2]) which results in the following constraint:

    (27)    (i313[2]=i313[3]&&(>(i268[2], 0), >=(i313[2], i268[2]))=TRUEi268[2]=i268[3]i268[3]=i268[2]1-(i313[3], i268[3])=i313[2]1COND_LOAD1489(TRUE, i313[3], i268[3])≥NonInfC∧COND_LOAD1489(TRUE, i313[3], i268[3])≥LOAD1489(-(i313[3], i268[3]), i268[3])∧(UIncreasing(LOAD1489(-(i313[3], i268[3]), i268[3])), ≥))



    We simplified constraint (27) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (28)    (>(i268[2], 0)=TRUE>=(i313[2], i268[2])=TRUECOND_LOAD1489(TRUE, i313[2], i268[2])≥NonInfC∧COND_LOAD1489(TRUE, i313[2], i268[2])≥LOAD1489(-(i313[2], i268[2]), i268[2])∧(UIncreasing(LOAD1489(-(i313[3], i268[3]), i268[3])), ≥))



    We simplified constraint (28) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (29)    (i268[2] + [-1] ≥ 0∧i313[2] + [-1]i268[2] ≥ 0 ⇒ (UIncreasing(LOAD1489(-(i313[3], i268[3]), i268[3])), ≥)∧[(-1)bni_31 + (-1)Bound*bni_31] + [bni_31]i268[2] ≥ 0∧[(-1)bso_32] ≥ 0)



    We simplified constraint (29) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (30)    (i268[2] + [-1] ≥ 0∧i313[2] + [-1]i268[2] ≥ 0 ⇒ (UIncreasing(LOAD1489(-(i313[3], i268[3]), i268[3])), ≥)∧[(-1)bni_31 + (-1)Bound*bni_31] + [bni_31]i268[2] ≥ 0∧[(-1)bso_32] ≥ 0)



    We simplified constraint (30) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (31)    (i268[2] + [-1] ≥ 0∧i313[2] + [-1]i268[2] ≥ 0 ⇒ (UIncreasing(LOAD1489(-(i313[3], i268[3]), i268[3])), ≥)∧[(-1)bni_31 + (-1)Bound*bni_31] + [bni_31]i268[2] ≥ 0∧[(-1)bso_32] ≥ 0)



    We simplified constraint (31) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (32)    (i268[2] ≥ 0∧i313[2] + [-1] + [-1]i268[2] ≥ 0 ⇒ (UIncreasing(LOAD1489(-(i313[3], i268[3]), i268[3])), ≥)∧[(-1)Bound*bni_31] + [bni_31]i268[2] ≥ 0∧[(-1)bso_32] ≥ 0)



    We simplified constraint (32) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (33)    (i268[2] ≥ 0∧i313[2] ≥ 0 ⇒ (UIncreasing(LOAD1489(-(i313[3], i268[3]), i268[3])), ≥)∧[(-1)Bound*bni_31] + [bni_31]i268[2] ≥ 0∧[(-1)bso_32] ≥ 0)



  • We consider the chain LOAD1489(i313[2], i268[2]) → COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2]), COND_LOAD1489(TRUE, i313[3], i268[3]) → LOAD1489(-(i313[3], i268[3]), i268[3]), LOAD1489(i313[4], i268[4]) → COND_LOAD14891(<(i313[4], i268[4]), i313[4], i268[4]) which results in the following constraint:

    (34)    (i313[2]=i313[3]&&(>(i268[2], 0), >=(i313[2], i268[2]))=TRUEi268[2]=i268[3]-(i313[3], i268[3])=i313[4]i268[3]=i268[4]COND_LOAD1489(TRUE, i313[3], i268[3])≥NonInfC∧COND_LOAD1489(TRUE, i313[3], i268[3])≥LOAD1489(-(i313[3], i268[3]), i268[3])∧(UIncreasing(LOAD1489(-(i313[3], i268[3]), i268[3])), ≥))



    We simplified constraint (34) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (35)    (>(i268[2], 0)=TRUE>=(i313[2], i268[2])=TRUECOND_LOAD1489(TRUE, i313[2], i268[2])≥NonInfC∧COND_LOAD1489(TRUE, i313[2], i268[2])≥LOAD1489(-(i313[2], i268[2]), i268[2])∧(UIncreasing(LOAD1489(-(i313[3], i268[3]), i268[3])), ≥))



    We simplified constraint (35) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (36)    (i268[2] + [-1] ≥ 0∧i313[2] + [-1]i268[2] ≥ 0 ⇒ (UIncreasing(LOAD1489(-(i313[3], i268[3]), i268[3])), ≥)∧[(-1)bni_31 + (-1)Bound*bni_31] + [bni_31]i268[2] ≥ 0∧[(-1)bso_32] ≥ 0)



    We simplified constraint (36) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (37)    (i268[2] + [-1] ≥ 0∧i313[2] + [-1]i268[2] ≥ 0 ⇒ (UIncreasing(LOAD1489(-(i313[3], i268[3]), i268[3])), ≥)∧[(-1)bni_31 + (-1)Bound*bni_31] + [bni_31]i268[2] ≥ 0∧[(-1)bso_32] ≥ 0)



    We simplified constraint (37) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (38)    (i268[2] + [-1] ≥ 0∧i313[2] + [-1]i268[2] ≥ 0 ⇒ (UIncreasing(LOAD1489(-(i313[3], i268[3]), i268[3])), ≥)∧[(-1)bni_31 + (-1)Bound*bni_31] + [bni_31]i268[2] ≥ 0∧[(-1)bso_32] ≥ 0)



    We simplified constraint (38) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (39)    (i268[2] ≥ 0∧i313[2] + [-1] + [-1]i268[2] ≥ 0 ⇒ (UIncreasing(LOAD1489(-(i313[3], i268[3]), i268[3])), ≥)∧[(-1)Bound*bni_31] + [bni_31]i268[2] ≥ 0∧[(-1)bso_32] ≥ 0)



    We simplified constraint (39) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (40)    (i268[2] ≥ 0∧i313[2] ≥ 0 ⇒ (UIncreasing(LOAD1489(-(i313[3], i268[3]), i268[3])), ≥)∧[(-1)Bound*bni_31] + [bni_31]i268[2] ≥ 0∧[(-1)bso_32] ≥ 0)







For Pair LOAD1489(i313, i268) → COND_LOAD14891(<(i313, i268), i313, i268) the following chains were created:
  • We consider the chain LOAD1489(i313[4], i268[4]) → COND_LOAD14891(<(i313[4], i268[4]), i313[4], i268[4]), COND_LOAD14891(TRUE, i313[5], i268[5]) → LOAD1366(i268[5], i313[5]) which results in the following constraint:

    (41)    (<(i313[4], i268[4])=TRUEi268[4]=i268[5]i313[4]=i313[5]LOAD1489(i313[4], i268[4])≥NonInfC∧LOAD1489(i313[4], i268[4])≥COND_LOAD14891(<(i313[4], i268[4]), i313[4], i268[4])∧(UIncreasing(COND_LOAD14891(<(i313[4], i268[4]), i313[4], i268[4])), ≥))



    We simplified constraint (41) using rule (IV) which results in the following new constraint:

    (42)    (<(i313[4], i268[4])=TRUELOAD1489(i313[4], i268[4])≥NonInfC∧LOAD1489(i313[4], i268[4])≥COND_LOAD14891(<(i313[4], i268[4]), i313[4], i268[4])∧(UIncreasing(COND_LOAD14891(<(i313[4], i268[4]), i313[4], i268[4])), ≥))



    We simplified constraint (42) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (43)    (i268[4] + [-1] + [-1]i313[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD14891(<(i313[4], i268[4]), i313[4], i268[4])), ≥)∧[(-1)bni_33 + (-1)Bound*bni_33] + [bni_33]i268[4] ≥ 0∧[-1 + (-1)bso_34] + i268[4] + [-1]i313[4] ≥ 0)



    We simplified constraint (43) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (44)    (i268[4] + [-1] + [-1]i313[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD14891(<(i313[4], i268[4]), i313[4], i268[4])), ≥)∧[(-1)bni_33 + (-1)Bound*bni_33] + [bni_33]i268[4] ≥ 0∧[-1 + (-1)bso_34] + i268[4] + [-1]i313[4] ≥ 0)



    We simplified constraint (44) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (45)    (i268[4] + [-1] + [-1]i313[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD14891(<(i313[4], i268[4]), i313[4], i268[4])), ≥)∧[(-1)bni_33 + (-1)Bound*bni_33] + [bni_33]i268[4] ≥ 0∧[-1 + (-1)bso_34] + i268[4] + [-1]i313[4] ≥ 0)



    We simplified constraint (45) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (46)    (i268[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD14891(<(i313[4], i268[4]), i313[4], i268[4])), ≥)∧[(-1)Bound*bni_33] + [bni_33]i313[4] + [bni_33]i268[4] ≥ 0∧[(-1)bso_34] + i268[4] ≥ 0)



    We simplified constraint (46) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (47)    (i268[4] ≥ 0∧i313[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD14891(<(i313[4], i268[4]), i313[4], i268[4])), ≥)∧[(-1)Bound*bni_33] + [bni_33]i313[4] + [bni_33]i268[4] ≥ 0∧[(-1)bso_34] + i268[4] ≥ 0)


    (48)    (i268[4] ≥ 0∧i313[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD14891(<(i313[4], i268[4]), i313[4], i268[4])), ≥)∧[(-1)Bound*bni_33] + [(-1)bni_33]i313[4] + [bni_33]i268[4] ≥ 0∧[(-1)bso_34] + i268[4] ≥ 0)







For Pair COND_LOAD14891(TRUE, i313, i268) → LOAD1366(i268, i313) the following chains were created:
  • We consider the chain COND_LOAD14891(TRUE, i313[5], i268[5]) → LOAD1366(i268[5], i313[5]), LOAD1366(i270[0], i268[0]) → COND_LOAD1366(&&(>(i270[0], 0), >(i268[0], 0)), i270[0], i268[0]) which results in the following constraint:

    (49)    (i268[5]=i270[0]i313[5]=i268[0]COND_LOAD14891(TRUE, i313[5], i268[5])≥NonInfC∧COND_LOAD14891(TRUE, i313[5], i268[5])≥LOAD1366(i268[5], i313[5])∧(UIncreasing(LOAD1366(i268[5], i313[5])), ≥))



    We simplified constraint (49) using rule (IV) which results in the following new constraint:

    (50)    (COND_LOAD14891(TRUE, i313[5], i268[5])≥NonInfC∧COND_LOAD14891(TRUE, i313[5], i268[5])≥LOAD1366(i268[5], i313[5])∧(UIncreasing(LOAD1366(i268[5], i313[5])), ≥))



    We simplified constraint (50) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (51)    ((UIncreasing(LOAD1366(i268[5], i313[5])), ≥)∧[(-1)bso_36] ≥ 0)



    We simplified constraint (51) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (52)    ((UIncreasing(LOAD1366(i268[5], i313[5])), ≥)∧[(-1)bso_36] ≥ 0)



    We simplified constraint (52) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (53)    ((UIncreasing(LOAD1366(i268[5], i313[5])), ≥)∧[(-1)bso_36] ≥ 0)



    We simplified constraint (53) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (54)    ((UIncreasing(LOAD1366(i268[5], i313[5])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_36] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • LOAD1366(i270, i268) → COND_LOAD1366(&&(>(i270, 0), >(i268, 0)), i270, i268)
    • (i270[0] ≥ 0∧i268[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1366(&&(>(i270[0], 0), >(i268[0], 0)), i270[0], i268[0])), ≥)∧[(-1)Bound*bni_25 + bni_25] + [bni_25]i268[0] ≥ 0∧[(-1)bso_26] ≥ 0)

  • COND_LOAD1366(TRUE, i270, i268) → LOAD1489(i270, i268)
    • ((UIncreasing(LOAD1489(i270[1], i268[1])), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_28] ≥ 0)
    • ((UIncreasing(LOAD1489(i270[1], i268[1])), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_28] ≥ 0)

  • LOAD1489(i313, i268) → COND_LOAD1489(&&(>(i268, 0), >=(i313, i268)), i313, i268)
    • (i268[2] ≥ 0∧i313[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2])), ≥)∧[(-1)Bound*bni_29] + [bni_29]i268[2] ≥ 0∧[(-1)bso_30] ≥ 0)

  • COND_LOAD1489(TRUE, i313, i268) → LOAD1489(-(i313, i268), i268)
    • (i268[2] ≥ 0∧i313[2] ≥ 0 ⇒ (UIncreasing(LOAD1489(-(i313[3], i268[3]), i268[3])), ≥)∧[(-1)Bound*bni_31] + [bni_31]i268[2] ≥ 0∧[(-1)bso_32] ≥ 0)
    • (i268[2] ≥ 0∧i313[2] ≥ 0 ⇒ (UIncreasing(LOAD1489(-(i313[3], i268[3]), i268[3])), ≥)∧[(-1)Bound*bni_31] + [bni_31]i268[2] ≥ 0∧[(-1)bso_32] ≥ 0)

  • LOAD1489(i313, i268) → COND_LOAD14891(<(i313, i268), i313, i268)
    • (i268[4] ≥ 0∧i313[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD14891(<(i313[4], i268[4]), i313[4], i268[4])), ≥)∧[(-1)Bound*bni_33] + [bni_33]i313[4] + [bni_33]i268[4] ≥ 0∧[(-1)bso_34] + i268[4] ≥ 0)
    • (i268[4] ≥ 0∧i313[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD14891(<(i313[4], i268[4]), i313[4], i268[4])), ≥)∧[(-1)Bound*bni_33] + [(-1)bni_33]i313[4] + [bni_33]i268[4] ≥ 0∧[(-1)bso_34] + i268[4] ≥ 0)

  • COND_LOAD14891(TRUE, i313, i268) → LOAD1366(i268, i313)
    • ((UIncreasing(LOAD1366(i268[5], i313[5])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_36] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = [3]   
POL(LOAD1366(x1, x2)) = x2   
POL(COND_LOAD1366(x1, x2, x3)) = x3   
POL(&&(x1, x2)) = [-1]   
POL(>(x1, x2)) = [-1]   
POL(0) = 0   
POL(LOAD1489(x1, x2)) = [-1] + x2   
POL(COND_LOAD1489(x1, x2, x3)) = [-1] + x3   
POL(>=(x1, x2)) = [-1]   
POL(-(x1, x2)) = x1 + [-1]x2   
POL(COND_LOAD14891(x1, x2, x3)) = x2   
POL(<(x1, x2)) = [-1]   

The following pairs are in P>:

COND_LOAD1366(TRUE, i270[1], i268[1]) → LOAD1489(i270[1], i268[1])

The following pairs are in Pbound:

LOAD1366(i270[0], i268[0]) → COND_LOAD1366(&&(>(i270[0], 0), >(i268[0], 0)), i270[0], i268[0])
LOAD1489(i313[2], i268[2]) → COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2])
COND_LOAD1489(TRUE, i313[3], i268[3]) → LOAD1489(-(i313[3], i268[3]), i268[3])

The following pairs are in P:

LOAD1366(i270[0], i268[0]) → COND_LOAD1366(&&(>(i270[0], 0), >(i268[0], 0)), i270[0], i268[0])
LOAD1489(i313[2], i268[2]) → COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2])
COND_LOAD1489(TRUE, i313[3], i268[3]) → LOAD1489(-(i313[3], i268[3]), i268[3])
LOAD1489(i313[4], i268[4]) → COND_LOAD14891(<(i313[4], i268[4]), i313[4], i268[4])
COND_LOAD14891(TRUE, i313[5], i268[5]) → LOAD1366(i268[5], i313[5])

At least the following rules have been oriented under context sensitive arithmetic replacement:

TRUE1&&(TRUE, TRUE)1
FALSE1&&(TRUE, FALSE)1
FALSE1&&(FALSE, FALSE)1

(12) Complex Obligation (AND)

(13) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): LOAD1366(i270[0], i268[0]) → COND_LOAD1366(i270[0] > 0 && i268[0] > 0, i270[0], i268[0])
(2): LOAD1489(i313[2], i268[2]) → COND_LOAD1489(i268[2] > 0 && i313[2] >= i268[2], i313[2], i268[2])
(3): COND_LOAD1489(TRUE, i313[3], i268[3]) → LOAD1489(i313[3] - i268[3], i268[3])
(4): LOAD1489(i313[4], i268[4]) → COND_LOAD14891(i313[4] < i268[4], i313[4], i268[4])
(5): COND_LOAD14891(TRUE, i313[5], i268[5]) → LOAD1366(i268[5], i313[5])

(5) -> (0), if ((i268[5]* i270[0])∧(i313[5]* i268[0]))


(3) -> (2), if ((i268[3]* i268[2])∧(i313[3] - i268[3]* i313[2]))


(2) -> (3), if ((i313[2]* i313[3])∧(i268[2] > 0 && i313[2] >= i268[2]* TRUE)∧(i268[2]* i268[3]))


(3) -> (4), if ((i313[3] - i268[3]* i313[4])∧(i268[3]* i268[4]))


(4) -> (5), if ((i313[4] < i268[4]* TRUE)∧(i268[4]* i268[5])∧(i313[4]* i313[5]))



The set Q consists of the following terms:
Load1366(x0, x1)
Cond_Load1366(TRUE, x0, x1)
Load1489(x0, x1)
Cond_Load1489(TRUE, x0, x1)
Cond_Load14891(TRUE, x0, x1)

(14) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes.

(15) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


R is empty.

The integer pair graph contains the following rules and edges:
(3): COND_LOAD1489(TRUE, i313[3], i268[3]) → LOAD1489(i313[3] - i268[3], i268[3])
(2): LOAD1489(i313[2], i268[2]) → COND_LOAD1489(i268[2] > 0 && i313[2] >= i268[2], i313[2], i268[2])

(3) -> (2), if ((i268[3]* i268[2])∧(i313[3] - i268[3]* i313[2]))


(2) -> (3), if ((i313[2]* i313[3])∧(i268[2] > 0 && i313[2] >= i268[2]* TRUE)∧(i268[2]* i268[3]))



The set Q consists of the following terms:
Load1366(x0, x1)
Cond_Load1366(TRUE, x0, x1)
Load1489(x0, x1)
Cond_Load1489(TRUE, x0, x1)
Cond_Load14891(TRUE, x0, x1)

(16) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair COND_LOAD1489(TRUE, i313[3], i268[3]) → LOAD1489(-(i313[3], i268[3]), i268[3]) the following chains were created:
  • We consider the chain LOAD1489(i313[2], i268[2]) → COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2]), COND_LOAD1489(TRUE, i313[3], i268[3]) → LOAD1489(-(i313[3], i268[3]), i268[3]), LOAD1489(i313[2], i268[2]) → COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2]) which results in the following constraint:

    (1)    (i313[2]=i313[3]&&(>(i268[2], 0), >=(i313[2], i268[2]))=TRUEi268[2]=i268[3]i268[3]=i268[2]1-(i313[3], i268[3])=i313[2]1COND_LOAD1489(TRUE, i313[3], i268[3])≥NonInfC∧COND_LOAD1489(TRUE, i313[3], i268[3])≥LOAD1489(-(i313[3], i268[3]), i268[3])∧(UIncreasing(LOAD1489(-(i313[3], i268[3]), i268[3])), ≥))



    We simplified constraint (1) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (>(i268[2], 0)=TRUE>=(i313[2], i268[2])=TRUECOND_LOAD1489(TRUE, i313[2], i268[2])≥NonInfC∧COND_LOAD1489(TRUE, i313[2], i268[2])≥LOAD1489(-(i313[2], i268[2]), i268[2])∧(UIncreasing(LOAD1489(-(i313[3], i268[3]), i268[3])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (i268[2] + [-1] ≥ 0∧i313[2] + [-1]i268[2] ≥ 0 ⇒ (UIncreasing(LOAD1489(-(i313[3], i268[3]), i268[3])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]i268[2] + [bni_13]i313[2] ≥ 0∧[(-1)bso_14] + i268[2] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (i268[2] + [-1] ≥ 0∧i313[2] + [-1]i268[2] ≥ 0 ⇒ (UIncreasing(LOAD1489(-(i313[3], i268[3]), i268[3])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]i268[2] + [bni_13]i313[2] ≥ 0∧[(-1)bso_14] + i268[2] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (i268[2] + [-1] ≥ 0∧i313[2] + [-1]i268[2] ≥ 0 ⇒ (UIncreasing(LOAD1489(-(i313[3], i268[3]), i268[3])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]i268[2] + [bni_13]i313[2] ≥ 0∧[(-1)bso_14] + i268[2] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (i268[2] ≥ 0∧i313[2] + [-1] + [-1]i268[2] ≥ 0 ⇒ (UIncreasing(LOAD1489(-(i313[3], i268[3]), i268[3])), ≥)∧[(-2)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]i268[2] + [bni_13]i313[2] ≥ 0∧[1 + (-1)bso_14] + i268[2] ≥ 0)



    We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (7)    (i268[2] ≥ 0∧i313[2] ≥ 0 ⇒ (UIncreasing(LOAD1489(-(i313[3], i268[3]), i268[3])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]i313[2] ≥ 0∧[1 + (-1)bso_14] + i268[2] ≥ 0)







For Pair LOAD1489(i313[2], i268[2]) → COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2]) the following chains were created:
  • We consider the chain LOAD1489(i313[2], i268[2]) → COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2]), COND_LOAD1489(TRUE, i313[3], i268[3]) → LOAD1489(-(i313[3], i268[3]), i268[3]) which results in the following constraint:

    (8)    (i313[2]=i313[3]&&(>(i268[2], 0), >=(i313[2], i268[2]))=TRUEi268[2]=i268[3]LOAD1489(i313[2], i268[2])≥NonInfC∧LOAD1489(i313[2], i268[2])≥COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2])∧(UIncreasing(COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2])), ≥))



    We simplified constraint (8) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (9)    (>(i268[2], 0)=TRUE>=(i313[2], i268[2])=TRUELOAD1489(i313[2], i268[2])≥NonInfC∧LOAD1489(i313[2], i268[2])≥COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2])∧(UIncreasing(COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2])), ≥))



    We simplified constraint (9) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (10)    (i268[2] + [-1] ≥ 0∧i313[2] + [-1]i268[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]i268[2] + [bni_15]i313[2] ≥ 0∧[(-1)bso_16] ≥ 0)



    We simplified constraint (10) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (11)    (i268[2] + [-1] ≥ 0∧i313[2] + [-1]i268[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]i268[2] + [bni_15]i313[2] ≥ 0∧[(-1)bso_16] ≥ 0)



    We simplified constraint (11) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (12)    (i268[2] + [-1] ≥ 0∧i313[2] + [-1]i268[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]i268[2] + [bni_15]i313[2] ≥ 0∧[(-1)bso_16] ≥ 0)



    We simplified constraint (12) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (13)    (i268[2] ≥ 0∧i313[2] + [-1] + [-1]i268[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2])), ≥)∧[(-2)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]i268[2] + [bni_15]i313[2] ≥ 0∧[(-1)bso_16] ≥ 0)



    We simplified constraint (13) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (14)    (i268[2] ≥ 0∧i313[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]i313[2] ≥ 0∧[(-1)bso_16] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • COND_LOAD1489(TRUE, i313[3], i268[3]) → LOAD1489(-(i313[3], i268[3]), i268[3])
    • (i268[2] ≥ 0∧i313[2] ≥ 0 ⇒ (UIncreasing(LOAD1489(-(i313[3], i268[3]), i268[3])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]i313[2] ≥ 0∧[1 + (-1)bso_14] + i268[2] ≥ 0)

  • LOAD1489(i313[2], i268[2]) → COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2])
    • (i268[2] ≥ 0∧i313[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]i313[2] ≥ 0∧[(-1)bso_16] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(COND_LOAD1489(x1, x2, x3)) = [-1] + [-1]x3 + x2 + [-1]x1   
POL(LOAD1489(x1, x2)) = [-1] + [-1]x2 + x1   
POL(-(x1, x2)) = x1 + [-1]x2   
POL(&&(x1, x2)) = 0   
POL(>(x1, x2)) = [-1]   
POL(0) = 0   
POL(>=(x1, x2)) = [-1]   

The following pairs are in P>:

COND_LOAD1489(TRUE, i313[3], i268[3]) → LOAD1489(-(i313[3], i268[3]), i268[3])

The following pairs are in Pbound:

COND_LOAD1489(TRUE, i313[3], i268[3]) → LOAD1489(-(i313[3], i268[3]), i268[3])
LOAD1489(i313[2], i268[2]) → COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2])

The following pairs are in P:

LOAD1489(i313[2], i268[2]) → COND_LOAD1489(&&(>(i268[2], 0), >=(i313[2], i268[2])), i313[2], i268[2])

At least the following rules have been oriented under context sensitive arithmetic replacement:

&&(TRUE, TRUE)1TRUE1
&&(TRUE, FALSE)1FALSE1
FALSE1&&(FALSE, TRUE)1
FALSE1&&(FALSE, FALSE)1

(17) Complex Obligation (AND)

(18) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(2): LOAD1489(i313[2], i268[2]) → COND_LOAD1489(i268[2] > 0 && i313[2] >= i268[2], i313[2], i268[2])


The set Q consists of the following terms:
Load1366(x0, x1)
Cond_Load1366(TRUE, x0, x1)
Load1489(x0, x1)
Cond_Load1489(TRUE, x0, x1)
Cond_Load14891(TRUE, x0, x1)

(19) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(20) TRUE

(21) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:
none


R is empty.

The integer pair graph is empty.

The set Q consists of the following terms:
Load1366(x0, x1)
Cond_Load1366(TRUE, x0, x1)
Load1489(x0, x1)
Cond_Load1489(TRUE, x0, x1)
Cond_Load14891(TRUE, x0, x1)

(22) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs.

(23) TRUE

(24) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_LOAD1366(TRUE, i270[1], i268[1]) → LOAD1489(i270[1], i268[1])
(4): LOAD1489(i313[4], i268[4]) → COND_LOAD14891(i313[4] < i268[4], i313[4], i268[4])
(5): COND_LOAD14891(TRUE, i313[5], i268[5]) → LOAD1366(i268[5], i313[5])

(1) -> (4), if ((i270[1]* i313[4])∧(i268[1]* i268[4]))


(4) -> (5), if ((i313[4] < i268[4]* TRUE)∧(i268[4]* i268[5])∧(i313[4]* i313[5]))



The set Q consists of the following terms:
Load1366(x0, x1)
Cond_Load1366(TRUE, x0, x1)
Load1489(x0, x1)
Cond_Load1489(TRUE, x0, x1)
Cond_Load14891(TRUE, x0, x1)

(25) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 3 less nodes.

(26) TRUE