0 JBC
↳1 JBC2FIG (⇐)
↳2 FIGraph
↳3 FIGtoITRSProof (⇐)
↳4 AND
↳5 ITRS
↳6 ITRStoIDPProof (⇔)
↳7 IDP
↳8 UsableRulesProof (⇔)
↳9 IDP
↳10 IDPNonInfProof (⇐)
↳11 AND
↳12 IDP
↳13 IDependencyGraphProof (⇔)
↳14 IDP
↳15 IDPNonInfProof (⇐)
↳16 AND
↳17 IDP
↳18 IDependencyGraphProof (⇔)
↳19 TRUE
↳20 IDP
↳21 IDependencyGraphProof (⇔)
↳22 TRUE
↳23 IDP
↳24 IDependencyGraphProof (⇔)
↳25 TRUE
↳26 ITRS
↳27 ITRStoIDPProof (⇔)
↳28 IDP
↳29 UsableRulesProof (⇔)
↳30 IDP
↳31 IDPNonInfProof (⇐)
↳32 AND
↳33 IDP
↳34 IDependencyGraphProof (⇔)
↳35 TRUE
↳36 IDP
↳37 IDependencyGraphProof (⇔)
↳38 TRUE
↳39 ITRS
↳40 ITRStoIDPProof (⇔)
↳41 IDP
↳42 UsableRulesProof (⇔)
↳43 IDP
↳44 IDPNonInfProof (⇐)
↳45 AND
↳46 IDP
↳47 IDependencyGraphProof (⇔)
↳48 TRUE
↳49 IDP
↳50 IDependencyGraphProof (⇔)
↳51 TRUE
↳52 ITRS
↳53 ITRStoIDPProof (⇔)
↳54 IDP
↳55 UsableRulesProof (⇔)
↳56 IDP
↳57 IDPNonInfProof (⇐)
↳58 IDP
↳59 IDependencyGraphProof (⇔)
↳60 TRUE
↳61 ITRS
↳62 ITRStoIDPProof (⇔)
↳63 IDP
↳64 UsableRulesProof (⇔)
↳65 IDP
↳66 IDPNonInfProof (⇐)
↳67 AND
↳68 IDP
↳69 IDependencyGraphProof (⇔)
↳70 TRUE
↳71 IDP
↳72 IDependencyGraphProof (⇔)
↳73 TRUE
↳74 ITRS
↳75 ITRStoIDPProof (⇔)
↳76 IDP
↳77 UsableRulesProof (⇔)
↳78 IDP
↳79 IDPNonInfProof (⇐)
↳80 IDP
↳81 IDependencyGraphProof (⇔)
↳82 TRUE
↳83 ITRS
↳84 ITRStoIDPProof (⇔)
↳85 IDP
↳86 UsableRulesProof (⇔)
↳87 IDP
↳88 IDPNonInfProof (⇐)
↳89 AND
↳90 IDP
↳91 IDependencyGraphProof (⇔)
↳92 TRUE
↳93 IDP
↳94 IDependencyGraphProof (⇔)
↳95 TRUE
↳96 ITRS
↳97 ITRStoIDPProof (⇔)
↳98 IDP
↳99 UsableRulesProof (⇔)
↳100 IDP
↳101 IDPNonInfProof (⇐)
↳102 IDP
↳103 IDependencyGraphProof (⇔)
↳104 TRUE
↳105 ITRS
↳106 ITRStoIDPProof (⇔)
↳107 IDP
↳108 UsableRulesProof (⇔)
↳109 IDP
↳110 IDPNonInfProof (⇐)
↳111 IDP
↳112 IDependencyGraphProof (⇔)
↳113 TRUE
public class GCD {
public static int mod(int a, int b) {
if(a <= 0 || b <= 0)
return 0;
if (a == b) {
return 0;
}
while(a>b) {
a -= b;
}
return a;
}
public static int gcd(int a, int b) {
int tmp;
while(b != 0) {
tmp = b;
b = mod(a, b);
a = tmp;
}
return a;
}
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
gcd(x, y);
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i322[0] > 0 && i322[0] < i1739[0] && !(i1739[0] = 0) →* TRUE)∧(i1739[0] →* i1739[1])∧(i322[0] →* i322[1]))
(1) -> (0), if ((i322[1] →* i1739[0])∧(i1739[1] →* i322[0]))
(1) -> (4), if ((i322[1] →* i1739[4])∧(i1739[1] →* i322[4]))
(1) -> (6), if ((i322[1] →* i1739[6])∧(i1739[1] →* i1739[6]))
(1) -> (10), if ((i322[1] →* i1739[10])∧(i1739[1] →* i322[10]))
(2) -> (3), if ((i1739[2] > 0 && i2851[2] <= i1739[2] →* TRUE)∧(i1739[2] →* i1739[3])∧(i2851[2] →* i2851[3]))
(3) -> (0), if ((i2851[3] →* i1739[0])∧(i1739[3] →* i322[0]))
(3) -> (4), if ((i2851[3] →* i1739[4])∧(i1739[3] →* i322[4]))
(3) -> (6), if ((i2851[3] →* i1739[6])∧(i1739[3] →* i1739[6]))
(3) -> (10), if ((i2851[3] →* i1739[10])∧(i1739[3] →* i322[10]))
(4) -> (5), if ((i1739[4] →* i1739[5])∧(i322[4] →* i322[5])∧(i1739[4] > 0 && i322[4] - i1739[4] <= i1739[4] && i322[4] > i1739[4] →* TRUE))
(5) -> (0), if ((i322[5] - i1739[5] →* i1739[0])∧(i1739[5] →* i322[0]))
(5) -> (4), if ((i1739[5] →* i322[4])∧(i322[5] - i1739[5] →* i1739[4]))
(5) -> (6), if ((i1739[5] →* i1739[6])∧(i322[5] - i1739[5] →* i1739[6]))
(5) -> (10), if ((i1739[5] →* i322[10])∧(i322[5] - i1739[5] →* i1739[10]))
(6) -> (7), if ((i1739[6] →* i1739[7])∧(i1739[6] > 0 →* TRUE))
(7) -> (0), if ((i1739[7] →* i322[0])∧(0 →* i1739[0]))
(7) -> (4), if ((0 →* i1739[4])∧(i1739[7] →* i322[4]))
(7) -> (6), if ((0 →* i1739[6])∧(i1739[7] →* i1739[6]))
(7) -> (10), if ((i1739[7] →* i322[10])∧(0 →* i1739[10]))
(8) -> (9), if ((i1739[8] > 0 && i2851[8] > i1739[8] →* TRUE)∧(i2851[8] →* i2851[9])∧(i1739[8] →* i1739[9]))
(9) -> (2), if ((i2851[9] - i1739[9] →* i2851[2])∧(i1739[9] →* i1739[2]))
(9) -> (8), if ((i2851[9] - i1739[9] →* i2851[8])∧(i1739[9] →* i1739[8]))
(10) -> (11), if ((i322[10] →* i322[11])∧(i1739[10] →* i1739[11])∧(i1739[10] > 0 && i322[10] - i1739[10] > i1739[10] && i322[10] > i1739[10] →* TRUE))
(11) -> (2), if ((i322[11] - i1739[11] - i1739[11] →* i2851[2])∧(i1739[11] →* i1739[2]))
(11) -> (8), if ((i1739[11] →* i1739[8])∧(i322[11] - i1739[11] - i1739[11] →* i2851[8]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i322[0] > 0 && i322[0] < i1739[0] && !(i1739[0] = 0) →* TRUE)∧(i1739[0] →* i1739[1])∧(i322[0] →* i322[1]))
(1) -> (0), if ((i322[1] →* i1739[0])∧(i1739[1] →* i322[0]))
(1) -> (4), if ((i322[1] →* i1739[4])∧(i1739[1] →* i322[4]))
(1) -> (6), if ((i322[1] →* i1739[6])∧(i1739[1] →* i1739[6]))
(1) -> (10), if ((i322[1] →* i1739[10])∧(i1739[1] →* i322[10]))
(2) -> (3), if ((i1739[2] > 0 && i2851[2] <= i1739[2] →* TRUE)∧(i1739[2] →* i1739[3])∧(i2851[2] →* i2851[3]))
(3) -> (0), if ((i2851[3] →* i1739[0])∧(i1739[3] →* i322[0]))
(3) -> (4), if ((i2851[3] →* i1739[4])∧(i1739[3] →* i322[4]))
(3) -> (6), if ((i2851[3] →* i1739[6])∧(i1739[3] →* i1739[6]))
(3) -> (10), if ((i2851[3] →* i1739[10])∧(i1739[3] →* i322[10]))
(4) -> (5), if ((i1739[4] →* i1739[5])∧(i322[4] →* i322[5])∧(i1739[4] > 0 && i322[4] - i1739[4] <= i1739[4] && i322[4] > i1739[4] →* TRUE))
(5) -> (0), if ((i322[5] - i1739[5] →* i1739[0])∧(i1739[5] →* i322[0]))
(5) -> (4), if ((i1739[5] →* i322[4])∧(i322[5] - i1739[5] →* i1739[4]))
(5) -> (6), if ((i1739[5] →* i1739[6])∧(i322[5] - i1739[5] →* i1739[6]))
(5) -> (10), if ((i1739[5] →* i322[10])∧(i322[5] - i1739[5] →* i1739[10]))
(6) -> (7), if ((i1739[6] →* i1739[7])∧(i1739[6] > 0 →* TRUE))
(7) -> (0), if ((i1739[7] →* i322[0])∧(0 →* i1739[0]))
(7) -> (4), if ((0 →* i1739[4])∧(i1739[7] →* i322[4]))
(7) -> (6), if ((0 →* i1739[6])∧(i1739[7] →* i1739[6]))
(7) -> (10), if ((i1739[7] →* i322[10])∧(0 →* i1739[10]))
(8) -> (9), if ((i1739[8] > 0 && i2851[8] > i1739[8] →* TRUE)∧(i2851[8] →* i2851[9])∧(i1739[8] →* i1739[9]))
(9) -> (2), if ((i2851[9] - i1739[9] →* i2851[2])∧(i1739[9] →* i1739[2]))
(9) -> (8), if ((i2851[9] - i1739[9] →* i2851[8])∧(i1739[9] →* i1739[8]))
(10) -> (11), if ((i322[10] →* i322[11])∧(i1739[10] →* i1739[11])∧(i1739[10] > 0 && i322[10] - i1739[10] > i1739[10] && i322[10] > i1739[10] →* TRUE))
(11) -> (2), if ((i322[11] - i1739[11] - i1739[11] →* i2851[2])∧(i1739[11] →* i1739[2]))
(11) -> (8), if ((i1739[11] →* i1739[8])∧(i322[11] - i1739[11] - i1739[11] →* i2851[8]))
(1) (&&(&&(>(i322[0], 0), <(i322[0], i1739[0])), !(=(i1739[0], 0)))=TRUE∧i1739[0]=i1739[1]∧i322[0]=i322[1] ⇒ JMP2522'(i322[0], i1739[0])≥NonInfC∧JMP2522'(i322[0], i1739[0])≥COND_JMP2522(&&(&&(>(i322[0], 0), <(i322[0], i1739[0])), !(=(i1739[0], 0))), i322[0], i1739[0])∧(UIncreasing(COND_JMP2522(&&(&&(>(i322[0], 0), <(i322[0], i1739[0])), !(=(i1739[0], 0))), i322[0], i1739[0])), ≥))
(2) (>(i322[0], 0)=TRUE∧<(i322[0], i1739[0])=TRUE∧<(i1739[0], 0)=TRUE ⇒ JMP2522'(i322[0], i1739[0])≥NonInfC∧JMP2522'(i322[0], i1739[0])≥COND_JMP2522(&&(&&(>(i322[0], 0), <(i322[0], i1739[0])), !(=(i1739[0], 0))), i322[0], i1739[0])∧(UIncreasing(COND_JMP2522(&&(&&(>(i322[0], 0), <(i322[0], i1739[0])), !(=(i1739[0], 0))), i322[0], i1739[0])), ≥))
(3) (>(i322[0], 0)=TRUE∧<(i322[0], i1739[0])=TRUE∧>(i1739[0], 0)=TRUE ⇒ JMP2522'(i322[0], i1739[0])≥NonInfC∧JMP2522'(i322[0], i1739[0])≥COND_JMP2522(&&(&&(>(i322[0], 0), <(i322[0], i1739[0])), !(=(i1739[0], 0))), i322[0], i1739[0])∧(UIncreasing(COND_JMP2522(&&(&&(>(i322[0], 0), <(i322[0], i1739[0])), !(=(i1739[0], 0))), i322[0], i1739[0])), ≥))
(4) (i322[0] + [-1] ≥ 0∧i1739[0] + [-1] + [-1]i322[0] ≥ 0∧[-1] + [-1]i1739[0] ≥ 0 ⇒ (UIncreasing(COND_JMP2522(&&(&&(>(i322[0], 0), <(i322[0], i1739[0])), !(=(i1739[0], 0))), i322[0], i1739[0])), ≥)∧[(-1)Bound*bni_48] + [bni_48]i1739[0] + [bni_48]i322[0] ≥ 0∧[(-1)bso_49] ≥ 0)
(5) (i322[0] + [-1] ≥ 0∧i1739[0] + [-1] + [-1]i322[0] ≥ 0∧i1739[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_JMP2522(&&(&&(>(i322[0], 0), <(i322[0], i1739[0])), !(=(i1739[0], 0))), i322[0], i1739[0])), ≥)∧[(-1)Bound*bni_48] + [bni_48]i1739[0] + [bni_48]i322[0] ≥ 0∧[(-1)bso_49] ≥ 0)
(6) (i322[0] + [-1] ≥ 0∧i1739[0] + [-1] + [-1]i322[0] ≥ 0∧[-1] + [-1]i1739[0] ≥ 0 ⇒ (UIncreasing(COND_JMP2522(&&(&&(>(i322[0], 0), <(i322[0], i1739[0])), !(=(i1739[0], 0))), i322[0], i1739[0])), ≥)∧[(-1)Bound*bni_48] + [bni_48]i1739[0] + [bni_48]i322[0] ≥ 0∧[(-1)bso_49] ≥ 0)
(7) (i322[0] + [-1] ≥ 0∧i1739[0] + [-1] + [-1]i322[0] ≥ 0∧i1739[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_JMP2522(&&(&&(>(i322[0], 0), <(i322[0], i1739[0])), !(=(i1739[0], 0))), i322[0], i1739[0])), ≥)∧[(-1)Bound*bni_48] + [bni_48]i1739[0] + [bni_48]i322[0] ≥ 0∧[(-1)bso_49] ≥ 0)
(8) (i322[0] + [-1] ≥ 0∧i1739[0] + [-1] + [-1]i322[0] ≥ 0∧[-1] + [-1]i1739[0] ≥ 0 ⇒ (UIncreasing(COND_JMP2522(&&(&&(>(i322[0], 0), <(i322[0], i1739[0])), !(=(i1739[0], 0))), i322[0], i1739[0])), ≥)∧[(-1)Bound*bni_48] + [bni_48]i1739[0] + [bni_48]i322[0] ≥ 0∧[(-1)bso_49] ≥ 0)
(9) (i322[0] + [-1] ≥ 0∧i1739[0] + [-1] + [-1]i322[0] ≥ 0∧i1739[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_JMP2522(&&(&&(>(i322[0], 0), <(i322[0], i1739[0])), !(=(i1739[0], 0))), i322[0], i1739[0])), ≥)∧[(-1)Bound*bni_48] + [bni_48]i1739[0] + [bni_48]i322[0] ≥ 0∧[(-1)bso_49] ≥ 0)
(10) (i322[0] ≥ 0∧i1739[0] + [-2] + [-1]i322[0] ≥ 0∧i1739[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_JMP2522(&&(&&(>(i322[0], 0), <(i322[0], i1739[0])), !(=(i1739[0], 0))), i322[0], i1739[0])), ≥)∧[(-1)Bound*bni_48 + bni_48] + [bni_48]i1739[0] + [bni_48]i322[0] ≥ 0∧[(-1)bso_49] ≥ 0)
(11) (i322[0] ≥ 0∧i1739[0] ≥ 0∧[1] + i322[0] + i1739[0] ≥ 0 ⇒ (UIncreasing(COND_JMP2522(&&(&&(>(i322[0], 0), <(i322[0], i1739[0])), !(=(i1739[0], 0))), i322[0], i1739[0])), ≥)∧[(-1)Bound*bni_48 + (3)bni_48] + [(2)bni_48]i322[0] + [bni_48]i1739[0] ≥ 0∧[(-1)bso_49] ≥ 0)
(12) (i322[1]=i1739[0]∧i1739[1]=i322[0] ⇒ COND_JMP2522(TRUE, i322[1], i1739[1])≥NonInfC∧COND_JMP2522(TRUE, i322[1], i1739[1])≥JMP2522'(i1739[1], i322[1])∧(UIncreasing(JMP2522'(i1739[1], i322[1])), ≥))
(13) (COND_JMP2522(TRUE, i322[1], i1739[1])≥NonInfC∧COND_JMP2522(TRUE, i322[1], i1739[1])≥JMP2522'(i1739[1], i322[1])∧(UIncreasing(JMP2522'(i1739[1], i322[1])), ≥))
(14) ((UIncreasing(JMP2522'(i1739[1], i322[1])), ≥)∧[(-1)bso_51] ≥ 0)
(15) ((UIncreasing(JMP2522'(i1739[1], i322[1])), ≥)∧[(-1)bso_51] ≥ 0)
(16) ((UIncreasing(JMP2522'(i1739[1], i322[1])), ≥)∧[(-1)bso_51] ≥ 0)
(17) ((UIncreasing(JMP2522'(i1739[1], i322[1])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_51] ≥ 0)
(18) (i322[1]=i1739[4]∧i1739[1]=i322[4] ⇒ COND_JMP2522(TRUE, i322[1], i1739[1])≥NonInfC∧COND_JMP2522(TRUE, i322[1], i1739[1])≥JMP2522'(i1739[1], i322[1])∧(UIncreasing(JMP2522'(i1739[1], i322[1])), ≥))
(19) (COND_JMP2522(TRUE, i322[1], i1739[1])≥NonInfC∧COND_JMP2522(TRUE, i322[1], i1739[1])≥JMP2522'(i1739[1], i322[1])∧(UIncreasing(JMP2522'(i1739[1], i322[1])), ≥))
(20) ((UIncreasing(JMP2522'(i1739[1], i322[1])), ≥)∧[(-1)bso_51] ≥ 0)
(21) ((UIncreasing(JMP2522'(i1739[1], i322[1])), ≥)∧[(-1)bso_51] ≥ 0)
(22) ((UIncreasing(JMP2522'(i1739[1], i322[1])), ≥)∧[(-1)bso_51] ≥ 0)
(23) ((UIncreasing(JMP2522'(i1739[1], i322[1])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_51] ≥ 0)
(24) (i322[1]=i1739[6]∧i1739[1]=i1739[6] ⇒ COND_JMP2522(TRUE, i322[1], i1739[1])≥NonInfC∧COND_JMP2522(TRUE, i322[1], i1739[1])≥JMP2522'(i1739[1], i322[1])∧(UIncreasing(JMP2522'(i1739[1], i322[1])), ≥))
(25) (COND_JMP2522(TRUE, i1739[1], i1739[1])≥NonInfC∧COND_JMP2522(TRUE, i1739[1], i1739[1])≥JMP2522'(i1739[1], i1739[1])∧(UIncreasing(JMP2522'(i1739[1], i322[1])), ≥))
(26) ((UIncreasing(JMP2522'(i1739[1], i322[1])), ≥)∧[(-1)bso_51] ≥ 0)
(27) ((UIncreasing(JMP2522'(i1739[1], i322[1])), ≥)∧[(-1)bso_51] ≥ 0)
(28) ((UIncreasing(JMP2522'(i1739[1], i322[1])), ≥)∧[(-1)bso_51] ≥ 0)
(29) ((UIncreasing(JMP2522'(i1739[1], i322[1])), ≥)∧0 = 0∧[(-1)bso_51] ≥ 0)
(30) (i322[1]=i1739[10]∧i1739[1]=i322[10] ⇒ COND_JMP2522(TRUE, i322[1], i1739[1])≥NonInfC∧COND_JMP2522(TRUE, i322[1], i1739[1])≥JMP2522'(i1739[1], i322[1])∧(UIncreasing(JMP2522'(i1739[1], i322[1])), ≥))
(31) (COND_JMP2522(TRUE, i322[1], i1739[1])≥NonInfC∧COND_JMP2522(TRUE, i322[1], i1739[1])≥JMP2522'(i1739[1], i322[1])∧(UIncreasing(JMP2522'(i1739[1], i322[1])), ≥))
(32) ((UIncreasing(JMP2522'(i1739[1], i322[1])), ≥)∧[(-1)bso_51] ≥ 0)
(33) ((UIncreasing(JMP2522'(i1739[1], i322[1])), ≥)∧[(-1)bso_51] ≥ 0)
(34) ((UIncreasing(JMP2522'(i1739[1], i322[1])), ≥)∧[(-1)bso_51] ≥ 0)
(35) ((UIncreasing(JMP2522'(i1739[1], i322[1])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_51] ≥ 0)
(36) (&&(>(i1739[2], 0), <=(i2851[2], i1739[2]))=TRUE∧i1739[2]=i1739[3]∧i2851[2]=i2851[3] ⇒ JMP4637'(i1739[2], i1739[2], i1739[2], i2851[2], i1739[2])≥NonInfC∧JMP4637'(i1739[2], i1739[2], i1739[2], i2851[2], i1739[2])≥COND_JMP4637(&&(>(i1739[2], 0), <=(i2851[2], i1739[2])), i1739[2], i1739[2], i1739[2], i2851[2], i1739[2])∧(UIncreasing(COND_JMP4637(&&(>(i1739[2], 0), <=(i2851[2], i1739[2])), i1739[2], i1739[2], i1739[2], i2851[2], i1739[2])), ≥))
(37) (>(i1739[2], 0)=TRUE∧<=(i2851[2], i1739[2])=TRUE ⇒ JMP4637'(i1739[2], i1739[2], i1739[2], i2851[2], i1739[2])≥NonInfC∧JMP4637'(i1739[2], i1739[2], i1739[2], i2851[2], i1739[2])≥COND_JMP4637(&&(>(i1739[2], 0), <=(i2851[2], i1739[2])), i1739[2], i1739[2], i1739[2], i2851[2], i1739[2])∧(UIncreasing(COND_JMP4637(&&(>(i1739[2], 0), <=(i2851[2], i1739[2])), i1739[2], i1739[2], i1739[2], i2851[2], i1739[2])), ≥))
(38) (i1739[2] + [-1] ≥ 0∧i1739[2] + [-1]i2851[2] ≥ 0 ⇒ (UIncreasing(COND_JMP4637(&&(>(i1739[2], 0), <=(i2851[2], i1739[2])), i1739[2], i1739[2], i1739[2], i2851[2], i1739[2])), ≥)∧[(-1)Bound*bni_52] + [bni_52]i1739[2] + [bni_52]i2851[2] ≥ 0∧[(-1)bso_53] ≥ 0)
(39) (i1739[2] + [-1] ≥ 0∧i1739[2] + [-1]i2851[2] ≥ 0 ⇒ (UIncreasing(COND_JMP4637(&&(>(i1739[2], 0), <=(i2851[2], i1739[2])), i1739[2], i1739[2], i1739[2], i2851[2], i1739[2])), ≥)∧[(-1)Bound*bni_52] + [bni_52]i1739[2] + [bni_52]i2851[2] ≥ 0∧[(-1)bso_53] ≥ 0)
(40) (i1739[2] + [-1] ≥ 0∧i1739[2] + [-1]i2851[2] ≥ 0 ⇒ (UIncreasing(COND_JMP4637(&&(>(i1739[2], 0), <=(i2851[2], i1739[2])), i1739[2], i1739[2], i1739[2], i2851[2], i1739[2])), ≥)∧[(-1)Bound*bni_52] + [bni_52]i1739[2] + [bni_52]i2851[2] ≥ 0∧[(-1)bso_53] ≥ 0)
(41) (i1739[2] ≥ 0∧[1] + i1739[2] + [-1]i2851[2] ≥ 0 ⇒ (UIncreasing(COND_JMP4637(&&(>(i1739[2], 0), <=(i2851[2], i1739[2])), i1739[2], i1739[2], i1739[2], i2851[2], i1739[2])), ≥)∧[(-1)Bound*bni_52 + bni_52] + [bni_52]i1739[2] + [bni_52]i2851[2] ≥ 0∧[(-1)bso_53] ≥ 0)
(42) (i1739[2] ≥ 0∧[1] + i1739[2] + [-1]i2851[2] ≥ 0∧i2851[2] ≥ 0 ⇒ (UIncreasing(COND_JMP4637(&&(>(i1739[2], 0), <=(i2851[2], i1739[2])), i1739[2], i1739[2], i1739[2], i2851[2], i1739[2])), ≥)∧[(-1)Bound*bni_52 + bni_52] + [bni_52]i1739[2] + [bni_52]i2851[2] ≥ 0∧[(-1)bso_53] ≥ 0)
(43) (i1739[2] ≥ 0∧[1] + i1739[2] + i2851[2] ≥ 0∧i2851[2] ≥ 0 ⇒ (UIncreasing(COND_JMP4637(&&(>(i1739[2], 0), <=(i2851[2], i1739[2])), i1739[2], i1739[2], i1739[2], i2851[2], i1739[2])), ≥)∧[(-1)Bound*bni_52 + bni_52] + [bni_52]i1739[2] + [(-1)bni_52]i2851[2] ≥ 0∧[(-1)bso_53] ≥ 0)
(44) (i2851[3]=i1739[0]∧i1739[3]=i322[0] ⇒ COND_JMP4637(TRUE, i1739[3], i1739[3], i1739[3], i2851[3], i1739[3])≥NonInfC∧COND_JMP4637(TRUE, i1739[3], i1739[3], i1739[3], i2851[3], i1739[3])≥JMP2522'(i1739[3], i2851[3])∧(UIncreasing(JMP2522'(i1739[3], i2851[3])), ≥))
(45) (COND_JMP4637(TRUE, i1739[3], i1739[3], i1739[3], i2851[3], i1739[3])≥NonInfC∧COND_JMP4637(TRUE, i1739[3], i1739[3], i1739[3], i2851[3], i1739[3])≥JMP2522'(i1739[3], i2851[3])∧(UIncreasing(JMP2522'(i1739[3], i2851[3])), ≥))
(46) ((UIncreasing(JMP2522'(i1739[3], i2851[3])), ≥)∧[(-1)bso_55] ≥ 0)
(47) ((UIncreasing(JMP2522'(i1739[3], i2851[3])), ≥)∧[(-1)bso_55] ≥ 0)
(48) ((UIncreasing(JMP2522'(i1739[3], i2851[3])), ≥)∧[(-1)bso_55] ≥ 0)
(49) ((UIncreasing(JMP2522'(i1739[3], i2851[3])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_55] ≥ 0)
(50) (i2851[3]=i1739[4]∧i1739[3]=i322[4] ⇒ COND_JMP4637(TRUE, i1739[3], i1739[3], i1739[3], i2851[3], i1739[3])≥NonInfC∧COND_JMP4637(TRUE, i1739[3], i1739[3], i1739[3], i2851[3], i1739[3])≥JMP2522'(i1739[3], i2851[3])∧(UIncreasing(JMP2522'(i1739[3], i2851[3])), ≥))
(51) (COND_JMP4637(TRUE, i1739[3], i1739[3], i1739[3], i2851[3], i1739[3])≥NonInfC∧COND_JMP4637(TRUE, i1739[3], i1739[3], i1739[3], i2851[3], i1739[3])≥JMP2522'(i1739[3], i2851[3])∧(UIncreasing(JMP2522'(i1739[3], i2851[3])), ≥))
(52) ((UIncreasing(JMP2522'(i1739[3], i2851[3])), ≥)∧[(-1)bso_55] ≥ 0)
(53) ((UIncreasing(JMP2522'(i1739[3], i2851[3])), ≥)∧[(-1)bso_55] ≥ 0)
(54) ((UIncreasing(JMP2522'(i1739[3], i2851[3])), ≥)∧[(-1)bso_55] ≥ 0)
(55) ((UIncreasing(JMP2522'(i1739[3], i2851[3])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_55] ≥ 0)
(56) (i2851[3]=i1739[6]∧i1739[3]=i1739[6] ⇒ COND_JMP4637(TRUE, i1739[3], i1739[3], i1739[3], i2851[3], i1739[3])≥NonInfC∧COND_JMP4637(TRUE, i1739[3], i1739[3], i1739[3], i2851[3], i1739[3])≥JMP2522'(i1739[3], i2851[3])∧(UIncreasing(JMP2522'(i1739[3], i2851[3])), ≥))
(57) (COND_JMP4637(TRUE, i1739[3], i1739[3], i1739[3], i1739[3], i1739[3])≥NonInfC∧COND_JMP4637(TRUE, i1739[3], i1739[3], i1739[3], i1739[3], i1739[3])≥JMP2522'(i1739[3], i1739[3])∧(UIncreasing(JMP2522'(i1739[3], i2851[3])), ≥))
(58) ((UIncreasing(JMP2522'(i1739[3], i2851[3])), ≥)∧[(-1)bso_55] ≥ 0)
(59) ((UIncreasing(JMP2522'(i1739[3], i2851[3])), ≥)∧[(-1)bso_55] ≥ 0)
(60) ((UIncreasing(JMP2522'(i1739[3], i2851[3])), ≥)∧[(-1)bso_55] ≥ 0)
(61) ((UIncreasing(JMP2522'(i1739[3], i2851[3])), ≥)∧0 = 0∧[(-1)bso_55] ≥ 0)
(62) (i2851[3]=i1739[10]∧i1739[3]=i322[10] ⇒ COND_JMP4637(TRUE, i1739[3], i1739[3], i1739[3], i2851[3], i1739[3])≥NonInfC∧COND_JMP4637(TRUE, i1739[3], i1739[3], i1739[3], i2851[3], i1739[3])≥JMP2522'(i1739[3], i2851[3])∧(UIncreasing(JMP2522'(i1739[3], i2851[3])), ≥))
(63) (COND_JMP4637(TRUE, i1739[3], i1739[3], i1739[3], i2851[3], i1739[3])≥NonInfC∧COND_JMP4637(TRUE, i1739[3], i1739[3], i1739[3], i2851[3], i1739[3])≥JMP2522'(i1739[3], i2851[3])∧(UIncreasing(JMP2522'(i1739[3], i2851[3])), ≥))
(64) ((UIncreasing(JMP2522'(i1739[3], i2851[3])), ≥)∧[(-1)bso_55] ≥ 0)
(65) ((UIncreasing(JMP2522'(i1739[3], i2851[3])), ≥)∧[(-1)bso_55] ≥ 0)
(66) ((UIncreasing(JMP2522'(i1739[3], i2851[3])), ≥)∧[(-1)bso_55] ≥ 0)
(67) ((UIncreasing(JMP2522'(i1739[3], i2851[3])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_55] ≥ 0)
(68) (i1739[4]=i1739[5]∧i322[4]=i322[5]∧&&(&&(>(i1739[4], 0), <=(-(i322[4], i1739[4]), i1739[4])), >(i322[4], i1739[4]))=TRUE ⇒ JMP2522'(i322[4], i1739[4])≥NonInfC∧JMP2522'(i322[4], i1739[4])≥COND_JMP25221(&&(&&(>(i1739[4], 0), <=(-(i322[4], i1739[4]), i1739[4])), >(i322[4], i1739[4])), i322[4], i1739[4])∧(UIncreasing(COND_JMP25221(&&(&&(>(i1739[4], 0), <=(-(i322[4], i1739[4]), i1739[4])), >(i322[4], i1739[4])), i322[4], i1739[4])), ≥))
(69) (>(i322[4], i1739[4])=TRUE∧>(i1739[4], 0)=TRUE∧<=(-(i322[4], i1739[4]), i1739[4])=TRUE ⇒ JMP2522'(i322[4], i1739[4])≥NonInfC∧JMP2522'(i322[4], i1739[4])≥COND_JMP25221(&&(&&(>(i1739[4], 0), <=(-(i322[4], i1739[4]), i1739[4])), >(i322[4], i1739[4])), i322[4], i1739[4])∧(UIncreasing(COND_JMP25221(&&(&&(>(i1739[4], 0), <=(-(i322[4], i1739[4]), i1739[4])), >(i322[4], i1739[4])), i322[4], i1739[4])), ≥))
(70) (i322[4] + [-1] + [-1]i1739[4] ≥ 0∧i1739[4] + [-1] ≥ 0∧[2]i1739[4] + [-1]i322[4] ≥ 0 ⇒ (UIncreasing(COND_JMP25221(&&(&&(>(i1739[4], 0), <=(-(i322[4], i1739[4]), i1739[4])), >(i322[4], i1739[4])), i322[4], i1739[4])), ≥)∧[(-1)Bound*bni_56] + [bni_56]i1739[4] + [bni_56]i322[4] ≥ 0∧[(-1)bso_57] + [-1]i1739[4] + i322[4] ≥ 0)
(71) (i322[4] + [-1] + [-1]i1739[4] ≥ 0∧i1739[4] + [-1] ≥ 0∧[2]i1739[4] + [-1]i322[4] ≥ 0 ⇒ (UIncreasing(COND_JMP25221(&&(&&(>(i1739[4], 0), <=(-(i322[4], i1739[4]), i1739[4])), >(i322[4], i1739[4])), i322[4], i1739[4])), ≥)∧[(-1)Bound*bni_56] + [bni_56]i1739[4] + [bni_56]i322[4] ≥ 0∧[(-1)bso_57] + [-1]i1739[4] + i322[4] ≥ 0)
(72) (i322[4] + [-1] + [-1]i1739[4] ≥ 0∧i1739[4] + [-1] ≥ 0∧[2]i1739[4] + [-1]i322[4] ≥ 0 ⇒ (UIncreasing(COND_JMP25221(&&(&&(>(i1739[4], 0), <=(-(i322[4], i1739[4]), i1739[4])), >(i322[4], i1739[4])), i322[4], i1739[4])), ≥)∧[(-1)Bound*bni_56] + [bni_56]i1739[4] + [bni_56]i322[4] ≥ 0∧[(-1)bso_57] + [-1]i1739[4] + i322[4] ≥ 0)
(73) (i322[4] ≥ 0∧i1739[4] + [-1] ≥ 0∧i1739[4] + [-1] + [-1]i322[4] ≥ 0 ⇒ (UIncreasing(COND_JMP25221(&&(&&(>(i1739[4], 0), <=(-(i322[4], i1739[4]), i1739[4])), >(i322[4], i1739[4])), i322[4], i1739[4])), ≥)∧[(-1)Bound*bni_56 + bni_56] + [(2)bni_56]i1739[4] + [bni_56]i322[4] ≥ 0∧[1 + (-1)bso_57] + i322[4] ≥ 0)
(74) (i322[4] ≥ 0∧i1739[4] ≥ 0∧i1739[4] + [-1]i322[4] ≥ 0 ⇒ (UIncreasing(COND_JMP25221(&&(&&(>(i1739[4], 0), <=(-(i322[4], i1739[4]), i1739[4])), >(i322[4], i1739[4])), i322[4], i1739[4])), ≥)∧[(-1)Bound*bni_56 + (3)bni_56] + [(2)bni_56]i1739[4] + [bni_56]i322[4] ≥ 0∧[1 + (-1)bso_57] + i322[4] ≥ 0)
(75) (i322[4] ≥ 0∧i322[4] + i1739[4] ≥ 0∧i1739[4] ≥ 0 ⇒ (UIncreasing(COND_JMP25221(&&(&&(>(i1739[4], 0), <=(-(i322[4], i1739[4]), i1739[4])), >(i322[4], i1739[4])), i322[4], i1739[4])), ≥)∧[(-1)Bound*bni_56 + (3)bni_56] + [(3)bni_56]i322[4] + [(2)bni_56]i1739[4] ≥ 0∧[1 + (-1)bso_57] + i322[4] ≥ 0)
(76) (i1739[4]=i1739[5]∧i322[4]=i322[5]∧&&(&&(>(i1739[4], 0), <=(-(i322[4], i1739[4]), i1739[4])), >(i322[4], i1739[4]))=TRUE ⇒ COND_JMP25221(TRUE, i322[5], i1739[5])≥NonInfC∧COND_JMP25221(TRUE, i322[5], i1739[5])≥JMP2522'(i1739[5], -(i322[5], i1739[5]))∧(UIncreasing(JMP2522'(i1739[5], -(i322[5], i1739[5]))), ≥))
(77) (>(i322[4], i1739[4])=TRUE∧>(i1739[4], 0)=TRUE∧<=(-(i322[4], i1739[4]), i1739[4])=TRUE ⇒ COND_JMP25221(TRUE, i322[4], i1739[4])≥NonInfC∧COND_JMP25221(TRUE, i322[4], i1739[4])≥JMP2522'(i1739[4], -(i322[4], i1739[4]))∧(UIncreasing(JMP2522'(i1739[5], -(i322[5], i1739[5]))), ≥))
(78) (i322[4] + [-1] + [-1]i1739[4] ≥ 0∧i1739[4] + [-1] ≥ 0∧[2]i1739[4] + [-1]i322[4] ≥ 0 ⇒ (UIncreasing(JMP2522'(i1739[5], -(i322[5], i1739[5]))), ≥)∧[(-1)Bound*bni_58] + [(2)bni_58]i1739[4] ≥ 0∧[(-1)bso_59] + [2]i1739[4] + [-1]i322[4] ≥ 0)
(79) (i322[4] + [-1] + [-1]i1739[4] ≥ 0∧i1739[4] + [-1] ≥ 0∧[2]i1739[4] + [-1]i322[4] ≥ 0 ⇒ (UIncreasing(JMP2522'(i1739[5], -(i322[5], i1739[5]))), ≥)∧[(-1)Bound*bni_58] + [(2)bni_58]i1739[4] ≥ 0∧[(-1)bso_59] + [2]i1739[4] + [-1]i322[4] ≥ 0)
(80) (i322[4] + [-1] + [-1]i1739[4] ≥ 0∧i1739[4] + [-1] ≥ 0∧[2]i1739[4] + [-1]i322[4] ≥ 0 ⇒ (UIncreasing(JMP2522'(i1739[5], -(i322[5], i1739[5]))), ≥)∧[(-1)Bound*bni_58] + [(2)bni_58]i1739[4] ≥ 0∧[(-1)bso_59] + [2]i1739[4] + [-1]i322[4] ≥ 0)
(81) (i322[4] ≥ 0∧i1739[4] + [-1] ≥ 0∧i1739[4] + [-1] + [-1]i322[4] ≥ 0 ⇒ (UIncreasing(JMP2522'(i1739[5], -(i322[5], i1739[5]))), ≥)∧[(-1)Bound*bni_58] + [(2)bni_58]i1739[4] ≥ 0∧[-1 + (-1)bso_59] + i1739[4] + [-1]i322[4] ≥ 0)
(82) (i322[4] ≥ 0∧i1739[4] ≥ 0∧i1739[4] + [-1]i322[4] ≥ 0 ⇒ (UIncreasing(JMP2522'(i1739[5], -(i322[5], i1739[5]))), ≥)∧[(-1)Bound*bni_58 + (2)bni_58] + [(2)bni_58]i1739[4] ≥ 0∧[(-1)bso_59] + i1739[4] + [-1]i322[4] ≥ 0)
(83) (i322[4] ≥ 0∧i322[4] + i1739[4] ≥ 0∧i1739[4] ≥ 0 ⇒ (UIncreasing(JMP2522'(i1739[5], -(i322[5], i1739[5]))), ≥)∧[(-1)Bound*bni_58 + (2)bni_58] + [(2)bni_58]i322[4] + [(2)bni_58]i1739[4] ≥ 0∧[(-1)bso_59] + i1739[4] ≥ 0)
(84) (i1739[6]=i1739[7]∧>(i1739[6], 0)=TRUE ⇒ JMP2522'(i1739[6], i1739[6])≥NonInfC∧JMP2522'(i1739[6], i1739[6])≥COND_JMP25222(>(i1739[6], 0), i1739[6], i1739[6])∧(UIncreasing(COND_JMP25222(>(i1739[6], 0), i1739[6], i1739[6])), ≥))
(85) (>(i1739[6], 0)=TRUE ⇒ JMP2522'(i1739[6], i1739[6])≥NonInfC∧JMP2522'(i1739[6], i1739[6])≥COND_JMP25222(>(i1739[6], 0), i1739[6], i1739[6])∧(UIncreasing(COND_JMP25222(>(i1739[6], 0), i1739[6], i1739[6])), ≥))
(86) (i1739[6] + [-1] ≥ 0 ⇒ (UIncreasing(COND_JMP25222(>(i1739[6], 0), i1739[6], i1739[6])), ≥)∧[(-1)Bound*bni_60] + [(2)bni_60]i1739[6] ≥ 0∧[1 + (-1)bso_61] ≥ 0)
(87) (i1739[6] + [-1] ≥ 0 ⇒ (UIncreasing(COND_JMP25222(>(i1739[6], 0), i1739[6], i1739[6])), ≥)∧[(-1)Bound*bni_60] + [(2)bni_60]i1739[6] ≥ 0∧[1 + (-1)bso_61] ≥ 0)
(88) (i1739[6] + [-1] ≥ 0 ⇒ (UIncreasing(COND_JMP25222(>(i1739[6], 0), i1739[6], i1739[6])), ≥)∧[(-1)Bound*bni_60] + [(2)bni_60]i1739[6] ≥ 0∧[1 + (-1)bso_61] ≥ 0)
(89) (i1739[6] ≥ 0 ⇒ (UIncreasing(COND_JMP25222(>(i1739[6], 0), i1739[6], i1739[6])), ≥)∧[(-1)Bound*bni_60 + (2)bni_60] + [(2)bni_60]i1739[6] ≥ 0∧[1 + (-1)bso_61] ≥ 0)
(90) (i1739[6]=i1739[7]∧>(i1739[6], 0)=TRUE ⇒ COND_JMP25222(TRUE, i1739[7], i1739[7])≥NonInfC∧COND_JMP25222(TRUE, i1739[7], i1739[7])≥JMP2522'(i1739[7], 0)∧(UIncreasing(JMP2522'(i1739[7], 0)), ≥))
(91) (>(i1739[6], 0)=TRUE ⇒ COND_JMP25222(TRUE, i1739[6], i1739[6])≥NonInfC∧COND_JMP25222(TRUE, i1739[6], i1739[6])≥JMP2522'(i1739[6], 0)∧(UIncreasing(JMP2522'(i1739[7], 0)), ≥))
(92) (i1739[6] + [-1] ≥ 0 ⇒ (UIncreasing(JMP2522'(i1739[7], 0)), ≥)∧[(-1)bni_62 + (-1)Bound*bni_62] + [(2)bni_62]i1739[6] ≥ 0∧[-1 + (-1)bso_63] + i1739[6] ≥ 0)
(93) (i1739[6] + [-1] ≥ 0 ⇒ (UIncreasing(JMP2522'(i1739[7], 0)), ≥)∧[(-1)bni_62 + (-1)Bound*bni_62] + [(2)bni_62]i1739[6] ≥ 0∧[-1 + (-1)bso_63] + i1739[6] ≥ 0)
(94) (i1739[6] + [-1] ≥ 0 ⇒ (UIncreasing(JMP2522'(i1739[7], 0)), ≥)∧[(-1)bni_62 + (-1)Bound*bni_62] + [(2)bni_62]i1739[6] ≥ 0∧[-1 + (-1)bso_63] + i1739[6] ≥ 0)
(95) (i1739[6] ≥ 0 ⇒ (UIncreasing(JMP2522'(i1739[7], 0)), ≥)∧[bni_62 + (-1)Bound*bni_62] + [(2)bni_62]i1739[6] ≥ 0∧[(-1)bso_63] + i1739[6] ≥ 0)
(96) (&&(>(i1739[8], 0), >(i2851[8], i1739[8]))=TRUE∧i2851[8]=i2851[9]∧i1739[8]=i1739[9] ⇒ JMP4637'(i1739[8], i1739[8], i1739[8], i2851[8], i1739[8])≥NonInfC∧JMP4637'(i1739[8], i1739[8], i1739[8], i2851[8], i1739[8])≥COND_JMP46371(&&(>(i1739[8], 0), >(i2851[8], i1739[8])), i1739[8], i1739[8], i1739[8], i2851[8], i1739[8])∧(UIncreasing(COND_JMP46371(&&(>(i1739[8], 0), >(i2851[8], i1739[8])), i1739[8], i1739[8], i1739[8], i2851[8], i1739[8])), ≥))
(97) (>(i1739[8], 0)=TRUE∧>(i2851[8], i1739[8])=TRUE ⇒ JMP4637'(i1739[8], i1739[8], i1739[8], i2851[8], i1739[8])≥NonInfC∧JMP4637'(i1739[8], i1739[8], i1739[8], i2851[8], i1739[8])≥COND_JMP46371(&&(>(i1739[8], 0), >(i2851[8], i1739[8])), i1739[8], i1739[8], i1739[8], i2851[8], i1739[8])∧(UIncreasing(COND_JMP46371(&&(>(i1739[8], 0), >(i2851[8], i1739[8])), i1739[8], i1739[8], i1739[8], i2851[8], i1739[8])), ≥))
(98) (i1739[8] + [-1] ≥ 0∧i2851[8] + [-1] + [-1]i1739[8] ≥ 0 ⇒ (UIncreasing(COND_JMP46371(&&(>(i1739[8], 0), >(i2851[8], i1739[8])), i1739[8], i1739[8], i1739[8], i2851[8], i1739[8])), ≥)∧[(-1)Bound*bni_64] + [bni_64]i1739[8] + [bni_64]i2851[8] ≥ 0∧[-1 + (-1)bso_65] + i1739[8] ≥ 0)
(99) (i1739[8] + [-1] ≥ 0∧i2851[8] + [-1] + [-1]i1739[8] ≥ 0 ⇒ (UIncreasing(COND_JMP46371(&&(>(i1739[8], 0), >(i2851[8], i1739[8])), i1739[8], i1739[8], i1739[8], i2851[8], i1739[8])), ≥)∧[(-1)Bound*bni_64] + [bni_64]i1739[8] + [bni_64]i2851[8] ≥ 0∧[-1 + (-1)bso_65] + i1739[8] ≥ 0)
(100) (i1739[8] + [-1] ≥ 0∧i2851[8] + [-1] + [-1]i1739[8] ≥ 0 ⇒ (UIncreasing(COND_JMP46371(&&(>(i1739[8], 0), >(i2851[8], i1739[8])), i1739[8], i1739[8], i1739[8], i2851[8], i1739[8])), ≥)∧[(-1)Bound*bni_64] + [bni_64]i1739[8] + [bni_64]i2851[8] ≥ 0∧[-1 + (-1)bso_65] + i1739[8] ≥ 0)
(101) (i1739[8] ≥ 0∧i2851[8] + [-2] + [-1]i1739[8] ≥ 0 ⇒ (UIncreasing(COND_JMP46371(&&(>(i1739[8], 0), >(i2851[8], i1739[8])), i1739[8], i1739[8], i1739[8], i2851[8], i1739[8])), ≥)∧[(-1)Bound*bni_64 + bni_64] + [bni_64]i1739[8] + [bni_64]i2851[8] ≥ 0∧[(-1)bso_65] + i1739[8] ≥ 0)
(102) (i1739[8] ≥ 0∧i2851[8] ≥ 0 ⇒ (UIncreasing(COND_JMP46371(&&(>(i1739[8], 0), >(i2851[8], i1739[8])), i1739[8], i1739[8], i1739[8], i2851[8], i1739[8])), ≥)∧[(-1)Bound*bni_64 + (3)bni_64] + [(2)bni_64]i1739[8] + [bni_64]i2851[8] ≥ 0∧[(-1)bso_65] + i1739[8] ≥ 0)
(103) (&&(>(i1739[8], 0), >(i2851[8], i1739[8]))=TRUE∧i2851[8]=i2851[9]∧i1739[8]=i1739[9]∧-(i2851[9], i1739[9])=i2851[2]∧i1739[9]=i1739[2] ⇒ COND_JMP46371(TRUE, i1739[9], i1739[9], i1739[9], i2851[9], i1739[9])≥NonInfC∧COND_JMP46371(TRUE, i1739[9], i1739[9], i1739[9], i2851[9], i1739[9])≥JMP4637'(i1739[9], i1739[9], i1739[9], -(i2851[9], i1739[9]), i1739[9])∧(UIncreasing(JMP4637'(i1739[9], i1739[9], i1739[9], -(i2851[9], i1739[9]), i1739[9])), ≥))
(104) (>(i1739[8], 0)=TRUE∧>(i2851[8], i1739[8])=TRUE ⇒ COND_JMP46371(TRUE, i1739[8], i1739[8], i1739[8], i2851[8], i1739[8])≥NonInfC∧COND_JMP46371(TRUE, i1739[8], i1739[8], i1739[8], i2851[8], i1739[8])≥JMP4637'(i1739[8], i1739[8], i1739[8], -(i2851[8], i1739[8]), i1739[8])∧(UIncreasing(JMP4637'(i1739[9], i1739[9], i1739[9], -(i2851[9], i1739[9]), i1739[9])), ≥))
(105) (i1739[8] + [-1] ≥ 0∧i2851[8] + [-1] + [-1]i1739[8] ≥ 0 ⇒ (UIncreasing(JMP4637'(i1739[9], i1739[9], i1739[9], -(i2851[9], i1739[9]), i1739[9])), ≥)∧[bni_66 + (-1)Bound*bni_66] + [bni_66]i2851[8] ≥ 0∧[1 + (-1)bso_67] ≥ 0)
(106) (i1739[8] + [-1] ≥ 0∧i2851[8] + [-1] + [-1]i1739[8] ≥ 0 ⇒ (UIncreasing(JMP4637'(i1739[9], i1739[9], i1739[9], -(i2851[9], i1739[9]), i1739[9])), ≥)∧[bni_66 + (-1)Bound*bni_66] + [bni_66]i2851[8] ≥ 0∧[1 + (-1)bso_67] ≥ 0)
(107) (i1739[8] + [-1] ≥ 0∧i2851[8] + [-1] + [-1]i1739[8] ≥ 0 ⇒ (UIncreasing(JMP4637'(i1739[9], i1739[9], i1739[9], -(i2851[9], i1739[9]), i1739[9])), ≥)∧[bni_66 + (-1)Bound*bni_66] + [bni_66]i2851[8] ≥ 0∧[1 + (-1)bso_67] ≥ 0)
(108) (i1739[8] ≥ 0∧i2851[8] + [-2] + [-1]i1739[8] ≥ 0 ⇒ (UIncreasing(JMP4637'(i1739[9], i1739[9], i1739[9], -(i2851[9], i1739[9]), i1739[9])), ≥)∧[bni_66 + (-1)Bound*bni_66] + [bni_66]i2851[8] ≥ 0∧[1 + (-1)bso_67] ≥ 0)
(109) (i1739[8] ≥ 0∧i2851[8] ≥ 0 ⇒ (UIncreasing(JMP4637'(i1739[9], i1739[9], i1739[9], -(i2851[9], i1739[9]), i1739[9])), ≥)∧[(3)bni_66 + (-1)Bound*bni_66] + [bni_66]i1739[8] + [bni_66]i2851[8] ≥ 0∧[1 + (-1)bso_67] ≥ 0)
(110) (&&(>(i1739[8], 0), >(i2851[8], i1739[8]))=TRUE∧i2851[8]=i2851[9]∧i1739[8]=i1739[9]∧-(i2851[9], i1739[9])=i2851[8]1∧i1739[9]=i1739[8]1 ⇒ COND_JMP46371(TRUE, i1739[9], i1739[9], i1739[9], i2851[9], i1739[9])≥NonInfC∧COND_JMP46371(TRUE, i1739[9], i1739[9], i1739[9], i2851[9], i1739[9])≥JMP4637'(i1739[9], i1739[9], i1739[9], -(i2851[9], i1739[9]), i1739[9])∧(UIncreasing(JMP4637'(i1739[9], i1739[9], i1739[9], -(i2851[9], i1739[9]), i1739[9])), ≥))
(111) (>(i1739[8], 0)=TRUE∧>(i2851[8], i1739[8])=TRUE ⇒ COND_JMP46371(TRUE, i1739[8], i1739[8], i1739[8], i2851[8], i1739[8])≥NonInfC∧COND_JMP46371(TRUE, i1739[8], i1739[8], i1739[8], i2851[8], i1739[8])≥JMP4637'(i1739[8], i1739[8], i1739[8], -(i2851[8], i1739[8]), i1739[8])∧(UIncreasing(JMP4637'(i1739[9], i1739[9], i1739[9], -(i2851[9], i1739[9]), i1739[9])), ≥))
(112) (i1739[8] + [-1] ≥ 0∧i2851[8] + [-1] + [-1]i1739[8] ≥ 0 ⇒ (UIncreasing(JMP4637'(i1739[9], i1739[9], i1739[9], -(i2851[9], i1739[9]), i1739[9])), ≥)∧[bni_66 + (-1)Bound*bni_66] + [bni_66]i2851[8] ≥ 0∧[1 + (-1)bso_67] ≥ 0)
(113) (i1739[8] + [-1] ≥ 0∧i2851[8] + [-1] + [-1]i1739[8] ≥ 0 ⇒ (UIncreasing(JMP4637'(i1739[9], i1739[9], i1739[9], -(i2851[9], i1739[9]), i1739[9])), ≥)∧[bni_66 + (-1)Bound*bni_66] + [bni_66]i2851[8] ≥ 0∧[1 + (-1)bso_67] ≥ 0)
(114) (i1739[8] + [-1] ≥ 0∧i2851[8] + [-1] + [-1]i1739[8] ≥ 0 ⇒ (UIncreasing(JMP4637'(i1739[9], i1739[9], i1739[9], -(i2851[9], i1739[9]), i1739[9])), ≥)∧[bni_66 + (-1)Bound*bni_66] + [bni_66]i2851[8] ≥ 0∧[1 + (-1)bso_67] ≥ 0)
(115) (i1739[8] ≥ 0∧i2851[8] + [-2] + [-1]i1739[8] ≥ 0 ⇒ (UIncreasing(JMP4637'(i1739[9], i1739[9], i1739[9], -(i2851[9], i1739[9]), i1739[9])), ≥)∧[bni_66 + (-1)Bound*bni_66] + [bni_66]i2851[8] ≥ 0∧[1 + (-1)bso_67] ≥ 0)
(116) (i1739[8] ≥ 0∧i2851[8] ≥ 0 ⇒ (UIncreasing(JMP4637'(i1739[9], i1739[9], i1739[9], -(i2851[9], i1739[9]), i1739[9])), ≥)∧[(3)bni_66 + (-1)Bound*bni_66] + [bni_66]i1739[8] + [bni_66]i2851[8] ≥ 0∧[1 + (-1)bso_67] ≥ 0)
(117) (i322[10]=i322[11]∧i1739[10]=i1739[11]∧&&(&&(>(i1739[10], 0), >(-(i322[10], i1739[10]), i1739[10])), >(i322[10], i1739[10]))=TRUE ⇒ JMP2522'(i322[10], i1739[10])≥NonInfC∧JMP2522'(i322[10], i1739[10])≥COND_JMP25223(&&(&&(>(i1739[10], 0), >(-(i322[10], i1739[10]), i1739[10])), >(i322[10], i1739[10])), i322[10], i1739[10])∧(UIncreasing(COND_JMP25223(&&(&&(>(i1739[10], 0), >(-(i322[10], i1739[10]), i1739[10])), >(i322[10], i1739[10])), i322[10], i1739[10])), ≥))
(118) (>(i322[10], i1739[10])=TRUE∧>(i1739[10], 0)=TRUE∧>(-(i322[10], i1739[10]), i1739[10])=TRUE ⇒ JMP2522'(i322[10], i1739[10])≥NonInfC∧JMP2522'(i322[10], i1739[10])≥COND_JMP25223(&&(&&(>(i1739[10], 0), >(-(i322[10], i1739[10]), i1739[10])), >(i322[10], i1739[10])), i322[10], i1739[10])∧(UIncreasing(COND_JMP25223(&&(&&(>(i1739[10], 0), >(-(i322[10], i1739[10]), i1739[10])), >(i322[10], i1739[10])), i322[10], i1739[10])), ≥))
(119) (i322[10] + [-1] + [-1]i1739[10] ≥ 0∧i1739[10] + [-1] ≥ 0∧i322[10] + [-1] + [-2]i1739[10] ≥ 0 ⇒ (UIncreasing(COND_JMP25223(&&(&&(>(i1739[10], 0), >(-(i322[10], i1739[10]), i1739[10])), >(i322[10], i1739[10])), i322[10], i1739[10])), ≥)∧[(-1)Bound*bni_68] + [bni_68]i1739[10] + [bni_68]i322[10] ≥ 0∧[(-1)bso_69] + [2]i1739[10] ≥ 0)
(120) (i322[10] + [-1] + [-1]i1739[10] ≥ 0∧i1739[10] + [-1] ≥ 0∧i322[10] + [-1] + [-2]i1739[10] ≥ 0 ⇒ (UIncreasing(COND_JMP25223(&&(&&(>(i1739[10], 0), >(-(i322[10], i1739[10]), i1739[10])), >(i322[10], i1739[10])), i322[10], i1739[10])), ≥)∧[(-1)Bound*bni_68] + [bni_68]i1739[10] + [bni_68]i322[10] ≥ 0∧[(-1)bso_69] + [2]i1739[10] ≥ 0)
(121) (i322[10] + [-1] + [-1]i1739[10] ≥ 0∧i1739[10] + [-1] ≥ 0∧i322[10] + [-1] + [-2]i1739[10] ≥ 0 ⇒ (UIncreasing(COND_JMP25223(&&(&&(>(i1739[10], 0), >(-(i322[10], i1739[10]), i1739[10])), >(i322[10], i1739[10])), i322[10], i1739[10])), ≥)∧[(-1)Bound*bni_68] + [bni_68]i1739[10] + [bni_68]i322[10] ≥ 0∧[(-1)bso_69] + [2]i1739[10] ≥ 0)
(122) (i322[10] ≥ 0∧i1739[10] + [-1] ≥ 0∧[-1]i1739[10] + i322[10] ≥ 0 ⇒ (UIncreasing(COND_JMP25223(&&(&&(>(i1739[10], 0), >(-(i322[10], i1739[10]), i1739[10])), >(i322[10], i1739[10])), i322[10], i1739[10])), ≥)∧[(-1)Bound*bni_68 + bni_68] + [(2)bni_68]i1739[10] + [bni_68]i322[10] ≥ 0∧[(-1)bso_69] + [2]i1739[10] ≥ 0)
(123) (i322[10] ≥ 0∧i1739[10] ≥ 0∧[-1] + [-1]i1739[10] + i322[10] ≥ 0 ⇒ (UIncreasing(COND_JMP25223(&&(&&(>(i1739[10], 0), >(-(i322[10], i1739[10]), i1739[10])), >(i322[10], i1739[10])), i322[10], i1739[10])), ≥)∧[(-1)Bound*bni_68 + (3)bni_68] + [(2)bni_68]i1739[10] + [bni_68]i322[10] ≥ 0∧[2 + (-1)bso_69] + [2]i1739[10] ≥ 0)
(124) ([1] + i1739[10] + i322[10] ≥ 0∧i1739[10] ≥ 0∧i322[10] ≥ 0 ⇒ (UIncreasing(COND_JMP25223(&&(&&(>(i1739[10], 0), >(-(i322[10], i1739[10]), i1739[10])), >(i322[10], i1739[10])), i322[10], i1739[10])), ≥)∧[(-1)Bound*bni_68 + (4)bni_68] + [(3)bni_68]i1739[10] + [bni_68]i322[10] ≥ 0∧[2 + (-1)bso_69] + [2]i1739[10] ≥ 0)
(125) (i322[10]=i322[11]∧i1739[10]=i1739[11]∧&&(&&(>(i1739[10], 0), >(-(i322[10], i1739[10]), i1739[10])), >(i322[10], i1739[10]))=TRUE∧-(-(i322[11], i1739[11]), i1739[11])=i2851[2]∧i1739[11]=i1739[2] ⇒ COND_JMP25223(TRUE, i322[11], i1739[11])≥NonInfC∧COND_JMP25223(TRUE, i322[11], i1739[11])≥JMP4637'(i1739[11], i1739[11], i1739[11], -(-(i322[11], i1739[11]), i1739[11]), i1739[11])∧(UIncreasing(JMP4637'(i1739[11], i1739[11], i1739[11], -(-(i322[11], i1739[11]), i1739[11]), i1739[11])), ≥))
(126) (>(i322[10], i1739[10])=TRUE∧>(i1739[10], 0)=TRUE∧>(-(i322[10], i1739[10]), i1739[10])=TRUE ⇒ COND_JMP25223(TRUE, i322[10], i1739[10])≥NonInfC∧COND_JMP25223(TRUE, i322[10], i1739[10])≥JMP4637'(i1739[10], i1739[10], i1739[10], -(-(i322[10], i1739[10]), i1739[10]), i1739[10])∧(UIncreasing(JMP4637'(i1739[11], i1739[11], i1739[11], -(-(i322[11], i1739[11]), i1739[11]), i1739[11])), ≥))
(127) (i322[10] + [-1] + [-1]i1739[10] ≥ 0∧i1739[10] + [-1] ≥ 0∧i322[10] + [-1] + [-2]i1739[10] ≥ 0 ⇒ (UIncreasing(JMP4637'(i1739[11], i1739[11], i1739[11], -(-(i322[11], i1739[11]), i1739[11]), i1739[11])), ≥)∧[(-1)Bound*bni_70] + [(-1)bni_70]i1739[10] + [bni_70]i322[10] ≥ 0∧[(-1)bso_71] ≥ 0)
(128) (i322[10] + [-1] + [-1]i1739[10] ≥ 0∧i1739[10] + [-1] ≥ 0∧i322[10] + [-1] + [-2]i1739[10] ≥ 0 ⇒ (UIncreasing(JMP4637'(i1739[11], i1739[11], i1739[11], -(-(i322[11], i1739[11]), i1739[11]), i1739[11])), ≥)∧[(-1)Bound*bni_70] + [(-1)bni_70]i1739[10] + [bni_70]i322[10] ≥ 0∧[(-1)bso_71] ≥ 0)
(129) (i322[10] + [-1] + [-1]i1739[10] ≥ 0∧i1739[10] + [-1] ≥ 0∧i322[10] + [-1] + [-2]i1739[10] ≥ 0 ⇒ (UIncreasing(JMP4637'(i1739[11], i1739[11], i1739[11], -(-(i322[11], i1739[11]), i1739[11]), i1739[11])), ≥)∧[(-1)Bound*bni_70] + [(-1)bni_70]i1739[10] + [bni_70]i322[10] ≥ 0∧[(-1)bso_71] ≥ 0)
(130) (i322[10] ≥ 0∧i1739[10] + [-1] ≥ 0∧[-1]i1739[10] + i322[10] ≥ 0 ⇒ (UIncreasing(JMP4637'(i1739[11], i1739[11], i1739[11], -(-(i322[11], i1739[11]), i1739[11]), i1739[11])), ≥)∧[(-1)Bound*bni_70 + bni_70] + [bni_70]i322[10] ≥ 0∧[(-1)bso_71] ≥ 0)
(131) (i322[10] ≥ 0∧i1739[10] ≥ 0∧[-1] + [-1]i1739[10] + i322[10] ≥ 0 ⇒ (UIncreasing(JMP4637'(i1739[11], i1739[11], i1739[11], -(-(i322[11], i1739[11]), i1739[11]), i1739[11])), ≥)∧[(-1)Bound*bni_70 + bni_70] + [bni_70]i322[10] ≥ 0∧[(-1)bso_71] ≥ 0)
(132) ([1] + i1739[10] + i322[10] ≥ 0∧i1739[10] ≥ 0∧i322[10] ≥ 0 ⇒ (UIncreasing(JMP4637'(i1739[11], i1739[11], i1739[11], -(-(i322[11], i1739[11]), i1739[11]), i1739[11])), ≥)∧[(-1)Bound*bni_70 + (2)bni_70] + [bni_70]i1739[10] + [bni_70]i322[10] ≥ 0∧[(-1)bso_71] ≥ 0)
(133) (i322[10]=i322[11]∧i1739[10]=i1739[11]∧&&(&&(>(i1739[10], 0), >(-(i322[10], i1739[10]), i1739[10])), >(i322[10], i1739[10]))=TRUE∧i1739[11]=i1739[8]∧-(-(i322[11], i1739[11]), i1739[11])=i2851[8] ⇒ COND_JMP25223(TRUE, i322[11], i1739[11])≥NonInfC∧COND_JMP25223(TRUE, i322[11], i1739[11])≥JMP4637'(i1739[11], i1739[11], i1739[11], -(-(i322[11], i1739[11]), i1739[11]), i1739[11])∧(UIncreasing(JMP4637'(i1739[11], i1739[11], i1739[11], -(-(i322[11], i1739[11]), i1739[11]), i1739[11])), ≥))
(134) (>(i322[10], i1739[10])=TRUE∧>(i1739[10], 0)=TRUE∧>(-(i322[10], i1739[10]), i1739[10])=TRUE ⇒ COND_JMP25223(TRUE, i322[10], i1739[10])≥NonInfC∧COND_JMP25223(TRUE, i322[10], i1739[10])≥JMP4637'(i1739[10], i1739[10], i1739[10], -(-(i322[10], i1739[10]), i1739[10]), i1739[10])∧(UIncreasing(JMP4637'(i1739[11], i1739[11], i1739[11], -(-(i322[11], i1739[11]), i1739[11]), i1739[11])), ≥))
(135) (i322[10] + [-1] + [-1]i1739[10] ≥ 0∧i1739[10] + [-1] ≥ 0∧i322[10] + [-1] + [-2]i1739[10] ≥ 0 ⇒ (UIncreasing(JMP4637'(i1739[11], i1739[11], i1739[11], -(-(i322[11], i1739[11]), i1739[11]), i1739[11])), ≥)∧[(-1)Bound*bni_70] + [(-1)bni_70]i1739[10] + [bni_70]i322[10] ≥ 0∧[(-1)bso_71] ≥ 0)
(136) (i322[10] + [-1] + [-1]i1739[10] ≥ 0∧i1739[10] + [-1] ≥ 0∧i322[10] + [-1] + [-2]i1739[10] ≥ 0 ⇒ (UIncreasing(JMP4637'(i1739[11], i1739[11], i1739[11], -(-(i322[11], i1739[11]), i1739[11]), i1739[11])), ≥)∧[(-1)Bound*bni_70] + [(-1)bni_70]i1739[10] + [bni_70]i322[10] ≥ 0∧[(-1)bso_71] ≥ 0)
(137) (i322[10] + [-1] + [-1]i1739[10] ≥ 0∧i1739[10] + [-1] ≥ 0∧i322[10] + [-1] + [-2]i1739[10] ≥ 0 ⇒ (UIncreasing(JMP4637'(i1739[11], i1739[11], i1739[11], -(-(i322[11], i1739[11]), i1739[11]), i1739[11])), ≥)∧[(-1)Bound*bni_70] + [(-1)bni_70]i1739[10] + [bni_70]i322[10] ≥ 0∧[(-1)bso_71] ≥ 0)
(138) (i322[10] ≥ 0∧i1739[10] + [-1] ≥ 0∧[-1]i1739[10] + i322[10] ≥ 0 ⇒ (UIncreasing(JMP4637'(i1739[11], i1739[11], i1739[11], -(-(i322[11], i1739[11]), i1739[11]), i1739[11])), ≥)∧[(-1)Bound*bni_70 + bni_70] + [bni_70]i322[10] ≥ 0∧[(-1)bso_71] ≥ 0)
(139) (i322[10] ≥ 0∧i1739[10] ≥ 0∧[-1] + [-1]i1739[10] + i322[10] ≥ 0 ⇒ (UIncreasing(JMP4637'(i1739[11], i1739[11], i1739[11], -(-(i322[11], i1739[11]), i1739[11]), i1739[11])), ≥)∧[(-1)Bound*bni_70 + bni_70] + [bni_70]i322[10] ≥ 0∧[(-1)bso_71] ≥ 0)
(140) ([1] + i1739[10] + i322[10] ≥ 0∧i1739[10] ≥ 0∧i322[10] ≥ 0 ⇒ (UIncreasing(JMP4637'(i1739[11], i1739[11], i1739[11], -(-(i322[11], i1739[11]), i1739[11]), i1739[11])), ≥)∧[(-1)Bound*bni_70 + (2)bni_70] + [bni_70]i1739[10] + [bni_70]i322[10] ≥ 0∧[(-1)bso_71] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(JMP2522'(x1, x2)) = x2 + x1
POL(COND_JMP2522(x1, x2, x3)) = x3 + x2
POL(&&(x1, x2)) = [-1]
POL(>(x1, x2)) = [2]
POL(0) = 0
POL(<(x1, x2)) = [-1]
POL(!(x1)) = [-1]
POL(=(x1, x2)) = [-1]
POL(JMP4637'(x1, x2, x3, x4, x5)) = [2]x5 + x4 + [-1]x2
POL(COND_JMP4637(x1, x2, x3, x4, x5, x6)) = x6 + x5 + [2]x4 + [-1]x3 + [-1]x2
POL(<=(x1, x2)) = [-1]
POL(COND_JMP25221(x1, x2, x3)) = [2]x3
POL(-(x1, x2)) = x1 + [-1]x2
POL(COND_JMP25222(x1, x2, x3)) = [-1] + [2]x2
POL(COND_JMP46371(x1, x2, x3, x4, x5, x6)) = [1] + x6 + x5 + [-1]x3
POL(COND_JMP25223(x1, x2, x3)) = [-1]x3 + x2
JMP2522'(i322[4], i1739[4]) → COND_JMP25221(&&(&&(>(i1739[4], 0), <=(-(i322[4], i1739[4]), i1739[4])), >(i322[4], i1739[4])), i322[4], i1739[4])
JMP2522'(i1739[6], i1739[6]) → COND_JMP25222(>(i1739[6], 0), i1739[6], i1739[6])
COND_JMP46371(TRUE, i1739[9], i1739[9], i1739[9], i2851[9], i1739[9]) → JMP4637'(i1739[9], i1739[9], i1739[9], -(i2851[9], i1739[9]), i1739[9])
JMP2522'(i322[10], i1739[10]) → COND_JMP25223(&&(&&(>(i1739[10], 0), >(-(i322[10], i1739[10]), i1739[10])), >(i322[10], i1739[10])), i322[10], i1739[10])
JMP2522'(i322[0], i1739[0]) → COND_JMP2522(&&(&&(>(i322[0], 0), <(i322[0], i1739[0])), !(=(i1739[0], 0))), i322[0], i1739[0])
JMP2522'(i322[4], i1739[4]) → COND_JMP25221(&&(&&(>(i1739[4], 0), <=(-(i322[4], i1739[4]), i1739[4])), >(i322[4], i1739[4])), i322[4], i1739[4])
COND_JMP25221(TRUE, i322[5], i1739[5]) → JMP2522'(i1739[5], -(i322[5], i1739[5]))
JMP2522'(i1739[6], i1739[6]) → COND_JMP25222(>(i1739[6], 0), i1739[6], i1739[6])
COND_JMP25222(TRUE, i1739[7], i1739[7]) → JMP2522'(i1739[7], 0)
JMP4637'(i1739[8], i1739[8], i1739[8], i2851[8], i1739[8]) → COND_JMP46371(&&(>(i1739[8], 0), >(i2851[8], i1739[8])), i1739[8], i1739[8], i1739[8], i2851[8], i1739[8])
COND_JMP46371(TRUE, i1739[9], i1739[9], i1739[9], i2851[9], i1739[9]) → JMP4637'(i1739[9], i1739[9], i1739[9], -(i2851[9], i1739[9]), i1739[9])
JMP2522'(i322[10], i1739[10]) → COND_JMP25223(&&(&&(>(i1739[10], 0), >(-(i322[10], i1739[10]), i1739[10])), >(i322[10], i1739[10])), i322[10], i1739[10])
COND_JMP25223(TRUE, i322[11], i1739[11]) → JMP4637'(i1739[11], i1739[11], i1739[11], -(-(i322[11], i1739[11]), i1739[11]), i1739[11])
JMP2522'(i322[0], i1739[0]) → COND_JMP2522(&&(&&(>(i322[0], 0), <(i322[0], i1739[0])), !(=(i1739[0], 0))), i322[0], i1739[0])
COND_JMP2522(TRUE, i322[1], i1739[1]) → JMP2522'(i1739[1], i322[1])
JMP4637'(i1739[2], i1739[2], i1739[2], i2851[2], i1739[2]) → COND_JMP4637(&&(>(i1739[2], 0), <=(i2851[2], i1739[2])), i1739[2], i1739[2], i1739[2], i2851[2], i1739[2])
COND_JMP4637(TRUE, i1739[3], i1739[3], i1739[3], i2851[3], i1739[3]) → JMP2522'(i1739[3], i2851[3])
COND_JMP25221(TRUE, i322[5], i1739[5]) → JMP2522'(i1739[5], -(i322[5], i1739[5]))
COND_JMP25222(TRUE, i1739[7], i1739[7]) → JMP2522'(i1739[7], 0)
JMP4637'(i1739[8], i1739[8], i1739[8], i2851[8], i1739[8]) → COND_JMP46371(&&(>(i1739[8], 0), >(i2851[8], i1739[8])), i1739[8], i1739[8], i1739[8], i2851[8], i1739[8])
COND_JMP25223(TRUE, i322[11], i1739[11]) → JMP4637'(i1739[11], i1739[11], i1739[11], -(-(i322[11], i1739[11]), i1739[11]), i1739[11])
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(FALSE, FALSE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(1) -> (0), if ((i322[1] →* i1739[0])∧(i1739[1] →* i322[0]))
(3) -> (0), if ((i2851[3] →* i1739[0])∧(i1739[3] →* i322[0]))
(5) -> (0), if ((i322[5] - i1739[5] →* i1739[0])∧(i1739[5] →* i322[0]))
(7) -> (0), if ((i1739[7] →* i322[0])∧(0 →* i1739[0]))
(0) -> (1), if ((i322[0] > 0 && i322[0] < i1739[0] && !(i1739[0] = 0) →* TRUE)∧(i1739[0] →* i1739[1])∧(i322[0] →* i322[1]))
(11) -> (2), if ((i322[11] - i1739[11] - i1739[11] →* i2851[2])∧(i1739[11] →* i1739[2]))
(2) -> (3), if ((i1739[2] > 0 && i2851[2] <= i1739[2] →* TRUE)∧(i1739[2] →* i1739[3])∧(i2851[2] →* i2851[3]))
(11) -> (8), if ((i1739[11] →* i1739[8])∧(i322[11] - i1739[11] - i1739[11] →* i2851[8]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(1) -> (0), if ((i322[1] →* i1739[0])∧(i1739[1] →* i322[0]))
(0) -> (1), if ((i322[0] > 0 && i322[0] < i1739[0] && !(i1739[0] = 0) →* TRUE)∧(i1739[0] →* i1739[1])∧(i322[0] →* i322[1]))
(1) (&&(&&(>(i322[0], 0), <(i322[0], i1739[0])), !(=(i1739[0], 0)))=TRUE∧i1739[0]=i1739[1]∧i322[0]=i322[1]∧i322[1]=i1739[0]1∧i1739[1]=i322[0]1 ⇒ COND_JMP2522(TRUE, i322[1], i1739[1])≥NonInfC∧COND_JMP2522(TRUE, i322[1], i1739[1])≥JMP2522'(i1739[1], i322[1])∧(UIncreasing(JMP2522'(i1739[1], i322[1])), ≥))
(2) (>(i322[0], 0)=TRUE∧<(i322[0], i1739[0])=TRUE∧<(i1739[0], 0)=TRUE ⇒ COND_JMP2522(TRUE, i322[0], i1739[0])≥NonInfC∧COND_JMP2522(TRUE, i322[0], i1739[0])≥JMP2522'(i1739[0], i322[0])∧(UIncreasing(JMP2522'(i1739[1], i322[1])), ≥))
(3) (>(i322[0], 0)=TRUE∧<(i322[0], i1739[0])=TRUE∧>(i1739[0], 0)=TRUE ⇒ COND_JMP2522(TRUE, i322[0], i1739[0])≥NonInfC∧COND_JMP2522(TRUE, i322[0], i1739[0])≥JMP2522'(i1739[0], i322[0])∧(UIncreasing(JMP2522'(i1739[1], i322[1])), ≥))
(4) (i322[0] + [-1] ≥ 0∧i1739[0] + [-1] + [-1]i322[0] ≥ 0∧[-1] + [-1]i1739[0] ≥ 0 ⇒ (UIncreasing(JMP2522'(i1739[1], i322[1])), ≥)∧[(-3)bni_15 + (-1)Bound*bni_15] + [bni_15]i1739[0] ≥ 0∧[-2 + (-1)bso_16] + [2]i1739[0] + [-2]i322[0] ≥ 0)
(5) (i322[0] + [-1] ≥ 0∧i1739[0] + [-1] + [-1]i322[0] ≥ 0∧i1739[0] + [-1] ≥ 0 ⇒ (UIncreasing(JMP2522'(i1739[1], i322[1])), ≥)∧[(-3)bni_15 + (-1)Bound*bni_15] + [bni_15]i1739[0] ≥ 0∧[-2 + (-1)bso_16] + [2]i1739[0] + [-2]i322[0] ≥ 0)
(6) (i322[0] + [-1] ≥ 0∧i1739[0] + [-1] + [-1]i322[0] ≥ 0∧[-1] + [-1]i1739[0] ≥ 0 ⇒ (UIncreasing(JMP2522'(i1739[1], i322[1])), ≥)∧[(-3)bni_15 + (-1)Bound*bni_15] + [bni_15]i1739[0] ≥ 0∧[-2 + (-1)bso_16] + [2]i1739[0] + [-2]i322[0] ≥ 0)
(7) (i322[0] + [-1] ≥ 0∧i1739[0] + [-1] + [-1]i322[0] ≥ 0∧i1739[0] + [-1] ≥ 0 ⇒ (UIncreasing(JMP2522'(i1739[1], i322[1])), ≥)∧[(-3)bni_15 + (-1)Bound*bni_15] + [bni_15]i1739[0] ≥ 0∧[-2 + (-1)bso_16] + [2]i1739[0] + [-2]i322[0] ≥ 0)
(8) (i322[0] + [-1] ≥ 0∧i1739[0] + [-1] + [-1]i322[0] ≥ 0∧[-1] + [-1]i1739[0] ≥ 0 ⇒ (UIncreasing(JMP2522'(i1739[1], i322[1])), ≥)∧[(-3)bni_15 + (-1)Bound*bni_15] + [bni_15]i1739[0] ≥ 0∧[-2 + (-1)bso_16] + [2]i1739[0] + [-2]i322[0] ≥ 0)
(9) (i322[0] + [-1] ≥ 0∧i1739[0] + [-1] + [-1]i322[0] ≥ 0∧i1739[0] + [-1] ≥ 0 ⇒ (UIncreasing(JMP2522'(i1739[1], i322[1])), ≥)∧[(-3)bni_15 + (-1)Bound*bni_15] + [bni_15]i1739[0] ≥ 0∧[-2 + (-1)bso_16] + [2]i1739[0] + [-2]i322[0] ≥ 0)
(10) (i322[0] ≥ 0∧i1739[0] + [-2] + [-1]i322[0] ≥ 0∧i1739[0] + [-1] ≥ 0 ⇒ (UIncreasing(JMP2522'(i1739[1], i322[1])), ≥)∧[(-3)bni_15 + (-1)Bound*bni_15] + [bni_15]i1739[0] ≥ 0∧[-4 + (-1)bso_16] + [2]i1739[0] + [-2]i322[0] ≥ 0)
(11) (i322[0] ≥ 0∧i1739[0] ≥ 0∧[1] + i322[0] + i1739[0] ≥ 0 ⇒ (UIncreasing(JMP2522'(i1739[1], i322[1])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]i322[0] + [bni_15]i1739[0] ≥ 0∧[(-1)bso_16] + [2]i1739[0] ≥ 0)
(12) (i322[1]=i1739[0]∧i1739[1]=i322[0]∧&&(&&(>(i322[0], 0), <(i322[0], i1739[0])), !(=(i1739[0], 0)))=TRUE∧i1739[0]=i1739[1]1∧i322[0]=i322[1]1 ⇒ JMP2522'(i322[0], i1739[0])≥NonInfC∧JMP2522'(i322[0], i1739[0])≥COND_JMP2522(&&(&&(>(i322[0], 0), <(i322[0], i1739[0])), !(=(i1739[0], 0))), i322[0], i1739[0])∧(UIncreasing(COND_JMP2522(&&(&&(>(i322[0], 0), <(i322[0], i1739[0])), !(=(i1739[0], 0))), i322[0], i1739[0])), ≥))
(13) (>(i322[0], 0)=TRUE∧<(i322[0], i1739[0])=TRUE∧<(i1739[0], 0)=TRUE ⇒ JMP2522'(i322[0], i1739[0])≥NonInfC∧JMP2522'(i322[0], i1739[0])≥COND_JMP2522(&&(&&(>(i322[0], 0), <(i322[0], i1739[0])), !(=(i1739[0], 0))), i322[0], i1739[0])∧(UIncreasing(COND_JMP2522(&&(&&(>(i322[0], 0), <(i322[0], i1739[0])), !(=(i1739[0], 0))), i322[0], i1739[0])), ≥))
(14) (>(i322[0], 0)=TRUE∧<(i322[0], i1739[0])=TRUE∧>(i1739[0], 0)=TRUE ⇒ JMP2522'(i322[0], i1739[0])≥NonInfC∧JMP2522'(i322[0], i1739[0])≥COND_JMP2522(&&(&&(>(i322[0], 0), <(i322[0], i1739[0])), !(=(i1739[0], 0))), i322[0], i1739[0])∧(UIncreasing(COND_JMP2522(&&(&&(>(i322[0], 0), <(i322[0], i1739[0])), !(=(i1739[0], 0))), i322[0], i1739[0])), ≥))
(15) (i322[0] + [-1] ≥ 0∧i1739[0] + [-1] + [-1]i322[0] ≥ 0∧[-1] + [-1]i1739[0] ≥ 0 ⇒ (UIncreasing(COND_JMP2522(&&(&&(>(i322[0], 0), <(i322[0], i1739[0])), !(=(i1739[0], 0))), i322[0], i1739[0])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [(2)bni_17]i1739[0] + [(-1)bni_17]i322[0] ≥ 0∧[(-1)bso_18] + i1739[0] + [-1]i322[0] ≥ 0)
(16) (i322[0] + [-1] ≥ 0∧i1739[0] + [-1] + [-1]i322[0] ≥ 0∧i1739[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_JMP2522(&&(&&(>(i322[0], 0), <(i322[0], i1739[0])), !(=(i1739[0], 0))), i322[0], i1739[0])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [(2)bni_17]i1739[0] + [(-1)bni_17]i322[0] ≥ 0∧[(-1)bso_18] + i1739[0] + [-1]i322[0] ≥ 0)
(17) (i322[0] + [-1] ≥ 0∧i1739[0] + [-1] + [-1]i322[0] ≥ 0∧[-1] + [-1]i1739[0] ≥ 0 ⇒ (UIncreasing(COND_JMP2522(&&(&&(>(i322[0], 0), <(i322[0], i1739[0])), !(=(i1739[0], 0))), i322[0], i1739[0])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [(2)bni_17]i1739[0] + [(-1)bni_17]i322[0] ≥ 0∧[(-1)bso_18] + i1739[0] + [-1]i322[0] ≥ 0)
(18) (i322[0] + [-1] ≥ 0∧i1739[0] + [-1] + [-1]i322[0] ≥ 0∧i1739[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_JMP2522(&&(&&(>(i322[0], 0), <(i322[0], i1739[0])), !(=(i1739[0], 0))), i322[0], i1739[0])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [(2)bni_17]i1739[0] + [(-1)bni_17]i322[0] ≥ 0∧[(-1)bso_18] + i1739[0] + [-1]i322[0] ≥ 0)
(19) (i322[0] + [-1] ≥ 0∧i1739[0] + [-1] + [-1]i322[0] ≥ 0∧[-1] + [-1]i1739[0] ≥ 0 ⇒ (UIncreasing(COND_JMP2522(&&(&&(>(i322[0], 0), <(i322[0], i1739[0])), !(=(i1739[0], 0))), i322[0], i1739[0])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [(2)bni_17]i1739[0] + [(-1)bni_17]i322[0] ≥ 0∧[(-1)bso_18] + i1739[0] + [-1]i322[0] ≥ 0)
(20) (i322[0] + [-1] ≥ 0∧i1739[0] + [-1] + [-1]i322[0] ≥ 0∧i1739[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_JMP2522(&&(&&(>(i322[0], 0), <(i322[0], i1739[0])), !(=(i1739[0], 0))), i322[0], i1739[0])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [(2)bni_17]i1739[0] + [(-1)bni_17]i322[0] ≥ 0∧[(-1)bso_18] + i1739[0] + [-1]i322[0] ≥ 0)
(21) (i322[0] ≥ 0∧i1739[0] + [-2] + [-1]i322[0] ≥ 0∧i1739[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_JMP2522(&&(&&(>(i322[0], 0), <(i322[0], i1739[0])), !(=(i1739[0], 0))), i322[0], i1739[0])), ≥)∧[(-2)bni_17 + (-1)Bound*bni_17] + [(2)bni_17]i1739[0] + [(-1)bni_17]i322[0] ≥ 0∧[-1 + (-1)bso_18] + i1739[0] + [-1]i322[0] ≥ 0)
(22) (i322[0] ≥ 0∧i1739[0] ≥ 0∧[1] + i322[0] + i1739[0] ≥ 0 ⇒ (UIncreasing(COND_JMP2522(&&(&&(>(i322[0], 0), <(i322[0], i1739[0])), !(=(i1739[0], 0))), i322[0], i1739[0])), ≥)∧[(2)bni_17 + (-1)Bound*bni_17] + [bni_17]i322[0] + [(2)bni_17]i1739[0] ≥ 0∧[1 + (-1)bso_18] + i1739[0] ≥ 0)
POL(TRUE) = [2]
POL(FALSE) = 0
POL(COND_JMP2522(x1, x2, x3)) = [-1] + x3 + [-1]x1
POL(JMP2522'(x1, x2)) = [-1] + [2]x2 + [-1]x1
POL(&&(x1, x2)) = 0
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(<(x1, x2)) = [-1]
POL(!(x1)) = [-1]
POL(=(x1, x2)) = [-1]
JMP2522'(i322[0], i1739[0]) → COND_JMP2522(&&(&&(>(i322[0], 0), <(i322[0], i1739[0])), !(=(i1739[0], 0))), i322[0], i1739[0])
COND_JMP2522(TRUE, i322[1], i1739[1]) → JMP2522'(i1739[1], i322[1])
JMP2522'(i322[0], i1739[0]) → COND_JMP2522(&&(&&(>(i322[0], 0), <(i322[0], i1739[0])), !(=(i1739[0], 0))), i322[0], i1739[0])
COND_JMP2522(TRUE, i322[1], i1739[1]) → JMP2522'(i1739[1], i322[1])
TRUE1 → &&(TRUE, TRUE)1
&&(TRUE, FALSE)1 ↔ FALSE1
&&(FALSE, TRUE)1 ↔ FALSE1
&&(FALSE, FALSE)1 ↔ FALSE1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(2) -> (3), if ((i1739[2] > 0 && i2851[2] <= i1739[2] →* TRUE)∧(i1739[2] →* i1739[3])∧(i2851[2] →* i2851[3]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i1819[0] →* i1819[1])∧(i42[0] →* i42[1])∧(i42[0] > 0 && i1819[0] > i42[0] →* TRUE))
(1) -> (0), if ((i1819[1] - i42[1] →* i1819[0])∧(i42[1] →* i42[0]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i1819[0] →* i1819[1])∧(i42[0] →* i42[1])∧(i42[0] > 0 && i1819[0] > i42[0] →* TRUE))
(1) -> (0), if ((i1819[1] - i42[1] →* i1819[0])∧(i42[1] →* i42[0]))
(1) (i1819[0]=i1819[1]∧i42[0]=i42[1]∧&&(>(i42[0], 0), >(i1819[0], i42[0]))=TRUE ⇒ JMP3853'(i42[0], i42[0], i42[0], i42[0], i1819[0], i42[0])≥NonInfC∧JMP3853'(i42[0], i42[0], i42[0], i42[0], i1819[0], i42[0])≥COND_JMP3853(&&(>(i42[0], 0), >(i1819[0], i42[0])), i42[0], i42[0], i42[0], i42[0], i1819[0], i42[0])∧(UIncreasing(COND_JMP3853(&&(>(i42[0], 0), >(i1819[0], i42[0])), i42[0], i42[0], i42[0], i42[0], i1819[0], i42[0])), ≥))
(2) (>(i42[0], 0)=TRUE∧>(i1819[0], i42[0])=TRUE ⇒ JMP3853'(i42[0], i42[0], i42[0], i42[0], i1819[0], i42[0])≥NonInfC∧JMP3853'(i42[0], i42[0], i42[0], i42[0], i1819[0], i42[0])≥COND_JMP3853(&&(>(i42[0], 0), >(i1819[0], i42[0])), i42[0], i42[0], i42[0], i42[0], i1819[0], i42[0])∧(UIncreasing(COND_JMP3853(&&(>(i42[0], 0), >(i1819[0], i42[0])), i42[0], i42[0], i42[0], i42[0], i1819[0], i42[0])), ≥))
(3) (i42[0] + [-1] ≥ 0∧i1819[0] + [-1] + [-1]i42[0] ≥ 0 ⇒ (UIncreasing(COND_JMP3853(&&(>(i42[0], 0), >(i1819[0], i42[0])), i42[0], i42[0], i42[0], i42[0], i1819[0], i42[0])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [(-1)bni_20]i42[0] + [bni_20]i1819[0] ≥ 0∧[-1 + (-1)bso_21] + i42[0] ≥ 0)
(4) (i42[0] + [-1] ≥ 0∧i1819[0] + [-1] + [-1]i42[0] ≥ 0 ⇒ (UIncreasing(COND_JMP3853(&&(>(i42[0], 0), >(i1819[0], i42[0])), i42[0], i42[0], i42[0], i42[0], i1819[0], i42[0])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [(-1)bni_20]i42[0] + [bni_20]i1819[0] ≥ 0∧[-1 + (-1)bso_21] + i42[0] ≥ 0)
(5) (i42[0] + [-1] ≥ 0∧i1819[0] + [-1] + [-1]i42[0] ≥ 0 ⇒ (UIncreasing(COND_JMP3853(&&(>(i42[0], 0), >(i1819[0], i42[0])), i42[0], i42[0], i42[0], i42[0], i1819[0], i42[0])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [(-1)bni_20]i42[0] + [bni_20]i1819[0] ≥ 0∧[-1 + (-1)bso_21] + i42[0] ≥ 0)
(6) (i42[0] ≥ 0∧i1819[0] + [-2] + [-1]i42[0] ≥ 0 ⇒ (UIncreasing(COND_JMP3853(&&(>(i42[0], 0), >(i1819[0], i42[0])), i42[0], i42[0], i42[0], i42[0], i1819[0], i42[0])), ≥)∧[(-2)bni_20 + (-1)Bound*bni_20] + [(-1)bni_20]i42[0] + [bni_20]i1819[0] ≥ 0∧[(-1)bso_21] + i42[0] ≥ 0)
(7) (i42[0] ≥ 0∧i1819[0] ≥ 0 ⇒ (UIncreasing(COND_JMP3853(&&(>(i42[0], 0), >(i1819[0], i42[0])), i42[0], i42[0], i42[0], i42[0], i1819[0], i42[0])), ≥)∧[(-1)Bound*bni_20] + [bni_20]i1819[0] ≥ 0∧[(-1)bso_21] + i42[0] ≥ 0)
(8) (i1819[0]=i1819[1]∧i42[0]=i42[1]∧&&(>(i42[0], 0), >(i1819[0], i42[0]))=TRUE∧-(i1819[1], i42[1])=i1819[0]1∧i42[1]=i42[0]1 ⇒ COND_JMP3853(TRUE, i42[1], i42[1], i42[1], i42[1], i1819[1], i42[1])≥NonInfC∧COND_JMP3853(TRUE, i42[1], i42[1], i42[1], i42[1], i1819[1], i42[1])≥JMP3853'(i42[1], i42[1], i42[1], i42[1], -(i1819[1], i42[1]), i42[1])∧(UIncreasing(JMP3853'(i42[1], i42[1], i42[1], i42[1], -(i1819[1], i42[1]), i42[1])), ≥))
(9) (>(i42[0], 0)=TRUE∧>(i1819[0], i42[0])=TRUE ⇒ COND_JMP3853(TRUE, i42[0], i42[0], i42[0], i42[0], i1819[0], i42[0])≥NonInfC∧COND_JMP3853(TRUE, i42[0], i42[0], i42[0], i42[0], i1819[0], i42[0])≥JMP3853'(i42[0], i42[0], i42[0], i42[0], -(i1819[0], i42[0]), i42[0])∧(UIncreasing(JMP3853'(i42[1], i42[1], i42[1], i42[1], -(i1819[1], i42[1]), i42[1])), ≥))
(10) (i42[0] + [-1] ≥ 0∧i1819[0] + [-1] + [-1]i42[0] ≥ 0 ⇒ (UIncreasing(JMP3853'(i42[1], i42[1], i42[1], i42[1], -(i1819[1], i42[1]), i42[1])), ≥)∧[(-1)Bound*bni_22] + [(-2)bni_22]i42[0] + [bni_22]i1819[0] ≥ 0∧[1 + (-1)bso_23] ≥ 0)
(11) (i42[0] + [-1] ≥ 0∧i1819[0] + [-1] + [-1]i42[0] ≥ 0 ⇒ (UIncreasing(JMP3853'(i42[1], i42[1], i42[1], i42[1], -(i1819[1], i42[1]), i42[1])), ≥)∧[(-1)Bound*bni_22] + [(-2)bni_22]i42[0] + [bni_22]i1819[0] ≥ 0∧[1 + (-1)bso_23] ≥ 0)
(12) (i42[0] + [-1] ≥ 0∧i1819[0] + [-1] + [-1]i42[0] ≥ 0 ⇒ (UIncreasing(JMP3853'(i42[1], i42[1], i42[1], i42[1], -(i1819[1], i42[1]), i42[1])), ≥)∧[(-1)Bound*bni_22] + [(-2)bni_22]i42[0] + [bni_22]i1819[0] ≥ 0∧[1 + (-1)bso_23] ≥ 0)
(13) (i42[0] ≥ 0∧i1819[0] + [-2] + [-1]i42[0] ≥ 0 ⇒ (UIncreasing(JMP3853'(i42[1], i42[1], i42[1], i42[1], -(i1819[1], i42[1]), i42[1])), ≥)∧[(-1)Bound*bni_22 + (-2)bni_22] + [(-2)bni_22]i42[0] + [bni_22]i1819[0] ≥ 0∧[1 + (-1)bso_23] ≥ 0)
(14) (i42[0] ≥ 0∧i1819[0] ≥ 0 ⇒ (UIncreasing(JMP3853'(i42[1], i42[1], i42[1], i42[1], -(i1819[1], i42[1]), i42[1])), ≥)∧[(-1)Bound*bni_22] + [(-1)bni_22]i42[0] + [bni_22]i1819[0] ≥ 0∧[1 + (-1)bso_23] ≥ 0)
POL(TRUE) = [1]
POL(FALSE) = [2]
POL(JMP3853'(x1, x2, x3, x4, x5, x6)) = [-1] + x6 + x5 + [-1]x4 + [-1]x3
POL(COND_JMP3853(x1, x2, x3, x4, x5, x6, x7)) = [1] + [2]x7 + x6 + [-1]x5 + [-1]x4 + [-1]x3 + [-1]x2 + [-1]x1
POL(&&(x1, x2)) = [1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(-(x1, x2)) = x1 + [-1]x2
COND_JMP3853(TRUE, i42[1], i42[1], i42[1], i42[1], i1819[1], i42[1]) → JMP3853'(i42[1], i42[1], i42[1], i42[1], -(i1819[1], i42[1]), i42[1])
JMP3853'(i42[0], i42[0], i42[0], i42[0], i1819[0], i42[0]) → COND_JMP3853(&&(>(i42[0], 0), >(i1819[0], i42[0])), i42[0], i42[0], i42[0], i42[0], i1819[0], i42[0])
JMP3853'(i42[0], i42[0], i42[0], i42[0], i1819[0], i42[0]) → COND_JMP3853(&&(>(i42[0], 0), >(i1819[0], i42[0])), i42[0], i42[0], i42[0], i42[0], i1819[0], i42[0])
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(FALSE, FALSE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i1779[0] →* i1779[1])∧(i1023[0] →* i1023[1])∧(i1023[0] > 0 && i1779[0] > i1023[0] →* TRUE))
(1) -> (0), if ((i1779[1] - i1023[1] →* i1779[0])∧(i1023[1] →* i1023[0]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i1779[0] →* i1779[1])∧(i1023[0] →* i1023[1])∧(i1023[0] > 0 && i1779[0] > i1023[0] →* TRUE))
(1) -> (0), if ((i1779[1] - i1023[1] →* i1779[0])∧(i1023[1] →* i1023[0]))
(1) (i1779[0]=i1779[1]∧i1023[0]=i1023[1]∧&&(>(i1023[0], 0), >(i1779[0], i1023[0]))=TRUE ⇒ JMP3835'(i1023[0], i1023[0], i1023[0], i1779[0], i1023[0])≥NonInfC∧JMP3835'(i1023[0], i1023[0], i1023[0], i1779[0], i1023[0])≥COND_JMP3835(&&(>(i1023[0], 0), >(i1779[0], i1023[0])), i1023[0], i1023[0], i1023[0], i1779[0], i1023[0])∧(UIncreasing(COND_JMP3835(&&(>(i1023[0], 0), >(i1779[0], i1023[0])), i1023[0], i1023[0], i1023[0], i1779[0], i1023[0])), ≥))
(2) (>(i1023[0], 0)=TRUE∧>(i1779[0], i1023[0])=TRUE ⇒ JMP3835'(i1023[0], i1023[0], i1023[0], i1779[0], i1023[0])≥NonInfC∧JMP3835'(i1023[0], i1023[0], i1023[0], i1779[0], i1023[0])≥COND_JMP3835(&&(>(i1023[0], 0), >(i1779[0], i1023[0])), i1023[0], i1023[0], i1023[0], i1779[0], i1023[0])∧(UIncreasing(COND_JMP3835(&&(>(i1023[0], 0), >(i1779[0], i1023[0])), i1023[0], i1023[0], i1023[0], i1779[0], i1023[0])), ≥))
(3) (i1023[0] + [-1] ≥ 0∧i1779[0] + [-1] + [-1]i1023[0] ≥ 0 ⇒ (UIncreasing(COND_JMP3835(&&(>(i1023[0], 0), >(i1779[0], i1023[0])), i1023[0], i1023[0], i1023[0], i1779[0], i1023[0])), ≥)∧[bni_18 + (-1)Bound*bni_18] + [(-1)bni_18]i1023[0] + [(2)bni_18]i1779[0] ≥ 0∧[-1 + (-1)bso_19] + i1023[0] ≥ 0)
(4) (i1023[0] + [-1] ≥ 0∧i1779[0] + [-1] + [-1]i1023[0] ≥ 0 ⇒ (UIncreasing(COND_JMP3835(&&(>(i1023[0], 0), >(i1779[0], i1023[0])), i1023[0], i1023[0], i1023[0], i1779[0], i1023[0])), ≥)∧[bni_18 + (-1)Bound*bni_18] + [(-1)bni_18]i1023[0] + [(2)bni_18]i1779[0] ≥ 0∧[-1 + (-1)bso_19] + i1023[0] ≥ 0)
(5) (i1023[0] + [-1] ≥ 0∧i1779[0] + [-1] + [-1]i1023[0] ≥ 0 ⇒ (UIncreasing(COND_JMP3835(&&(>(i1023[0], 0), >(i1779[0], i1023[0])), i1023[0], i1023[0], i1023[0], i1779[0], i1023[0])), ≥)∧[bni_18 + (-1)Bound*bni_18] + [(-1)bni_18]i1023[0] + [(2)bni_18]i1779[0] ≥ 0∧[-1 + (-1)bso_19] + i1023[0] ≥ 0)
(6) (i1023[0] ≥ 0∧i1779[0] + [-2] + [-1]i1023[0] ≥ 0 ⇒ (UIncreasing(COND_JMP3835(&&(>(i1023[0], 0), >(i1779[0], i1023[0])), i1023[0], i1023[0], i1023[0], i1779[0], i1023[0])), ≥)∧[(-1)Bound*bni_18] + [(-1)bni_18]i1023[0] + [(2)bni_18]i1779[0] ≥ 0∧[(-1)bso_19] + i1023[0] ≥ 0)
(7) (i1023[0] ≥ 0∧i1779[0] ≥ 0 ⇒ (UIncreasing(COND_JMP3835(&&(>(i1023[0], 0), >(i1779[0], i1023[0])), i1023[0], i1023[0], i1023[0], i1779[0], i1023[0])), ≥)∧[(-1)Bound*bni_18 + (4)bni_18] + [bni_18]i1023[0] + [(2)bni_18]i1779[0] ≥ 0∧[(-1)bso_19] + i1023[0] ≥ 0)
(8) (i1779[0]=i1779[1]∧i1023[0]=i1023[1]∧&&(>(i1023[0], 0), >(i1779[0], i1023[0]))=TRUE∧-(i1779[1], i1023[1])=i1779[0]1∧i1023[1]=i1023[0]1 ⇒ COND_JMP3835(TRUE, i1023[1], i1023[1], i1023[1], i1779[1], i1023[1])≥NonInfC∧COND_JMP3835(TRUE, i1023[1], i1023[1], i1023[1], i1779[1], i1023[1])≥JMP3835'(i1023[1], i1023[1], i1023[1], -(i1779[1], i1023[1]), i1023[1])∧(UIncreasing(JMP3835'(i1023[1], i1023[1], i1023[1], -(i1779[1], i1023[1]), i1023[1])), ≥))
(9) (>(i1023[0], 0)=TRUE∧>(i1779[0], i1023[0])=TRUE ⇒ COND_JMP3835(TRUE, i1023[0], i1023[0], i1023[0], i1779[0], i1023[0])≥NonInfC∧COND_JMP3835(TRUE, i1023[0], i1023[0], i1023[0], i1779[0], i1023[0])≥JMP3835'(i1023[0], i1023[0], i1023[0], -(i1779[0], i1023[0]), i1023[0])∧(UIncreasing(JMP3835'(i1023[1], i1023[1], i1023[1], -(i1779[1], i1023[1]), i1023[1])), ≥))
(10) (i1023[0] + [-1] ≥ 0∧i1779[0] + [-1] + [-1]i1023[0] ≥ 0 ⇒ (UIncreasing(JMP3835'(i1023[1], i1023[1], i1023[1], -(i1779[1], i1023[1]), i1023[1])), ≥)∧[bni_20 + (-1)Bound*bni_20] + [(-2)bni_20]i1023[0] + [(2)bni_20]i1779[0] ≥ 0∧[(-1)bso_21] + i1023[0] ≥ 0)
(11) (i1023[0] + [-1] ≥ 0∧i1779[0] + [-1] + [-1]i1023[0] ≥ 0 ⇒ (UIncreasing(JMP3835'(i1023[1], i1023[1], i1023[1], -(i1779[1], i1023[1]), i1023[1])), ≥)∧[bni_20 + (-1)Bound*bni_20] + [(-2)bni_20]i1023[0] + [(2)bni_20]i1779[0] ≥ 0∧[(-1)bso_21] + i1023[0] ≥ 0)
(12) (i1023[0] + [-1] ≥ 0∧i1779[0] + [-1] + [-1]i1023[0] ≥ 0 ⇒ (UIncreasing(JMP3835'(i1023[1], i1023[1], i1023[1], -(i1779[1], i1023[1]), i1023[1])), ≥)∧[bni_20 + (-1)Bound*bni_20] + [(-2)bni_20]i1023[0] + [(2)bni_20]i1779[0] ≥ 0∧[(-1)bso_21] + i1023[0] ≥ 0)
(13) (i1023[0] ≥ 0∧i1779[0] + [-2] + [-1]i1023[0] ≥ 0 ⇒ (UIncreasing(JMP3835'(i1023[1], i1023[1], i1023[1], -(i1779[1], i1023[1]), i1023[1])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [(-2)bni_20]i1023[0] + [(2)bni_20]i1779[0] ≥ 0∧[1 + (-1)bso_21] + i1023[0] ≥ 0)
(14) (i1023[0] ≥ 0∧i1779[0] ≥ 0 ⇒ (UIncreasing(JMP3835'(i1023[1], i1023[1], i1023[1], -(i1779[1], i1023[1]), i1023[1])), ≥)∧[(3)bni_20 + (-1)Bound*bni_20] + [(2)bni_20]i1779[0] ≥ 0∧[1 + (-1)bso_21] + i1023[0] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = [1]
POL(JMP3835'(x1, x2, x3, x4, x5)) = [1] + [2]x5 + [2]x4 + [-1]x3 + [-1]x2 + [-1]x1
POL(COND_JMP3835(x1, x2, x3, x4, x5, x6)) = [1] + [-1]x6 + [2]x5 + [-1]x4 + [-1]x3 + x2 + [-1]x1
POL(&&(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(-(x1, x2)) = x1 + [-1]x2
COND_JMP3835(TRUE, i1023[1], i1023[1], i1023[1], i1779[1], i1023[1]) → JMP3835'(i1023[1], i1023[1], i1023[1], -(i1779[1], i1023[1]), i1023[1])
JMP3835'(i1023[0], i1023[0], i1023[0], i1779[0], i1023[0]) → COND_JMP3835(&&(>(i1023[0], 0), >(i1779[0], i1023[0])), i1023[0], i1023[0], i1023[0], i1779[0], i1023[0])
COND_JMP3835(TRUE, i1023[1], i1023[1], i1023[1], i1779[1], i1023[1]) → JMP3835'(i1023[1], i1023[1], i1023[1], -(i1779[1], i1023[1]), i1023[1])
JMP3835'(i1023[0], i1023[0], i1023[0], i1779[0], i1023[0]) → COND_JMP3835(&&(>(i1023[0], 0), >(i1779[0], i1023[0])), i1023[0], i1023[0], i1023[0], i1779[0], i1023[0])
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(FALSE, FALSE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i654[0] →* i654[1])∧(i322[0] > 0 && i654[0] > i322[0] →* TRUE)∧(i322[0] →* i322[1]))
(1) -> (0), if ((i654[1] - i322[1] →* i654[0])∧(i322[1] →* i322[0]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i654[0] →* i654[1])∧(i322[0] > 0 && i654[0] > i322[0] →* TRUE)∧(i322[0] →* i322[1]))
(1) -> (0), if ((i654[1] - i322[1] →* i654[0])∧(i322[1] →* i322[0]))
(1) (i654[0]=i654[1]∧&&(>(i322[0], 0), >(i654[0], i322[0]))=TRUE∧i322[0]=i322[1] ⇒ JMP1981'(i322[0], i322[0], i322[0], i654[0], i322[0])≥NonInfC∧JMP1981'(i322[0], i322[0], i322[0], i654[0], i322[0])≥COND_JMP1981(&&(>(i322[0], 0), >(i654[0], i322[0])), i322[0], i322[0], i322[0], i654[0], i322[0])∧(UIncreasing(COND_JMP1981(&&(>(i322[0], 0), >(i654[0], i322[0])), i322[0], i322[0], i322[0], i654[0], i322[0])), ≥))
(2) (>(i322[0], 0)=TRUE∧>(i654[0], i322[0])=TRUE ⇒ JMP1981'(i322[0], i322[0], i322[0], i654[0], i322[0])≥NonInfC∧JMP1981'(i322[0], i322[0], i322[0], i654[0], i322[0])≥COND_JMP1981(&&(>(i322[0], 0), >(i654[0], i322[0])), i322[0], i322[0], i322[0], i654[0], i322[0])∧(UIncreasing(COND_JMP1981(&&(>(i322[0], 0), >(i654[0], i322[0])), i322[0], i322[0], i322[0], i654[0], i322[0])), ≥))
(3) (i322[0] + [-1] ≥ 0∧i654[0] + [-1] + [-1]i322[0] ≥ 0 ⇒ (UIncreasing(COND_JMP1981(&&(>(i322[0], 0), >(i654[0], i322[0])), i322[0], i322[0], i322[0], i654[0], i322[0])), ≥)∧[(-1)Bound*bni_18] + [(-2)bni_18]i322[0] + [(2)bni_18]i654[0] ≥ 0∧[-1 + (-1)bso_19] + [2]i322[0] ≥ 0)
(4) (i322[0] + [-1] ≥ 0∧i654[0] + [-1] + [-1]i322[0] ≥ 0 ⇒ (UIncreasing(COND_JMP1981(&&(>(i322[0], 0), >(i654[0], i322[0])), i322[0], i322[0], i322[0], i654[0], i322[0])), ≥)∧[(-1)Bound*bni_18] + [(-2)bni_18]i322[0] + [(2)bni_18]i654[0] ≥ 0∧[-1 + (-1)bso_19] + [2]i322[0] ≥ 0)
(5) (i322[0] + [-1] ≥ 0∧i654[0] + [-1] + [-1]i322[0] ≥ 0 ⇒ (UIncreasing(COND_JMP1981(&&(>(i322[0], 0), >(i654[0], i322[0])), i322[0], i322[0], i322[0], i654[0], i322[0])), ≥)∧[(-1)Bound*bni_18] + [(-2)bni_18]i322[0] + [(2)bni_18]i654[0] ≥ 0∧[-1 + (-1)bso_19] + [2]i322[0] ≥ 0)
(6) (i322[0] ≥ 0∧i654[0] + [-2] + [-1]i322[0] ≥ 0 ⇒ (UIncreasing(COND_JMP1981(&&(>(i322[0], 0), >(i654[0], i322[0])), i322[0], i322[0], i322[0], i654[0], i322[0])), ≥)∧[(-1)Bound*bni_18 + (-2)bni_18] + [(-2)bni_18]i322[0] + [(2)bni_18]i654[0] ≥ 0∧[1 + (-1)bso_19] + [2]i322[0] ≥ 0)
(7) (i322[0] ≥ 0∧i654[0] ≥ 0 ⇒ (UIncreasing(COND_JMP1981(&&(>(i322[0], 0), >(i654[0], i322[0])), i322[0], i322[0], i322[0], i654[0], i322[0])), ≥)∧[(-1)Bound*bni_18 + (2)bni_18] + [(2)bni_18]i654[0] ≥ 0∧[1 + (-1)bso_19] + [2]i322[0] ≥ 0)
(8) (i654[0]=i654[1]∧&&(>(i322[0], 0), >(i654[0], i322[0]))=TRUE∧i322[0]=i322[1]∧-(i654[1], i322[1])=i654[0]1∧i322[1]=i322[0]1 ⇒ COND_JMP1981(TRUE, i322[1], i322[1], i322[1], i654[1], i322[1])≥NonInfC∧COND_JMP1981(TRUE, i322[1], i322[1], i322[1], i654[1], i322[1])≥JMP1981'(i322[1], i322[1], i322[1], -(i654[1], i322[1]), i322[1])∧(UIncreasing(JMP1981'(i322[1], i322[1], i322[1], -(i654[1], i322[1]), i322[1])), ≥))
(9) (>(i322[0], 0)=TRUE∧>(i654[0], i322[0])=TRUE ⇒ COND_JMP1981(TRUE, i322[0], i322[0], i322[0], i654[0], i322[0])≥NonInfC∧COND_JMP1981(TRUE, i322[0], i322[0], i322[0], i654[0], i322[0])≥JMP1981'(i322[0], i322[0], i322[0], -(i654[0], i322[0]), i322[0])∧(UIncreasing(JMP1981'(i322[1], i322[1], i322[1], -(i654[1], i322[1]), i322[1])), ≥))
(10) (i322[0] + [-1] ≥ 0∧i654[0] + [-1] + [-1]i322[0] ≥ 0 ⇒ (UIncreasing(JMP1981'(i322[1], i322[1], i322[1], -(i654[1], i322[1]), i322[1])), ≥)∧[(-1)Bound*bni_20] + [(-4)bni_20]i322[0] + [(2)bni_20]i654[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(11) (i322[0] + [-1] ≥ 0∧i654[0] + [-1] + [-1]i322[0] ≥ 0 ⇒ (UIncreasing(JMP1981'(i322[1], i322[1], i322[1], -(i654[1], i322[1]), i322[1])), ≥)∧[(-1)Bound*bni_20] + [(-4)bni_20]i322[0] + [(2)bni_20]i654[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(12) (i322[0] + [-1] ≥ 0∧i654[0] + [-1] + [-1]i322[0] ≥ 0 ⇒ (UIncreasing(JMP1981'(i322[1], i322[1], i322[1], -(i654[1], i322[1]), i322[1])), ≥)∧[(-1)Bound*bni_20] + [(-4)bni_20]i322[0] + [(2)bni_20]i654[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(13) (i322[0] ≥ 0∧i654[0] + [-2] + [-1]i322[0] ≥ 0 ⇒ (UIncreasing(JMP1981'(i322[1], i322[1], i322[1], -(i654[1], i322[1]), i322[1])), ≥)∧[(-1)Bound*bni_20 + (-4)bni_20] + [(-4)bni_20]i322[0] + [(2)bni_20]i654[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(14) (i322[0] ≥ 0∧i654[0] ≥ 0 ⇒ (UIncreasing(JMP1981'(i322[1], i322[1], i322[1], -(i654[1], i322[1]), i322[1])), ≥)∧[(-1)Bound*bni_20] + [(-2)bni_20]i322[0] + [(2)bni_20]i654[0] ≥ 0∧[(-1)bso_21] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = [2]
POL(JMP1981'(x1, x2, x3, x4, x5)) = [2]x4 + [-1]x3 + [-1]x1
POL(COND_JMP1981(x1, x2, x3, x4, x5, x6)) = [-1]x6 + [2]x5 + [-1]x4 + [-1]x3 + [-1]x2 + [-1]x1
POL(&&(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(-(x1, x2)) = x1 + [-1]x2
JMP1981'(i322[0], i322[0], i322[0], i654[0], i322[0]) → COND_JMP1981(&&(>(i322[0], 0), >(i654[0], i322[0])), i322[0], i322[0], i322[0], i654[0], i322[0])
JMP1981'(i322[0], i322[0], i322[0], i654[0], i322[0]) → COND_JMP1981(&&(>(i322[0], 0), >(i654[0], i322[0])), i322[0], i322[0], i322[0], i654[0], i322[0])
COND_JMP1981(TRUE, i322[1], i322[1], i322[1], i654[1], i322[1]) → JMP1981'(i322[1], i322[1], i322[1], -(i654[1], i322[1]), i322[1])
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(FALSE, FALSE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(0) -> (1), if ((i1023[0] > 0 →* TRUE)∧(i1023[0] →* i1023[1]))
(1) -> (0), if ((0 →* i1023[0])∧(i1023[1] →* i1023[0]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(0) -> (1), if ((i1023[0] > 0 →* TRUE)∧(i1023[0] →* i1023[1]))
(1) -> (0), if ((0 →* i1023[0])∧(i1023[1] →* i1023[0]))
(1) (>(i1023[0], 0)=TRUE∧i1023[0]=i1023[1] ⇒ JMP1936'(i1023[0], i1023[0], i1023[0])≥NonInfC∧JMP1936'(i1023[0], i1023[0], i1023[0])≥COND_JMP1936(>(i1023[0], 0), i1023[0], i1023[0], i1023[0])∧(UIncreasing(COND_JMP1936(>(i1023[0], 0), i1023[0], i1023[0], i1023[0])), ≥))
(2) (>(i1023[0], 0)=TRUE ⇒ JMP1936'(i1023[0], i1023[0], i1023[0])≥NonInfC∧JMP1936'(i1023[0], i1023[0], i1023[0])≥COND_JMP1936(>(i1023[0], 0), i1023[0], i1023[0], i1023[0])∧(UIncreasing(COND_JMP1936(>(i1023[0], 0), i1023[0], i1023[0], i1023[0])), ≥))
(3) (i1023[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_JMP1936(>(i1023[0], 0), i1023[0], i1023[0], i1023[0])), ≥)∧[(-1)bni_12 + (-1)Bound*bni_12] + [(4)bni_12]i1023[0] ≥ 0∧[-2 + (-1)bso_13] + [2]i1023[0] ≥ 0)
(4) (i1023[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_JMP1936(>(i1023[0], 0), i1023[0], i1023[0], i1023[0])), ≥)∧[(-1)bni_12 + (-1)Bound*bni_12] + [(4)bni_12]i1023[0] ≥ 0∧[-2 + (-1)bso_13] + [2]i1023[0] ≥ 0)
(5) (i1023[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_JMP1936(>(i1023[0], 0), i1023[0], i1023[0], i1023[0])), ≥)∧[(-1)bni_12 + (-1)Bound*bni_12] + [(4)bni_12]i1023[0] ≥ 0∧[-2 + (-1)bso_13] + [2]i1023[0] ≥ 0)
(6) (i1023[0] ≥ 0 ⇒ (UIncreasing(COND_JMP1936(>(i1023[0], 0), i1023[0], i1023[0], i1023[0])), ≥)∧[(3)bni_12 + (-1)Bound*bni_12] + [(4)bni_12]i1023[0] ≥ 0∧[(-1)bso_13] + [2]i1023[0] ≥ 0)
(7) (COND_JMP1936(TRUE, i1023[1], i1023[1], i1023[1])≥NonInfC∧COND_JMP1936(TRUE, i1023[1], i1023[1], i1023[1])≥JMP1936'(i1023[1], i1023[1], 0)∧(UIncreasing(JMP1936'(i1023[1], i1023[1], 0)), ≥))
(8) ((UIncreasing(JMP1936'(i1023[1], i1023[1], 0)), ≥)∧[2 + (-1)bso_15] ≥ 0)
(9) ((UIncreasing(JMP1936'(i1023[1], i1023[1], 0)), ≥)∧[2 + (-1)bso_15] ≥ 0)
(10) ((UIncreasing(JMP1936'(i1023[1], i1023[1], 0)), ≥)∧[2 + (-1)bso_15] ≥ 0)
(11) ((UIncreasing(JMP1936'(i1023[1], i1023[1], 0)), ≥)∧0 = 0∧[2 + (-1)bso_15] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(JMP1936'(x1, x2, x3)) = [-1] + [2]x3 + x2 + x1
POL(COND_JMP1936(x1, x2, x3, x4)) = [1] + x4 + [-1]x3 + [2]x2
POL(>(x1, x2)) = [-1]
POL(0) = 0
COND_JMP1936(TRUE, i1023[1], i1023[1], i1023[1]) → JMP1936'(i1023[1], i1023[1], 0)
JMP1936'(i1023[0], i1023[0], i1023[0]) → COND_JMP1936(>(i1023[0], 0), i1023[0], i1023[0], i1023[0])
JMP1936'(i1023[0], i1023[0], i1023[0]) → COND_JMP1936(>(i1023[0], 0), i1023[0], i1023[0], i1023[0])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i341[0] →* i341[1])∧(i40[0] →* i40[1])∧(i40[0] > 0 && i341[0] > i40[0] →* TRUE))
(1) -> (0), if ((i40[1] →* i40[0])∧(i341[1] - i40[1] →* i341[0]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i341[0] →* i341[1])∧(i40[0] →* i40[1])∧(i40[0] > 0 && i341[0] > i40[0] →* TRUE))
(1) -> (0), if ((i40[1] →* i40[0])∧(i341[1] - i40[1] →* i341[0]))
(1) (i341[0]=i341[1]∧i40[0]=i40[1]∧&&(>(i40[0], 0), >(i341[0], i40[0]))=TRUE ⇒ JMP1590'(i40[0], i40[0], i40[0], i40[0], i341[0], i40[0])≥NonInfC∧JMP1590'(i40[0], i40[0], i40[0], i40[0], i341[0], i40[0])≥COND_JMP1590(&&(>(i40[0], 0), >(i341[0], i40[0])), i40[0], i40[0], i40[0], i40[0], i341[0], i40[0])∧(UIncreasing(COND_JMP1590(&&(>(i40[0], 0), >(i341[0], i40[0])), i40[0], i40[0], i40[0], i40[0], i341[0], i40[0])), ≥))
(2) (>(i40[0], 0)=TRUE∧>(i341[0], i40[0])=TRUE ⇒ JMP1590'(i40[0], i40[0], i40[0], i40[0], i341[0], i40[0])≥NonInfC∧JMP1590'(i40[0], i40[0], i40[0], i40[0], i341[0], i40[0])≥COND_JMP1590(&&(>(i40[0], 0), >(i341[0], i40[0])), i40[0], i40[0], i40[0], i40[0], i341[0], i40[0])∧(UIncreasing(COND_JMP1590(&&(>(i40[0], 0), >(i341[0], i40[0])), i40[0], i40[0], i40[0], i40[0], i341[0], i40[0])), ≥))
(3) (i40[0] + [-1] ≥ 0∧i341[0] + [-1] + [-1]i40[0] ≥ 0 ⇒ (UIncreasing(COND_JMP1590(&&(>(i40[0], 0), >(i341[0], i40[0])), i40[0], i40[0], i40[0], i40[0], i341[0], i40[0])), ≥)∧[bni_20 + (-1)Bound*bni_20] + [(2)bni_20]i341[0] ≥ 0∧[(-1)bso_21] + i40[0] ≥ 0)
(4) (i40[0] + [-1] ≥ 0∧i341[0] + [-1] + [-1]i40[0] ≥ 0 ⇒ (UIncreasing(COND_JMP1590(&&(>(i40[0], 0), >(i341[0], i40[0])), i40[0], i40[0], i40[0], i40[0], i341[0], i40[0])), ≥)∧[bni_20 + (-1)Bound*bni_20] + [(2)bni_20]i341[0] ≥ 0∧[(-1)bso_21] + i40[0] ≥ 0)
(5) (i40[0] + [-1] ≥ 0∧i341[0] + [-1] + [-1]i40[0] ≥ 0 ⇒ (UIncreasing(COND_JMP1590(&&(>(i40[0], 0), >(i341[0], i40[0])), i40[0], i40[0], i40[0], i40[0], i341[0], i40[0])), ≥)∧[bni_20 + (-1)Bound*bni_20] + [(2)bni_20]i341[0] ≥ 0∧[(-1)bso_21] + i40[0] ≥ 0)
(6) (i40[0] ≥ 0∧i341[0] + [-2] + [-1]i40[0] ≥ 0 ⇒ (UIncreasing(COND_JMP1590(&&(>(i40[0], 0), >(i341[0], i40[0])), i40[0], i40[0], i40[0], i40[0], i341[0], i40[0])), ≥)∧[bni_20 + (-1)Bound*bni_20] + [(2)bni_20]i341[0] ≥ 0∧[1 + (-1)bso_21] + i40[0] ≥ 0)
(7) (i40[0] ≥ 0∧i341[0] ≥ 0 ⇒ (UIncreasing(COND_JMP1590(&&(>(i40[0], 0), >(i341[0], i40[0])), i40[0], i40[0], i40[0], i40[0], i341[0], i40[0])), ≥)∧[(5)bni_20 + (-1)Bound*bni_20] + [(2)bni_20]i40[0] + [(2)bni_20]i341[0] ≥ 0∧[1 + (-1)bso_21] + i40[0] ≥ 0)
(8) (i341[0]=i341[1]∧i40[0]=i40[1]∧&&(>(i40[0], 0), >(i341[0], i40[0]))=TRUE∧i40[1]=i40[0]1∧-(i341[1], i40[1])=i341[0]1 ⇒ COND_JMP1590(TRUE, i40[1], i40[1], i40[1], i40[1], i341[1], i40[1])≥NonInfC∧COND_JMP1590(TRUE, i40[1], i40[1], i40[1], i40[1], i341[1], i40[1])≥JMP1590'(i40[1], i40[1], i40[1], i40[1], -(i341[1], i40[1]), i40[1])∧(UIncreasing(JMP1590'(i40[1], i40[1], i40[1], i40[1], -(i341[1], i40[1]), i40[1])), ≥))
(9) (>(i40[0], 0)=TRUE∧>(i341[0], i40[0])=TRUE ⇒ COND_JMP1590(TRUE, i40[0], i40[0], i40[0], i40[0], i341[0], i40[0])≥NonInfC∧COND_JMP1590(TRUE, i40[0], i40[0], i40[0], i40[0], i341[0], i40[0])≥JMP1590'(i40[0], i40[0], i40[0], i40[0], -(i341[0], i40[0]), i40[0])∧(UIncreasing(JMP1590'(i40[1], i40[1], i40[1], i40[1], -(i341[1], i40[1]), i40[1])), ≥))
(10) (i40[0] + [-1] ≥ 0∧i341[0] + [-1] + [-1]i40[0] ≥ 0 ⇒ (UIncreasing(JMP1590'(i40[1], i40[1], i40[1], i40[1], -(i341[1], i40[1]), i40[1])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]i40[0] + [(2)bni_22]i341[0] ≥ 0∧[(-1)bso_23] + i40[0] ≥ 0)
(11) (i40[0] + [-1] ≥ 0∧i341[0] + [-1] + [-1]i40[0] ≥ 0 ⇒ (UIncreasing(JMP1590'(i40[1], i40[1], i40[1], i40[1], -(i341[1], i40[1]), i40[1])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]i40[0] + [(2)bni_22]i341[0] ≥ 0∧[(-1)bso_23] + i40[0] ≥ 0)
(12) (i40[0] + [-1] ≥ 0∧i341[0] + [-1] + [-1]i40[0] ≥ 0 ⇒ (UIncreasing(JMP1590'(i40[1], i40[1], i40[1], i40[1], -(i341[1], i40[1]), i40[1])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]i40[0] + [(2)bni_22]i341[0] ≥ 0∧[(-1)bso_23] + i40[0] ≥ 0)
(13) (i40[0] ≥ 0∧i341[0] + [-2] + [-1]i40[0] ≥ 0 ⇒ (UIncreasing(JMP1590'(i40[1], i40[1], i40[1], i40[1], -(i341[1], i40[1]), i40[1])), ≥)∧[(-1)Bound*bni_22] + [(-1)bni_22]i40[0] + [(2)bni_22]i341[0] ≥ 0∧[1 + (-1)bso_23] + i40[0] ≥ 0)
(14) (i40[0] ≥ 0∧i341[0] ≥ 0 ⇒ (UIncreasing(JMP1590'(i40[1], i40[1], i40[1], i40[1], -(i341[1], i40[1]), i40[1])), ≥)∧[(-1)Bound*bni_22 + (4)bni_22] + [bni_22]i40[0] + [(2)bni_22]i341[0] ≥ 0∧[1 + (-1)bso_23] + i40[0] ≥ 0)
POL(TRUE) = [1]
POL(FALSE) = 0
POL(JMP1590'(x1, x2, x3, x4, x5, x6)) = [1] + [2]x6 + [2]x5 + [-1]x4 + [-1]x3
POL(COND_JMP1590(x1, x2, x3, x4, x5, x6, x7)) = [1] + [2]x6 + [-1]x4
POL(&&(x1, x2)) = [2]
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(-(x1, x2)) = x1 + [-1]x2
JMP1590'(i40[0], i40[0], i40[0], i40[0], i341[0], i40[0]) → COND_JMP1590(&&(>(i40[0], 0), >(i341[0], i40[0])), i40[0], i40[0], i40[0], i40[0], i341[0], i40[0])
COND_JMP1590(TRUE, i40[1], i40[1], i40[1], i40[1], i341[1], i40[1]) → JMP1590'(i40[1], i40[1], i40[1], i40[1], -(i341[1], i40[1]), i40[1])
JMP1590'(i40[0], i40[0], i40[0], i40[0], i341[0], i40[0]) → COND_JMP1590(&&(>(i40[0], 0), >(i341[0], i40[0])), i40[0], i40[0], i40[0], i40[0], i341[0], i40[0])
COND_JMP1590(TRUE, i40[1], i40[1], i40[1], i40[1], i341[1], i40[1]) → JMP1590'(i40[1], i40[1], i40[1], i40[1], -(i341[1], i40[1]), i40[1])
&&(FALSE, TRUE)1 → FALSE1
&&(FALSE, FALSE)1 → FALSE1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i42[0] →* i42[1])∧(i42[0] > 0 && !(i42[0] = i42[0]) →* TRUE))
(1) -> (0), if ((i42[1] →* i42[0]))
(1) -> (4), if ((i42[1] →* i42[4])∧(i42[1] →* i322[4]))
(1) -> (8), if ((i42[1] →* i322[8]))
(2) -> (3), if ((i42[2] →* i42[3])∧(i42[2] > 0 && !(i42[2] = i42[2]) →* TRUE))
(3) -> (0), if ((i42[3] →* i42[0]))
(3) -> (4), if ((i42[3] →* i42[4])∧(i42[3] →* i322[4]))
(3) -> (8), if ((i42[3] →* i322[8]))
(4) -> (5), if ((i322[4] →* i322[5])∧(i42[4] →* i42[5])∧(i322[4] < i42[4] && i42[4] <= i322[4] && i322[4] > 0 →* TRUE))
(5) -> (2), if ((i42[5] →* i42[2])∧(i322[5] →* i42[2]))
(5) -> (6), if ((i322[5] →* i322[6])∧(i42[5] →* i42[6]))
(5) -> (10), if ((i42[5] →* i322[10])∧(i322[5] →* i322[10]))
(6) -> (7), if ((i322[6] < i42[6] && i42[6] <= i322[6] && i42[6] > 0 && !(i322[6] = 0) →* TRUE)∧(i322[6] →* i322[7])∧(i42[6] →* i42[7]))
(7) -> (2), if ((i322[7] →* i42[2])∧(i42[7] →* i42[2]))
(7) -> (6), if ((i322[7] →* i322[6])∧(i42[7] →* i42[6]))
(7) -> (10), if ((i322[7] →* i322[10])∧(i42[7] →* i322[10]))
(8) -> (9), if ((i322[8] →* i322[9])∧(i322[8] > 0 →* TRUE))
(9) -> (2), if ((i322[9] →* i42[2])∧(0 →* i42[2]))
(9) -> (6), if ((i322[9] →* i42[6])∧(0 →* i322[6]))
(9) -> (10), if ((i322[9] →* i322[10])∧(0 →* i322[10]))
(10) -> (11), if ((i322[10] > 0 →* TRUE)∧(i322[10] →* i322[11]))
(11) -> (2), if ((i322[11] →* i42[2])∧(0 →* i42[2]))
(11) -> (6), if ((i322[11] →* i42[6])∧(0 →* i322[6]))
(11) -> (10), if ((0 →* i322[10])∧(i322[11] →* i322[10]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i42[0] →* i42[1])∧(i42[0] > 0 && !(i42[0] = i42[0]) →* TRUE))
(1) -> (0), if ((i42[1] →* i42[0]))
(1) -> (4), if ((i42[1] →* i42[4])∧(i42[1] →* i322[4]))
(1) -> (8), if ((i42[1] →* i322[8]))
(2) -> (3), if ((i42[2] →* i42[3])∧(i42[2] > 0 && !(i42[2] = i42[2]) →* TRUE))
(3) -> (0), if ((i42[3] →* i42[0]))
(3) -> (4), if ((i42[3] →* i42[4])∧(i42[3] →* i322[4]))
(3) -> (8), if ((i42[3] →* i322[8]))
(4) -> (5), if ((i322[4] →* i322[5])∧(i42[4] →* i42[5])∧(i322[4] < i42[4] && i42[4] <= i322[4] && i322[4] > 0 →* TRUE))
(5) -> (2), if ((i42[5] →* i42[2])∧(i322[5] →* i42[2]))
(5) -> (6), if ((i322[5] →* i322[6])∧(i42[5] →* i42[6]))
(5) -> (10), if ((i42[5] →* i322[10])∧(i322[5] →* i322[10]))
(6) -> (7), if ((i322[6] < i42[6] && i42[6] <= i322[6] && i42[6] > 0 && !(i322[6] = 0) →* TRUE)∧(i322[6] →* i322[7])∧(i42[6] →* i42[7]))
(7) -> (2), if ((i322[7] →* i42[2])∧(i42[7] →* i42[2]))
(7) -> (6), if ((i322[7] →* i322[6])∧(i42[7] →* i42[6]))
(7) -> (10), if ((i322[7] →* i322[10])∧(i42[7] →* i322[10]))
(8) -> (9), if ((i322[8] →* i322[9])∧(i322[8] > 0 →* TRUE))
(9) -> (2), if ((i322[9] →* i42[2])∧(0 →* i42[2]))
(9) -> (6), if ((i322[9] →* i42[6])∧(0 →* i322[6]))
(9) -> (10), if ((i322[9] →* i322[10])∧(0 →* i322[10]))
(10) -> (11), if ((i322[10] > 0 →* TRUE)∧(i322[10] →* i322[11]))
(11) -> (2), if ((i322[11] →* i42[2])∧(0 →* i42[2]))
(11) -> (6), if ((i322[11] →* i42[6])∧(0 →* i322[6]))
(11) -> (10), if ((0 →* i322[10])∧(i322[11] →* i322[10]))
(1) (i42[0]=i42[1]∧&&(>(i42[0], 0), !(=(i42[0], i42[0])))=TRUE ⇒ NE1621'(i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0])≥NonInfC∧NE1621'(i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0])≥COND_NE1621(&&(>(i42[0], 0), !(=(i42[0], i42[0]))), i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0])∧(UIncreasing(COND_NE1621(&&(>(i42[0], 0), !(=(i42[0], i42[0]))), i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0])), ≥))
(2) (>(i42[0], 0)=TRUE∧<(i42[0], i42[0])=TRUE ⇒ NE1621'(i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0])≥NonInfC∧NE1621'(i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0])≥COND_NE1621(&&(>(i42[0], 0), !(=(i42[0], i42[0]))), i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0])∧(UIncreasing(COND_NE1621(&&(>(i42[0], 0), !(=(i42[0], i42[0]))), i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0])), ≥))
(3) (>(i42[0], 0)=TRUE∧>(i42[0], i42[0])=TRUE ⇒ NE1621'(i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0])≥NonInfC∧NE1621'(i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0])≥COND_NE1621(&&(>(i42[0], 0), !(=(i42[0], i42[0]))), i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0])∧(UIncreasing(COND_NE1621(&&(>(i42[0], 0), !(=(i42[0], i42[0]))), i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0])), ≥))
(4) (i42[0] + [-1] ≥ 0∧[-1] ≥ 0 ⇒ (UIncreasing(COND_NE1621(&&(>(i42[0], 0), !(=(i42[0], i42[0]))), i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0])), ≥)∧[(2)bni_75 + (-1)Bound*bni_75] + [(-2)bni_75]i42[0] ≥ 0∧[(-1)bso_76] ≥ 0)
(5) (i42[0] + [-1] ≥ 0∧[-1] ≥ 0 ⇒ (UIncreasing(COND_NE1621(&&(>(i42[0], 0), !(=(i42[0], i42[0]))), i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0])), ≥)∧[(2)bni_75 + (-1)Bound*bni_75] + [(-2)bni_75]i42[0] ≥ 0∧[(-1)bso_76] ≥ 0)
(6) (i42[0] + [-1] ≥ 0∧[-1] ≥ 0 ⇒ (UIncreasing(COND_NE1621(&&(>(i42[0], 0), !(=(i42[0], i42[0]))), i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0])), ≥)∧[(2)bni_75 + (-1)Bound*bni_75] + [(-2)bni_75]i42[0] ≥ 0∧[(-1)bso_76] ≥ 0)
(7) (i42[0] + [-1] ≥ 0∧[-1] ≥ 0 ⇒ (UIncreasing(COND_NE1621(&&(>(i42[0], 0), !(=(i42[0], i42[0]))), i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0])), ≥)∧[(2)bni_75 + (-1)Bound*bni_75] + [(-2)bni_75]i42[0] ≥ 0∧[(-1)bso_76] ≥ 0)
(8) (i42[0] + [-1] ≥ 0∧[-1] ≥ 0 ⇒ (UIncreasing(COND_NE1621(&&(>(i42[0], 0), !(=(i42[0], i42[0]))), i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0])), ≥)∧[(2)bni_75 + (-1)Bound*bni_75] + [(-2)bni_75]i42[0] ≥ 0∧[(-1)bso_76] ≥ 0)
(9) (i42[0] + [-1] ≥ 0∧[-1] ≥ 0 ⇒ (UIncreasing(COND_NE1621(&&(>(i42[0], 0), !(=(i42[0], i42[0]))), i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0])), ≥)∧[(2)bni_75 + (-1)Bound*bni_75] + [(-2)bni_75]i42[0] ≥ 0∧[(-1)bso_76] ≥ 0)
(10) (i42[1]=i42[0] ⇒ COND_NE1621(TRUE, i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1])≥NonInfC∧COND_NE1621(TRUE, i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1])≥NE1621'(i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1])∧(UIncreasing(NE1621'(i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1])), ≥))
(11) (COND_NE1621(TRUE, i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1])≥NonInfC∧COND_NE1621(TRUE, i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1])≥NE1621'(i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1])∧(UIncreasing(NE1621'(i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1])), ≥))
(12) ((UIncreasing(NE1621'(i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1])), ≥)∧[(-1)bso_78] ≥ 0)
(13) ((UIncreasing(NE1621'(i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1])), ≥)∧[(-1)bso_78] ≥ 0)
(14) ((UIncreasing(NE1621'(i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1])), ≥)∧[(-1)bso_78] ≥ 0)
(15) ((UIncreasing(NE1621'(i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1])), ≥)∧0 = 0∧[(-1)bso_78] ≥ 0)
(16) (i42[1]=i42[4]∧i42[1]=i322[4] ⇒ COND_NE1621(TRUE, i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1])≥NonInfC∧COND_NE1621(TRUE, i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1])≥NE1621'(i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1])∧(UIncreasing(NE1621'(i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1])), ≥))
(17) (COND_NE1621(TRUE, i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1])≥NonInfC∧COND_NE1621(TRUE, i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1])≥NE1621'(i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1])∧(UIncreasing(NE1621'(i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1])), ≥))
(18) ((UIncreasing(NE1621'(i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1])), ≥)∧[(-1)bso_78] ≥ 0)
(19) ((UIncreasing(NE1621'(i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1])), ≥)∧[(-1)bso_78] ≥ 0)
(20) ((UIncreasing(NE1621'(i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1])), ≥)∧[(-1)bso_78] ≥ 0)
(21) ((UIncreasing(NE1621'(i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1])), ≥)∧0 = 0∧[(-1)bso_78] ≥ 0)
(22) (i42[1]=i322[8] ⇒ COND_NE1621(TRUE, i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1])≥NonInfC∧COND_NE1621(TRUE, i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1])≥NE1621'(i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1])∧(UIncreasing(NE1621'(i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1])), ≥))
(23) (COND_NE1621(TRUE, i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1])≥NonInfC∧COND_NE1621(TRUE, i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1])≥NE1621'(i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1])∧(UIncreasing(NE1621'(i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1])), ≥))
(24) ((UIncreasing(NE1621'(i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1])), ≥)∧[(-1)bso_78] ≥ 0)
(25) ((UIncreasing(NE1621'(i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1])), ≥)∧[(-1)bso_78] ≥ 0)
(26) ((UIncreasing(NE1621'(i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1])), ≥)∧[(-1)bso_78] ≥ 0)
(27) ((UIncreasing(NE1621'(i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1])), ≥)∧0 = 0∧[(-1)bso_78] ≥ 0)
(28) (i42[2]=i42[3]∧&&(>(i42[2], 0), !(=(i42[2], i42[2])))=TRUE ⇒ JMP1257'(i42[2], i42[2], i42[2])≥NonInfC∧JMP1257'(i42[2], i42[2], i42[2])≥COND_JMP1257(&&(>(i42[2], 0), !(=(i42[2], i42[2]))), i42[2], i42[2], i42[2])∧(UIncreasing(COND_JMP1257(&&(>(i42[2], 0), !(=(i42[2], i42[2]))), i42[2], i42[2], i42[2])), ≥))
(29) (>(i42[2], 0)=TRUE∧<(i42[2], i42[2])=TRUE ⇒ JMP1257'(i42[2], i42[2], i42[2])≥NonInfC∧JMP1257'(i42[2], i42[2], i42[2])≥COND_JMP1257(&&(>(i42[2], 0), !(=(i42[2], i42[2]))), i42[2], i42[2], i42[2])∧(UIncreasing(COND_JMP1257(&&(>(i42[2], 0), !(=(i42[2], i42[2]))), i42[2], i42[2], i42[2])), ≥))
(30) (>(i42[2], 0)=TRUE∧>(i42[2], i42[2])=TRUE ⇒ JMP1257'(i42[2], i42[2], i42[2])≥NonInfC∧JMP1257'(i42[2], i42[2], i42[2])≥COND_JMP1257(&&(>(i42[2], 0), !(=(i42[2], i42[2]))), i42[2], i42[2], i42[2])∧(UIncreasing(COND_JMP1257(&&(>(i42[2], 0), !(=(i42[2], i42[2]))), i42[2], i42[2], i42[2])), ≥))
(31) (i42[2] + [-1] ≥ 0∧[-1] ≥ 0 ⇒ (UIncreasing(COND_JMP1257(&&(>(i42[2], 0), !(=(i42[2], i42[2]))), i42[2], i42[2], i42[2])), ≥)∧[(-1)bni_79 + (-1)Bound*bni_79] ≥ 0∧[-3 + (-1)bso_80] + [2]i42[2] ≥ 0)
(32) (i42[2] + [-1] ≥ 0∧[-1] ≥ 0 ⇒ (UIncreasing(COND_JMP1257(&&(>(i42[2], 0), !(=(i42[2], i42[2]))), i42[2], i42[2], i42[2])), ≥)∧[(-1)bni_79 + (-1)Bound*bni_79] ≥ 0∧[-3 + (-1)bso_80] + [2]i42[2] ≥ 0)
(33) (i42[2] + [-1] ≥ 0∧[-1] ≥ 0 ⇒ (UIncreasing(COND_JMP1257(&&(>(i42[2], 0), !(=(i42[2], i42[2]))), i42[2], i42[2], i42[2])), ≥)∧[(-1)bni_79 + (-1)Bound*bni_79] ≥ 0∧[-3 + (-1)bso_80] + [2]i42[2] ≥ 0)
(34) (i42[2] + [-1] ≥ 0∧[-1] ≥ 0 ⇒ (UIncreasing(COND_JMP1257(&&(>(i42[2], 0), !(=(i42[2], i42[2]))), i42[2], i42[2], i42[2])), ≥)∧[(-1)bni_79 + (-1)Bound*bni_79] ≥ 0∧[-3 + (-1)bso_80] + [2]i42[2] ≥ 0)
(35) (i42[2] + [-1] ≥ 0∧[-1] ≥ 0 ⇒ (UIncreasing(COND_JMP1257(&&(>(i42[2], 0), !(=(i42[2], i42[2]))), i42[2], i42[2], i42[2])), ≥)∧[(-1)bni_79 + (-1)Bound*bni_79] ≥ 0∧[-3 + (-1)bso_80] + [2]i42[2] ≥ 0)
(36) (i42[2] + [-1] ≥ 0∧[-1] ≥ 0 ⇒ (UIncreasing(COND_JMP1257(&&(>(i42[2], 0), !(=(i42[2], i42[2]))), i42[2], i42[2], i42[2])), ≥)∧[(-1)bni_79 + (-1)Bound*bni_79] ≥ 0∧[-3 + (-1)bso_80] + [2]i42[2] ≥ 0)
(37) (i42[3]=i42[0] ⇒ COND_JMP1257(TRUE, i42[3], i42[3], i42[3])≥NonInfC∧COND_JMP1257(TRUE, i42[3], i42[3], i42[3])≥NE1621'(i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3])∧(UIncreasing(NE1621'(i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3])), ≥))
(38) (COND_JMP1257(TRUE, i42[3], i42[3], i42[3])≥NonInfC∧COND_JMP1257(TRUE, i42[3], i42[3], i42[3])≥NE1621'(i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3])∧(UIncreasing(NE1621'(i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3])), ≥))
(39) ((UIncreasing(NE1621'(i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3])), ≥)∧[(-1)bso_82] ≥ 0)
(40) ((UIncreasing(NE1621'(i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3])), ≥)∧[(-1)bso_82] ≥ 0)
(41) ((UIncreasing(NE1621'(i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3])), ≥)∧[(-1)bso_82] ≥ 0)
(42) ((UIncreasing(NE1621'(i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3])), ≥)∧0 = 0∧[(-1)bso_82] ≥ 0)
(43) (i42[3]=i42[4]∧i42[3]=i322[4] ⇒ COND_JMP1257(TRUE, i42[3], i42[3], i42[3])≥NonInfC∧COND_JMP1257(TRUE, i42[3], i42[3], i42[3])≥NE1621'(i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3])∧(UIncreasing(NE1621'(i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3])), ≥))
(44) (COND_JMP1257(TRUE, i42[3], i42[3], i42[3])≥NonInfC∧COND_JMP1257(TRUE, i42[3], i42[3], i42[3])≥NE1621'(i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3])∧(UIncreasing(NE1621'(i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3])), ≥))
(45) ((UIncreasing(NE1621'(i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3])), ≥)∧[(-1)bso_82] ≥ 0)
(46) ((UIncreasing(NE1621'(i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3])), ≥)∧[(-1)bso_82] ≥ 0)
(47) ((UIncreasing(NE1621'(i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3])), ≥)∧[(-1)bso_82] ≥ 0)
(48) ((UIncreasing(NE1621'(i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3])), ≥)∧0 = 0∧[(-1)bso_82] ≥ 0)
(49) (i42[3]=i322[8] ⇒ COND_JMP1257(TRUE, i42[3], i42[3], i42[3])≥NonInfC∧COND_JMP1257(TRUE, i42[3], i42[3], i42[3])≥NE1621'(i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3])∧(UIncreasing(NE1621'(i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3])), ≥))
(50) (COND_JMP1257(TRUE, i42[3], i42[3], i42[3])≥NonInfC∧COND_JMP1257(TRUE, i42[3], i42[3], i42[3])≥NE1621'(i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3])∧(UIncreasing(NE1621'(i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3])), ≥))
(51) ((UIncreasing(NE1621'(i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3])), ≥)∧[(-1)bso_82] ≥ 0)
(52) ((UIncreasing(NE1621'(i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3])), ≥)∧[(-1)bso_82] ≥ 0)
(53) ((UIncreasing(NE1621'(i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3])), ≥)∧[(-1)bso_82] ≥ 0)
(54) ((UIncreasing(NE1621'(i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3])), ≥)∧0 = 0∧[(-1)bso_82] ≥ 0)
(55) (i322[4]=i322[5]∧i42[4]=i42[5]∧&&(&&(<(i322[4], i42[4]), <=(i42[4], i322[4])), >(i322[4], 0))=TRUE ⇒ NE1621'(i42[4], i42[4], i322[4], i322[4], i42[4], i322[4], i42[4], i322[4], i42[4], i322[4])≥NonInfC∧NE1621'(i42[4], i42[4], i322[4], i322[4], i42[4], i322[4], i42[4], i322[4], i42[4], i322[4])≥COND_NE16211(&&(&&(<(i322[4], i42[4]), <=(i42[4], i322[4])), >(i322[4], 0)), i42[4], i42[4], i322[4], i322[4], i42[4], i322[4], i42[4], i322[4], i42[4], i322[4])∧(UIncreasing(COND_NE16211(&&(&&(<(i322[4], i42[4]), <=(i42[4], i322[4])), >(i322[4], 0)), i42[4], i42[4], i322[4], i322[4], i42[4], i322[4], i42[4], i322[4], i42[4], i322[4])), ≥))
(56) (>(i322[4], 0)=TRUE∧<(i322[4], i42[4])=TRUE∧<=(i42[4], i322[4])=TRUE ⇒ NE1621'(i42[4], i42[4], i322[4], i322[4], i42[4], i322[4], i42[4], i322[4], i42[4], i322[4])≥NonInfC∧NE1621'(i42[4], i42[4], i322[4], i322[4], i42[4], i322[4], i42[4], i322[4], i42[4], i322[4])≥COND_NE16211(&&(&&(<(i322[4], i42[4]), <=(i42[4], i322[4])), >(i322[4], 0)), i42[4], i42[4], i322[4], i322[4], i42[4], i322[4], i42[4], i322[4], i42[4], i322[4])∧(UIncreasing(COND_NE16211(&&(&&(<(i322[4], i42[4]), <=(i42[4], i322[4])), >(i322[4], 0)), i42[4], i42[4], i322[4], i322[4], i42[4], i322[4], i42[4], i322[4], i42[4], i322[4])), ≥))
(57) (i322[4] + [-1] ≥ 0∧i42[4] + [-1] + [-1]i322[4] ≥ 0∧i322[4] + [-1]i42[4] ≥ 0 ⇒ (UIncreasing(COND_NE16211(&&(&&(<(i322[4], i42[4]), <=(i42[4], i322[4])), >(i322[4], 0)), i42[4], i42[4], i322[4], i322[4], i42[4], i322[4], i42[4], i322[4], i42[4], i322[4])), ≥)∧[(2)bni_83 + (-1)Bound*bni_83] + [(-1)bni_83]i322[4] + [(-1)bni_83]i42[4] ≥ 0∧[1 + (-1)bso_84] + [-3]i322[4] + i42[4] ≥ 0)
(58) (i322[4] + [-1] ≥ 0∧i42[4] + [-1] + [-1]i322[4] ≥ 0∧i322[4] + [-1]i42[4] ≥ 0 ⇒ (UIncreasing(COND_NE16211(&&(&&(<(i322[4], i42[4]), <=(i42[4], i322[4])), >(i322[4], 0)), i42[4], i42[4], i322[4], i322[4], i42[4], i322[4], i42[4], i322[4], i42[4], i322[4])), ≥)∧[(2)bni_83 + (-1)Bound*bni_83] + [(-1)bni_83]i322[4] + [(-1)bni_83]i42[4] ≥ 0∧[1 + (-1)bso_84] + [-3]i322[4] + i42[4] ≥ 0)
(59) (i322[4] + [-1] ≥ 0∧i42[4] + [-1] + [-1]i322[4] ≥ 0∧i322[4] + [-1]i42[4] ≥ 0 ⇒ (UIncreasing(COND_NE16211(&&(&&(<(i322[4], i42[4]), <=(i42[4], i322[4])), >(i322[4], 0)), i42[4], i42[4], i322[4], i322[4], i42[4], i322[4], i42[4], i322[4], i42[4], i322[4])), ≥)∧[(2)bni_83 + (-1)Bound*bni_83] + [(-1)bni_83]i322[4] + [(-1)bni_83]i42[4] ≥ 0∧[1 + (-1)bso_84] + [-3]i322[4] + i42[4] ≥ 0)
(60) (i42[5]=i42[2]∧i322[5]=i42[2] ⇒ COND_NE16211(TRUE, i42[5], i42[5], i322[5], i322[5], i42[5], i322[5], i42[5], i322[5], i42[5], i322[5])≥NonInfC∧COND_NE16211(TRUE, i42[5], i42[5], i322[5], i322[5], i42[5], i322[5], i42[5], i322[5], i42[5], i322[5])≥JMP1257'(i42[5], i42[5], i322[5])∧(UIncreasing(JMP1257'(i42[5], i42[5], i322[5])), ≥))
(61) (COND_NE16211(TRUE, i322[5], i322[5], i322[5], i322[5], i322[5], i322[5], i322[5], i322[5], i322[5], i322[5])≥NonInfC∧COND_NE16211(TRUE, i322[5], i322[5], i322[5], i322[5], i322[5], i322[5], i322[5], i322[5], i322[5], i322[5])≥JMP1257'(i322[5], i322[5], i322[5])∧(UIncreasing(JMP1257'(i42[5], i42[5], i322[5])), ≥))
(62) ((UIncreasing(JMP1257'(i42[5], i42[5], i322[5])), ≥)∧[(-1)bso_86] ≥ 0)
(63) ((UIncreasing(JMP1257'(i42[5], i42[5], i322[5])), ≥)∧[(-1)bso_86] ≥ 0)
(64) ((UIncreasing(JMP1257'(i42[5], i42[5], i322[5])), ≥)∧[(-1)bso_86] ≥ 0)
(65) ((UIncreasing(JMP1257'(i42[5], i42[5], i322[5])), ≥)∧0 = 0∧[(-1)bso_86] ≥ 0)
(66) (i322[5]=i322[6]∧i42[5]=i42[6] ⇒ COND_NE16211(TRUE, i42[5], i42[5], i322[5], i322[5], i42[5], i322[5], i42[5], i322[5], i42[5], i322[5])≥NonInfC∧COND_NE16211(TRUE, i42[5], i42[5], i322[5], i322[5], i42[5], i322[5], i42[5], i322[5], i42[5], i322[5])≥JMP1257'(i42[5], i42[5], i322[5])∧(UIncreasing(JMP1257'(i42[5], i42[5], i322[5])), ≥))
(67) (COND_NE16211(TRUE, i42[5], i42[5], i322[5], i322[5], i42[5], i322[5], i42[5], i322[5], i42[5], i322[5])≥NonInfC∧COND_NE16211(TRUE, i42[5], i42[5], i322[5], i322[5], i42[5], i322[5], i42[5], i322[5], i42[5], i322[5])≥JMP1257'(i42[5], i42[5], i322[5])∧(UIncreasing(JMP1257'(i42[5], i42[5], i322[5])), ≥))
(68) ((UIncreasing(JMP1257'(i42[5], i42[5], i322[5])), ≥)∧[(-1)bso_86] ≥ 0)
(69) ((UIncreasing(JMP1257'(i42[5], i42[5], i322[5])), ≥)∧[(-1)bso_86] ≥ 0)
(70) ((UIncreasing(JMP1257'(i42[5], i42[5], i322[5])), ≥)∧[(-1)bso_86] ≥ 0)
(71) ((UIncreasing(JMP1257'(i42[5], i42[5], i322[5])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_86] ≥ 0)
(72) (i42[5]=i322[10]∧i322[5]=i322[10] ⇒ COND_NE16211(TRUE, i42[5], i42[5], i322[5], i322[5], i42[5], i322[5], i42[5], i322[5], i42[5], i322[5])≥NonInfC∧COND_NE16211(TRUE, i42[5], i42[5], i322[5], i322[5], i42[5], i322[5], i42[5], i322[5], i42[5], i322[5])≥JMP1257'(i42[5], i42[5], i322[5])∧(UIncreasing(JMP1257'(i42[5], i42[5], i322[5])), ≥))
(73) (COND_NE16211(TRUE, i322[5], i322[5], i322[5], i322[5], i322[5], i322[5], i322[5], i322[5], i322[5], i322[5])≥NonInfC∧COND_NE16211(TRUE, i322[5], i322[5], i322[5], i322[5], i322[5], i322[5], i322[5], i322[5], i322[5], i322[5])≥JMP1257'(i322[5], i322[5], i322[5])∧(UIncreasing(JMP1257'(i42[5], i42[5], i322[5])), ≥))
(74) ((UIncreasing(JMP1257'(i42[5], i42[5], i322[5])), ≥)∧[(-1)bso_86] ≥ 0)
(75) ((UIncreasing(JMP1257'(i42[5], i42[5], i322[5])), ≥)∧[(-1)bso_86] ≥ 0)
(76) ((UIncreasing(JMP1257'(i42[5], i42[5], i322[5])), ≥)∧[(-1)bso_86] ≥ 0)
(77) ((UIncreasing(JMP1257'(i42[5], i42[5], i322[5])), ≥)∧0 = 0∧[(-1)bso_86] ≥ 0)
(78) (&&(&&(&&(<(i322[6], i42[6]), <=(i42[6], i322[6])), >(i42[6], 0)), !(=(i322[6], 0)))=TRUE∧i322[6]=i322[7]∧i42[6]=i42[7] ⇒ JMP1257'(i42[6], i42[6], i322[6])≥NonInfC∧JMP1257'(i42[6], i42[6], i322[6])≥COND_JMP12571(&&(&&(&&(<(i322[6], i42[6]), <=(i42[6], i322[6])), >(i42[6], 0)), !(=(i322[6], 0))), i42[6], i42[6], i322[6])∧(UIncreasing(COND_JMP12571(&&(&&(&&(<(i322[6], i42[6]), <=(i42[6], i322[6])), >(i42[6], 0)), !(=(i322[6], 0))), i42[6], i42[6], i322[6])), ≥))
(79) (>(i42[6], 0)=TRUE∧<(i322[6], i42[6])=TRUE∧<=(i42[6], i322[6])=TRUE∧<(i322[6], 0)=TRUE ⇒ JMP1257'(i42[6], i42[6], i322[6])≥NonInfC∧JMP1257'(i42[6], i42[6], i322[6])≥COND_JMP12571(&&(&&(&&(<(i322[6], i42[6]), <=(i42[6], i322[6])), >(i42[6], 0)), !(=(i322[6], 0))), i42[6], i42[6], i322[6])∧(UIncreasing(COND_JMP12571(&&(&&(&&(<(i322[6], i42[6]), <=(i42[6], i322[6])), >(i42[6], 0)), !(=(i322[6], 0))), i42[6], i42[6], i322[6])), ≥))
(80) (>(i42[6], 0)=TRUE∧<(i322[6], i42[6])=TRUE∧<=(i42[6], i322[6])=TRUE∧>(i322[6], 0)=TRUE ⇒ JMP1257'(i42[6], i42[6], i322[6])≥NonInfC∧JMP1257'(i42[6], i42[6], i322[6])≥COND_JMP12571(&&(&&(&&(<(i322[6], i42[6]), <=(i42[6], i322[6])), >(i42[6], 0)), !(=(i322[6], 0))), i42[6], i42[6], i322[6])∧(UIncreasing(COND_JMP12571(&&(&&(&&(<(i322[6], i42[6]), <=(i42[6], i322[6])), >(i42[6], 0)), !(=(i322[6], 0))), i42[6], i42[6], i322[6])), ≥))
(81) (i42[6] + [-1] ≥ 0∧i42[6] + [-1] + [-1]i322[6] ≥ 0∧i322[6] + [-1]i42[6] ≥ 0∧[-1] + [-1]i322[6] ≥ 0 ⇒ (UIncreasing(COND_JMP12571(&&(&&(&&(<(i322[6], i42[6]), <=(i42[6], i322[6])), >(i42[6], 0)), !(=(i322[6], 0))), i42[6], i42[6], i322[6])), ≥)∧[(-1)bni_87 + (-1)Bound*bni_87] + [(2)bni_87]i322[6] + [(-2)bni_87]i42[6] ≥ 0∧[(-1)bso_88] ≥ 0)
(82) (i42[6] + [-1] ≥ 0∧i42[6] + [-1] + [-1]i322[6] ≥ 0∧i322[6] + [-1]i42[6] ≥ 0∧i322[6] + [-1] ≥ 0 ⇒ (UIncreasing(COND_JMP12571(&&(&&(&&(<(i322[6], i42[6]), <=(i42[6], i322[6])), >(i42[6], 0)), !(=(i322[6], 0))), i42[6], i42[6], i322[6])), ≥)∧[(-1)bni_87 + (-1)Bound*bni_87] + [(2)bni_87]i322[6] + [(-2)bni_87]i42[6] ≥ 0∧[(-1)bso_88] ≥ 0)
(83) (i42[6] + [-1] ≥ 0∧i42[6] + [-1] + [-1]i322[6] ≥ 0∧i322[6] + [-1]i42[6] ≥ 0∧[-1] + [-1]i322[6] ≥ 0 ⇒ (UIncreasing(COND_JMP12571(&&(&&(&&(<(i322[6], i42[6]), <=(i42[6], i322[6])), >(i42[6], 0)), !(=(i322[6], 0))), i42[6], i42[6], i322[6])), ≥)∧[(-1)bni_87 + (-1)Bound*bni_87] + [(2)bni_87]i322[6] + [(-2)bni_87]i42[6] ≥ 0∧[(-1)bso_88] ≥ 0)
(84) (i42[6] + [-1] ≥ 0∧i42[6] + [-1] + [-1]i322[6] ≥ 0∧i322[6] + [-1]i42[6] ≥ 0∧i322[6] + [-1] ≥ 0 ⇒ (UIncreasing(COND_JMP12571(&&(&&(&&(<(i322[6], i42[6]), <=(i42[6], i322[6])), >(i42[6], 0)), !(=(i322[6], 0))), i42[6], i42[6], i322[6])), ≥)∧[(-1)bni_87 + (-1)Bound*bni_87] + [(2)bni_87]i322[6] + [(-2)bni_87]i42[6] ≥ 0∧[(-1)bso_88] ≥ 0)
(85) (i42[6] + [-1] ≥ 0∧i42[6] + [-1] + [-1]i322[6] ≥ 0∧i322[6] + [-1]i42[6] ≥ 0∧[-1] + [-1]i322[6] ≥ 0 ⇒ (UIncreasing(COND_JMP12571(&&(&&(&&(<(i322[6], i42[6]), <=(i42[6], i322[6])), >(i42[6], 0)), !(=(i322[6], 0))), i42[6], i42[6], i322[6])), ≥)∧[(-1)bni_87 + (-1)Bound*bni_87] + [(2)bni_87]i322[6] + [(-2)bni_87]i42[6] ≥ 0∧[(-1)bso_88] ≥ 0)
(86) (i42[6] + [-1] ≥ 0∧i42[6] + [-1] + [-1]i322[6] ≥ 0∧i322[6] + [-1]i42[6] ≥ 0∧i322[6] + [-1] ≥ 0 ⇒ (UIncreasing(COND_JMP12571(&&(&&(&&(<(i322[6], i42[6]), <=(i42[6], i322[6])), >(i42[6], 0)), !(=(i322[6], 0))), i42[6], i42[6], i322[6])), ≥)∧[(-1)bni_87 + (-1)Bound*bni_87] + [(2)bni_87]i322[6] + [(-2)bni_87]i42[6] ≥ 0∧[(-1)bso_88] ≥ 0)
(87) (i322[7]=i42[2]∧i42[7]=i42[2] ⇒ COND_JMP12571(TRUE, i42[7], i42[7], i322[7])≥NonInfC∧COND_JMP12571(TRUE, i42[7], i42[7], i322[7])≥JMP1257'(i42[7], i42[7], i322[7])∧(UIncreasing(JMP1257'(i42[7], i42[7], i322[7])), ≥))
(88) (COND_JMP12571(TRUE, i42[7], i42[7], i42[7])≥NonInfC∧COND_JMP12571(TRUE, i42[7], i42[7], i42[7])≥JMP1257'(i42[7], i42[7], i42[7])∧(UIncreasing(JMP1257'(i42[7], i42[7], i322[7])), ≥))
(89) ((UIncreasing(JMP1257'(i42[7], i42[7], i322[7])), ≥)∧[(-1)bso_90] ≥ 0)
(90) ((UIncreasing(JMP1257'(i42[7], i42[7], i322[7])), ≥)∧[(-1)bso_90] ≥ 0)
(91) ((UIncreasing(JMP1257'(i42[7], i42[7], i322[7])), ≥)∧[(-1)bso_90] ≥ 0)
(92) ((UIncreasing(JMP1257'(i42[7], i42[7], i322[7])), ≥)∧0 = 0∧[(-1)bso_90] ≥ 0)
(93) (i322[7]=i322[6]∧i42[7]=i42[6] ⇒ COND_JMP12571(TRUE, i42[7], i42[7], i322[7])≥NonInfC∧COND_JMP12571(TRUE, i42[7], i42[7], i322[7])≥JMP1257'(i42[7], i42[7], i322[7])∧(UIncreasing(JMP1257'(i42[7], i42[7], i322[7])), ≥))
(94) (COND_JMP12571(TRUE, i42[7], i42[7], i322[7])≥NonInfC∧COND_JMP12571(TRUE, i42[7], i42[7], i322[7])≥JMP1257'(i42[7], i42[7], i322[7])∧(UIncreasing(JMP1257'(i42[7], i42[7], i322[7])), ≥))
(95) ((UIncreasing(JMP1257'(i42[7], i42[7], i322[7])), ≥)∧[(-1)bso_90] ≥ 0)
(96) ((UIncreasing(JMP1257'(i42[7], i42[7], i322[7])), ≥)∧[(-1)bso_90] ≥ 0)
(97) ((UIncreasing(JMP1257'(i42[7], i42[7], i322[7])), ≥)∧[(-1)bso_90] ≥ 0)
(98) ((UIncreasing(JMP1257'(i42[7], i42[7], i322[7])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_90] ≥ 0)
(99) (i322[7]=i322[10]∧i42[7]=i322[10] ⇒ COND_JMP12571(TRUE, i42[7], i42[7], i322[7])≥NonInfC∧COND_JMP12571(TRUE, i42[7], i42[7], i322[7])≥JMP1257'(i42[7], i42[7], i322[7])∧(UIncreasing(JMP1257'(i42[7], i42[7], i322[7])), ≥))
(100) (COND_JMP12571(TRUE, i42[7], i42[7], i42[7])≥NonInfC∧COND_JMP12571(TRUE, i42[7], i42[7], i42[7])≥JMP1257'(i42[7], i42[7], i42[7])∧(UIncreasing(JMP1257'(i42[7], i42[7], i322[7])), ≥))
(101) ((UIncreasing(JMP1257'(i42[7], i42[7], i322[7])), ≥)∧[(-1)bso_90] ≥ 0)
(102) ((UIncreasing(JMP1257'(i42[7], i42[7], i322[7])), ≥)∧[(-1)bso_90] ≥ 0)
(103) ((UIncreasing(JMP1257'(i42[7], i42[7], i322[7])), ≥)∧[(-1)bso_90] ≥ 0)
(104) ((UIncreasing(JMP1257'(i42[7], i42[7], i322[7])), ≥)∧0 = 0∧[(-1)bso_90] ≥ 0)
(105) (i322[8]=i322[9]∧>(i322[8], 0)=TRUE ⇒ NE1621'(i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8])≥NonInfC∧NE1621'(i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8])≥COND_NE16212(>(i322[8], 0), i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8])∧(UIncreasing(COND_NE16212(>(i322[8], 0), i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8])), ≥))
(106) (>(i322[8], 0)=TRUE ⇒ NE1621'(i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8])≥NonInfC∧NE1621'(i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8])≥COND_NE16212(>(i322[8], 0), i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8])∧(UIncreasing(COND_NE16212(>(i322[8], 0), i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8])), ≥))
(107) (i322[8] + [-1] ≥ 0 ⇒ (UIncreasing(COND_NE16212(>(i322[8], 0), i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8])), ≥)∧[(2)bni_91 + (-1)Bound*bni_91] + [(-2)bni_91]i322[8] ≥ 0∧[3 + (-1)bso_92] ≥ 0)
(108) (i322[8] + [-1] ≥ 0 ⇒ (UIncreasing(COND_NE16212(>(i322[8], 0), i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8])), ≥)∧[(2)bni_91 + (-1)Bound*bni_91] + [(-2)bni_91]i322[8] ≥ 0∧[3 + (-1)bso_92] ≥ 0)
(109) (i322[8] + [-1] ≥ 0 ⇒ (UIncreasing(COND_NE16212(>(i322[8], 0), i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8])), ≥)∧[(2)bni_91 + (-1)Bound*bni_91] + [(-2)bni_91]i322[8] ≥ 0∧[3 + (-1)bso_92] ≥ 0)
(110) (i322[8] ≥ 0 ⇒ (UIncreasing(COND_NE16212(>(i322[8], 0), i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8])), ≥)∧[(-1)Bound*bni_91] + [(-2)bni_91]i322[8] ≥ 0∧[3 + (-1)bso_92] ≥ 0)
(111) (i322[8]=i322[9]∧>(i322[8], 0)=TRUE∧i322[9]=i42[2]∧0=i42[2] ⇒ COND_NE16212(TRUE, i322[9], i322[9], i322[9], i322[9], i322[9], i322[9], i322[9], i322[9], i322[9], i322[9])≥NonInfC∧COND_NE16212(TRUE, i322[9], i322[9], i322[9], i322[9], i322[9], i322[9], i322[9], i322[9], i322[9], i322[9])≥JMP1257'(i322[9], i322[9], 0)∧(UIncreasing(JMP1257'(i322[9], i322[9], 0)), ≥))
(112) (i322[8]=i322[9]∧>(i322[8], 0)=TRUE∧i322[9]=i42[6]∧0=i322[6] ⇒ COND_NE16212(TRUE, i322[9], i322[9], i322[9], i322[9], i322[9], i322[9], i322[9], i322[9], i322[9], i322[9])≥NonInfC∧COND_NE16212(TRUE, i322[9], i322[9], i322[9], i322[9], i322[9], i322[9], i322[9], i322[9], i322[9], i322[9])≥JMP1257'(i322[9], i322[9], 0)∧(UIncreasing(JMP1257'(i322[9], i322[9], 0)), ≥))
(113) (>(i322[8], 0)=TRUE ⇒ COND_NE16212(TRUE, i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8])≥NonInfC∧COND_NE16212(TRUE, i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8])≥JMP1257'(i322[8], i322[8], 0)∧(UIncreasing(JMP1257'(i322[9], i322[9], 0)), ≥))
(114) (i322[8] + [-1] ≥ 0 ⇒ (UIncreasing(JMP1257'(i322[9], i322[9], 0)), ≥)∧[(-1)bni_93 + (-1)Bound*bni_93] + [(-2)bni_93]i322[8] ≥ 0∧[(-1)bso_94] ≥ 0)
(115) (i322[8] + [-1] ≥ 0 ⇒ (UIncreasing(JMP1257'(i322[9], i322[9], 0)), ≥)∧[(-1)bni_93 + (-1)Bound*bni_93] + [(-2)bni_93]i322[8] ≥ 0∧[(-1)bso_94] ≥ 0)
(116) (i322[8] + [-1] ≥ 0 ⇒ (UIncreasing(JMP1257'(i322[9], i322[9], 0)), ≥)∧[(-1)bni_93 + (-1)Bound*bni_93] + [(-2)bni_93]i322[8] ≥ 0∧[(-1)bso_94] ≥ 0)
(117) (i322[8] ≥ 0 ⇒ (UIncreasing(JMP1257'(i322[9], i322[9], 0)), ≥)∧[(-3)bni_93 + (-1)Bound*bni_93] + [(-2)bni_93]i322[8] ≥ 0∧[(-1)bso_94] ≥ 0)
(118) (i322[8]=i322[9]∧>(i322[8], 0)=TRUE∧i322[9]=i322[10]∧0=i322[10] ⇒ COND_NE16212(TRUE, i322[9], i322[9], i322[9], i322[9], i322[9], i322[9], i322[9], i322[9], i322[9], i322[9])≥NonInfC∧COND_NE16212(TRUE, i322[9], i322[9], i322[9], i322[9], i322[9], i322[9], i322[9], i322[9], i322[9], i322[9])≥JMP1257'(i322[9], i322[9], 0)∧(UIncreasing(JMP1257'(i322[9], i322[9], 0)), ≥))
(119) (>(i322[10], 0)=TRUE∧i322[10]=i322[11] ⇒ JMP1257'(i322[10], i322[10], i322[10])≥NonInfC∧JMP1257'(i322[10], i322[10], i322[10])≥COND_JMP12572(>(i322[10], 0), i322[10], i322[10], i322[10])∧(UIncreasing(COND_JMP12572(>(i322[10], 0), i322[10], i322[10], i322[10])), ≥))
(120) (>(i322[10], 0)=TRUE ⇒ JMP1257'(i322[10], i322[10], i322[10])≥NonInfC∧JMP1257'(i322[10], i322[10], i322[10])≥COND_JMP12572(>(i322[10], 0), i322[10], i322[10], i322[10])∧(UIncreasing(COND_JMP12572(>(i322[10], 0), i322[10], i322[10], i322[10])), ≥))
(121) (i322[10] + [-1] ≥ 0 ⇒ (UIncreasing(COND_JMP12572(>(i322[10], 0), i322[10], i322[10], i322[10])), ≥)∧[(-1)bni_95 + (-1)Bound*bni_95] ≥ 0∧[(-1)bso_96] + i322[10] ≥ 0)
(122) (i322[10] + [-1] ≥ 0 ⇒ (UIncreasing(COND_JMP12572(>(i322[10], 0), i322[10], i322[10], i322[10])), ≥)∧[(-1)bni_95 + (-1)Bound*bni_95] ≥ 0∧[(-1)bso_96] + i322[10] ≥ 0)
(123) (i322[10] + [-1] ≥ 0 ⇒ (UIncreasing(COND_JMP12572(>(i322[10], 0), i322[10], i322[10], i322[10])), ≥)∧[(-1)bni_95 + (-1)Bound*bni_95] ≥ 0∧[(-1)bso_96] + i322[10] ≥ 0)
(124) (i322[10] ≥ 0 ⇒ (UIncreasing(COND_JMP12572(>(i322[10], 0), i322[10], i322[10], i322[10])), ≥)∧[(-1)bni_95 + (-1)Bound*bni_95] ≥ 0∧[1 + (-1)bso_96] + i322[10] ≥ 0)
(125) (>(i322[10], 0)=TRUE∧i322[10]=i322[11]∧i322[11]=i42[2]∧0=i42[2] ⇒ COND_JMP12572(TRUE, i322[11], i322[11], i322[11])≥NonInfC∧COND_JMP12572(TRUE, i322[11], i322[11], i322[11])≥JMP1257'(i322[11], i322[11], 0)∧(UIncreasing(JMP1257'(i322[11], i322[11], 0)), ≥))
(126) (>(i322[10], 0)=TRUE∧i322[10]=i322[11]∧i322[11]=i42[6]∧0=i322[6] ⇒ COND_JMP12572(TRUE, i322[11], i322[11], i322[11])≥NonInfC∧COND_JMP12572(TRUE, i322[11], i322[11], i322[11])≥JMP1257'(i322[11], i322[11], 0)∧(UIncreasing(JMP1257'(i322[11], i322[11], 0)), ≥))
(127) (>(i322[10], 0)=TRUE ⇒ COND_JMP12572(TRUE, i322[10], i322[10], i322[10])≥NonInfC∧COND_JMP12572(TRUE, i322[10], i322[10], i322[10])≥JMP1257'(i322[10], i322[10], 0)∧(UIncreasing(JMP1257'(i322[11], i322[11], 0)), ≥))
(128) (i322[10] + [-1] ≥ 0 ⇒ (UIncreasing(JMP1257'(i322[11], i322[11], 0)), ≥)∧[(-1)bni_97 + (-1)Bound*bni_97] + [(-1)bni_97]i322[10] ≥ 0∧[(-1)bso_98] + i322[10] ≥ 0)
(129) (i322[10] + [-1] ≥ 0 ⇒ (UIncreasing(JMP1257'(i322[11], i322[11], 0)), ≥)∧[(-1)bni_97 + (-1)Bound*bni_97] + [(-1)bni_97]i322[10] ≥ 0∧[(-1)bso_98] + i322[10] ≥ 0)
(130) (i322[10] + [-1] ≥ 0 ⇒ (UIncreasing(JMP1257'(i322[11], i322[11], 0)), ≥)∧[(-1)bni_97 + (-1)Bound*bni_97] + [(-1)bni_97]i322[10] ≥ 0∧[(-1)bso_98] + i322[10] ≥ 0)
(131) (i322[10] ≥ 0 ⇒ (UIncreasing(JMP1257'(i322[11], i322[11], 0)), ≥)∧[(-2)bni_97 + (-1)Bound*bni_97] + [(-1)bni_97]i322[10] ≥ 0∧[1 + (-1)bso_98] + i322[10] ≥ 0)
(132) (>(i322[10], 0)=TRUE∧i322[10]=i322[11]∧0=i322[10]1∧i322[11]=i322[10]1 ⇒ COND_JMP12572(TRUE, i322[11], i322[11], i322[11])≥NonInfC∧COND_JMP12572(TRUE, i322[11], i322[11], i322[11])≥JMP1257'(i322[11], i322[11], 0)∧(UIncreasing(JMP1257'(i322[11], i322[11], 0)), ≥))
POL(TRUE) = [1]
POL(FALSE) = 0
POL(NE1621'(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10)) = [2] + [-1]x10 + [-1]x9 + [-1]x8 + [-1]x7 + [-1]x6 + [-1]x5 + x4 + x3 + [2]x1
POL(COND_NE1621(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11)) = [2] + [2]x11 + x10 + x8 + [-1]x7 + [-1]x6 + [-1]x5 + [-1]x4 + [-1]x3 + [-1]x2
POL(&&(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(!(x1)) = [-1]
POL(=(x1, x2)) = [-1]
POL(JMP1257'(x1, x2, x3)) = [-1] + [2]x3 + [-1]x2 + [-1]x1
POL(COND_JMP1257(x1, x2, x3, x4)) = [2] + [-1]x3 + [-1]x2
POL(COND_NE16211(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11)) = [-1]x10 + [-1]x9 + [-1]x8 + [2]x7 + [-1]x6 + [-1]x5 + [2]x4 + x2 + [-1]x1
POL(<(x1, x2)) = [-1]
POL(<=(x1, x2)) = [-1]
POL(COND_JMP12571(x1, x2, x3, x4)) = [-1] + [2]x4 + [-1]x3 + [-1]x2
POL(COND_NE16212(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11)) = [-1] + [-1]x11 + [-1]x10 + [-1]x9 + [-1]x8 + [2]x7 + [2]x6 + x5 + [-1]x4 + [-1]x3 + [-1]x2
POL(COND_JMP12572(x1, x2, x3, x4)) = [-1] + [-1]x4 + [-1]x3 + x2
NE1621'(i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0]) → COND_NE1621(&&(>(i42[0], 0), !(=(i42[0], i42[0]))), i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0])
JMP1257'(i42[2], i42[2], i42[2]) → COND_JMP1257(&&(>(i42[2], 0), !(=(i42[2], i42[2]))), i42[2], i42[2], i42[2])
NE1621'(i42[4], i42[4], i322[4], i322[4], i42[4], i322[4], i42[4], i322[4], i42[4], i322[4]) → COND_NE16211(&&(&&(<(i322[4], i42[4]), <=(i42[4], i322[4])), >(i322[4], 0)), i42[4], i42[4], i322[4], i322[4], i42[4], i322[4], i42[4], i322[4], i42[4], i322[4])
JMP1257'(i42[6], i42[6], i322[6]) → COND_JMP12571(&&(&&(&&(<(i322[6], i42[6]), <=(i42[6], i322[6])), >(i42[6], 0)), !(=(i322[6], 0))), i42[6], i42[6], i322[6])
NE1621'(i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8]) → COND_NE16212(>(i322[8], 0), i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8], i322[8])
JMP1257'(i322[10], i322[10], i322[10]) → COND_JMP12572(>(i322[10], 0), i322[10], i322[10], i322[10])
COND_JMP12572(TRUE, i322[11], i322[11], i322[11]) → JMP1257'(i322[11], i322[11], 0)
NE1621'(i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0]) → COND_NE1621(&&(>(i42[0], 0), !(=(i42[0], i42[0]))), i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0], i42[0])
JMP1257'(i42[2], i42[2], i42[2]) → COND_JMP1257(&&(>(i42[2], 0), !(=(i42[2], i42[2]))), i42[2], i42[2], i42[2])
NE1621'(i42[4], i42[4], i322[4], i322[4], i42[4], i322[4], i42[4], i322[4], i42[4], i322[4]) → COND_NE16211(&&(&&(<(i322[4], i42[4]), <=(i42[4], i322[4])), >(i322[4], 0)), i42[4], i42[4], i322[4], i322[4], i42[4], i322[4], i42[4], i322[4], i42[4], i322[4])
JMP1257'(i42[6], i42[6], i322[6]) → COND_JMP12571(&&(&&(&&(<(i322[6], i42[6]), <=(i42[6], i322[6])), >(i42[6], 0)), !(=(i322[6], 0))), i42[6], i42[6], i322[6])
JMP1257'(i322[10], i322[10], i322[10]) → COND_JMP12572(>(i322[10], 0), i322[10], i322[10], i322[10])
COND_NE1621(TRUE, i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1]) → NE1621'(i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1], i42[1])
COND_JMP1257(TRUE, i42[3], i42[3], i42[3]) → NE1621'(i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3], i42[3])
COND_NE16211(TRUE, i42[5], i42[5], i322[5], i322[5], i42[5], i322[5], i42[5], i322[5], i42[5], i322[5]) → JMP1257'(i42[5], i42[5], i322[5])
COND_JMP12571(TRUE, i42[7], i42[7], i322[7]) → JMP1257'(i42[7], i42[7], i322[7])
COND_NE16212(TRUE, i322[9], i322[9], i322[9], i322[9], i322[9], i322[9], i322[9], i322[9], i322[9], i322[9]) → JMP1257'(i322[9], i322[9], 0)
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(1) -> (8), if ((i42[1] →* i322[8]))
(3) -> (8), if ((i42[3] →* i322[8]))
(8) -> (9), if ((i322[8] →* i322[9])∧(i322[8] > 0 →* TRUE))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i88[0] →* i88[1])∧(i42[0] →* i42[1])∧(i42[0] > 0 && i88[0] > i42[0] →* TRUE))
(1) -> (0), if ((i42[1] →* i42[0])∧(i88[1] - i42[1] →* i88[0]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i88[0] →* i88[1])∧(i42[0] →* i42[1])∧(i42[0] > 0 && i88[0] > i42[0] →* TRUE))
(1) -> (0), if ((i42[1] →* i42[0])∧(i88[1] - i42[1] →* i88[0]))
(1) (i88[0]=i88[1]∧i42[0]=i42[1]∧&&(>(i42[0], 0), >(i88[0], i42[0]))=TRUE ⇒ JMP1078'(i42[0], i42[0], i42[0], i42[0], i88[0], i42[0])≥NonInfC∧JMP1078'(i42[0], i42[0], i42[0], i42[0], i88[0], i42[0])≥COND_JMP1078(&&(>(i42[0], 0), >(i88[0], i42[0])), i42[0], i42[0], i42[0], i42[0], i88[0], i42[0])∧(UIncreasing(COND_JMP1078(&&(>(i42[0], 0), >(i88[0], i42[0])), i42[0], i42[0], i42[0], i42[0], i88[0], i42[0])), ≥))
(2) (>(i42[0], 0)=TRUE∧>(i88[0], i42[0])=TRUE ⇒ JMP1078'(i42[0], i42[0], i42[0], i42[0], i88[0], i42[0])≥NonInfC∧JMP1078'(i42[0], i42[0], i42[0], i42[0], i88[0], i42[0])≥COND_JMP1078(&&(>(i42[0], 0), >(i88[0], i42[0])), i42[0], i42[0], i42[0], i42[0], i88[0], i42[0])∧(UIncreasing(COND_JMP1078(&&(>(i42[0], 0), >(i88[0], i42[0])), i42[0], i42[0], i42[0], i42[0], i88[0], i42[0])), ≥))
(3) (i42[0] + [-1] ≥ 0∧i88[0] + [-1] + [-1]i42[0] ≥ 0 ⇒ (UIncreasing(COND_JMP1078(&&(>(i42[0], 0), >(i88[0], i42[0])), i42[0], i42[0], i42[0], i42[0], i88[0], i42[0])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [(-2)bni_20]i42[0] + [bni_20]i88[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(4) (i42[0] + [-1] ≥ 0∧i88[0] + [-1] + [-1]i42[0] ≥ 0 ⇒ (UIncreasing(COND_JMP1078(&&(>(i42[0], 0), >(i88[0], i42[0])), i42[0], i42[0], i42[0], i42[0], i88[0], i42[0])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [(-2)bni_20]i42[0] + [bni_20]i88[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(5) (i42[0] + [-1] ≥ 0∧i88[0] + [-1] + [-1]i42[0] ≥ 0 ⇒ (UIncreasing(COND_JMP1078(&&(>(i42[0], 0), >(i88[0], i42[0])), i42[0], i42[0], i42[0], i42[0], i88[0], i42[0])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [(-2)bni_20]i42[0] + [bni_20]i88[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(6) (i42[0] ≥ 0∧i88[0] + [-2] + [-1]i42[0] ≥ 0 ⇒ (UIncreasing(COND_JMP1078(&&(>(i42[0], 0), >(i88[0], i42[0])), i42[0], i42[0], i42[0], i42[0], i88[0], i42[0])), ≥)∧[(-3)bni_20 + (-1)Bound*bni_20] + [(-2)bni_20]i42[0] + [bni_20]i88[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(7) (i42[0] ≥ 0∧i88[0] ≥ 0 ⇒ (UIncreasing(COND_JMP1078(&&(>(i42[0], 0), >(i88[0], i42[0])), i42[0], i42[0], i42[0], i42[0], i88[0], i42[0])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [(-1)bni_20]i42[0] + [bni_20]i88[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(8) (i88[0]=i88[1]∧i42[0]=i42[1]∧&&(>(i42[0], 0), >(i88[0], i42[0]))=TRUE∧i42[1]=i42[0]1∧-(i88[1], i42[1])=i88[0]1∧i88[0]1=i88[1]1∧i42[0]1=i42[1]1∧&&(>(i42[0]1, 0), >(i88[0]1, i42[0]1))=TRUE∧i42[1]1=i42[0]2∧-(i88[1]1, i42[1]1)=i88[0]2∧i88[0]2=i88[1]2∧i42[0]2=i42[1]2∧&&(>(i42[0]2, 0), >(i88[0]2, i42[0]2))=TRUE ⇒ COND_JMP1078(TRUE, i42[1]1, i42[1]1, i42[1]1, i42[1]1, i88[1]1, i42[1]1)≥NonInfC∧COND_JMP1078(TRUE, i42[1]1, i42[1]1, i42[1]1, i42[1]1, i88[1]1, i42[1]1)≥JMP1078'(i42[1]1, i42[1]1, i42[1]1, i42[1]1, -(i88[1]1, i42[1]1), i42[1]1)∧(UIncreasing(JMP1078'(i42[1]1, i42[1]1, i42[1]1, i42[1]1, -(i88[1]1, i42[1]1), i42[1]1)), ≥))
(9) (>(i42[0], 0)=TRUE∧>(i88[0], i42[0])=TRUE∧>(-(i88[0], i42[0]), i42[0])=TRUE∧>(-(-(i88[0], i42[0]), i42[0]), i42[0])=TRUE ⇒ COND_JMP1078(TRUE, i42[0], i42[0], i42[0], i42[0], -(i88[0], i42[0]), i42[0])≥NonInfC∧COND_JMP1078(TRUE, i42[0], i42[0], i42[0], i42[0], -(i88[0], i42[0]), i42[0])≥JMP1078'(i42[0], i42[0], i42[0], i42[0], -(-(i88[0], i42[0]), i42[0]), i42[0])∧(UIncreasing(JMP1078'(i42[1]1, i42[1]1, i42[1]1, i42[1]1, -(i88[1]1, i42[1]1), i42[1]1)), ≥))
(10) (i42[0] + [-1] ≥ 0∧i88[0] + [-1] + [-1]i42[0] ≥ 0∧i88[0] + [-1] + [-2]i42[0] ≥ 0∧i88[0] + [-1] + [-3]i42[0] ≥ 0 ⇒ (UIncreasing(JMP1078'(i42[1]1, i42[1]1, i42[1]1, i42[1]1, -(i88[1]1, i42[1]1), i42[1]1)), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [(-3)bni_22]i42[0] + [bni_22]i88[0] ≥ 0∧[(-1)bso_23] + i42[0] ≥ 0)
(11) (i42[0] + [-1] ≥ 0∧i88[0] + [-1] + [-1]i42[0] ≥ 0∧i88[0] + [-1] + [-2]i42[0] ≥ 0∧i88[0] + [-1] + [-3]i42[0] ≥ 0 ⇒ (UIncreasing(JMP1078'(i42[1]1, i42[1]1, i42[1]1, i42[1]1, -(i88[1]1, i42[1]1), i42[1]1)), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [(-3)bni_22]i42[0] + [bni_22]i88[0] ≥ 0∧[(-1)bso_23] + i42[0] ≥ 0)
(12) (i42[0] + [-1] ≥ 0∧i88[0] + [-1] + [-1]i42[0] ≥ 0∧i88[0] + [-1] + [-2]i42[0] ≥ 0∧i88[0] + [-1] + [-3]i42[0] ≥ 0 ⇒ (UIncreasing(JMP1078'(i42[1]1, i42[1]1, i42[1]1, i42[1]1, -(i88[1]1, i42[1]1), i42[1]1)), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [(-3)bni_22]i42[0] + [bni_22]i88[0] ≥ 0∧[(-1)bso_23] + i42[0] ≥ 0)
(13) (i42[0] ≥ 0∧i88[0] + [-2] + [-1]i42[0] ≥ 0∧i88[0] + [-3] + [-2]i42[0] ≥ 0∧i88[0] + [-4] + [-3]i42[0] ≥ 0 ⇒ (UIncreasing(JMP1078'(i42[1]1, i42[1]1, i42[1]1, i42[1]1, -(i88[1]1, i42[1]1), i42[1]1)), ≥)∧[(-4)bni_22 + (-1)Bound*bni_22] + [(-3)bni_22]i42[0] + [bni_22]i88[0] ≥ 0∧[1 + (-1)bso_23] + i42[0] ≥ 0)
(14) (i42[0] ≥ 0∧i88[0] ≥ 0∧[-1] + [-1]i42[0] + i88[0] ≥ 0∧[-2] + [-2]i42[0] + i88[0] ≥ 0 ⇒ (UIncreasing(JMP1078'(i42[1]1, i42[1]1, i42[1]1, i42[1]1, -(i88[1]1, i42[1]1), i42[1]1)), ≥)∧[(-2)bni_22 + (-1)Bound*bni_22] + [(-2)bni_22]i42[0] + [bni_22]i88[0] ≥ 0∧[1 + (-1)bso_23] + i42[0] ≥ 0)
(15) (i42[0] ≥ 0∧[1] + i42[0] + i88[0] ≥ 0∧i88[0] ≥ 0∧[-1] + [-1]i42[0] + i88[0] ≥ 0 ⇒ (UIncreasing(JMP1078'(i42[1]1, i42[1]1, i42[1]1, i42[1]1, -(i88[1]1, i42[1]1), i42[1]1)), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]i42[0] + [bni_22]i88[0] ≥ 0∧[1 + (-1)bso_23] + i42[0] ≥ 0)
(16) (i42[0] ≥ 0∧[2] + [2]i42[0] + i88[0] ≥ 0∧[1] + i42[0] + i88[0] ≥ 0∧i88[0] ≥ 0 ⇒ (UIncreasing(JMP1078'(i42[1]1, i42[1]1, i42[1]1, i42[1]1, -(i88[1]1, i42[1]1), i42[1]1)), ≥)∧[(-1)Bound*bni_22] + [bni_22]i88[0] ≥ 0∧[1 + (-1)bso_23] + i42[0] ≥ 0)
POL(TRUE) = [1]
POL(FALSE) = [3]
POL(JMP1078'(x1, x2, x3, x4, x5, x6)) = [-1] + x6 + x5 + [-1]x4 + [-1]x3 + [-1]x2
POL(COND_JMP1078(x1, x2, x3, x4, x5, x6, x7)) = [-1] + x6 + [-1]x4 + [-1]x2
POL(&&(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(-(x1, x2)) = x1 + [-1]x2
COND_JMP1078(TRUE, i42[1], i42[1], i42[1], i42[1], i88[1], i42[1]) → JMP1078'(i42[1], i42[1], i42[1], i42[1], -(i88[1], i42[1]), i42[1])
COND_JMP1078(TRUE, i42[1], i42[1], i42[1], i42[1], i88[1], i42[1]) → JMP1078'(i42[1], i42[1], i42[1], i42[1], -(i88[1], i42[1]), i42[1])
JMP1078'(i42[0], i42[0], i42[0], i42[0], i88[0], i42[0]) → COND_JMP1078(&&(>(i42[0], 0), >(i88[0], i42[0])), i42[0], i42[0], i42[0], i42[0], i88[0], i42[0])
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(FALSE, FALSE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i40[0] > 0 && !(i40[0] = i40[0]) →* TRUE)∧(i40[0] →* i40[1]))
(1) -> (0), if ((i40[1] →* i40[0]))
(1) -> (4), if ((i40[1] →* i40[4])∧(i40[1] →* i42[4]))
(2) -> (3), if ((i40[2] →* i40[3])∧(i40[2] > 0 && !(i40[2] = i40[2]) →* TRUE))
(3) -> (0), if ((i40[3] →* i40[0]))
(3) -> (4), if ((i40[3] →* i40[4])∧(i40[3] →* i42[4]))
(4) -> (5), if ((i40[4] →* i40[5])∧(i42[4] →* i42[5])∧(i42[4] < i40[4] && i40[4] <= i42[4] && i42[4] > 0 →* TRUE))
(5) -> (2), if ((i40[5] →* i40[2])∧(i42[5] →* i40[2]))
(5) -> (6), if ((i42[5] →* i42[6])∧(i40[5] →* i40[6]))
(6) -> (7), if ((i42[6] →* i42[7])∧(i42[6] < i40[6] && i40[6] <= i42[6] && i40[6] > 0 && !(i42[6] = 0) →* TRUE)∧(i40[6] →* i40[7]))
(7) -> (2), if ((i40[7] →* i40[2])∧(i42[7] →* i40[2]))
(7) -> (6), if ((i40[7] →* i40[6])∧(i42[7] →* i42[6]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i40[0] > 0 && !(i40[0] = i40[0]) →* TRUE)∧(i40[0] →* i40[1]))
(1) -> (0), if ((i40[1] →* i40[0]))
(1) -> (4), if ((i40[1] →* i40[4])∧(i40[1] →* i42[4]))
(2) -> (3), if ((i40[2] →* i40[3])∧(i40[2] > 0 && !(i40[2] = i40[2]) →* TRUE))
(3) -> (0), if ((i40[3] →* i40[0]))
(3) -> (4), if ((i40[3] →* i40[4])∧(i40[3] →* i42[4]))
(4) -> (5), if ((i40[4] →* i40[5])∧(i42[4] →* i42[5])∧(i42[4] < i40[4] && i40[4] <= i42[4] && i42[4] > 0 →* TRUE))
(5) -> (2), if ((i40[5] →* i40[2])∧(i42[5] →* i40[2]))
(5) -> (6), if ((i42[5] →* i42[6])∧(i40[5] →* i40[6]))
(6) -> (7), if ((i42[6] →* i42[7])∧(i42[6] < i40[6] && i40[6] <= i42[6] && i40[6] > 0 && !(i42[6] = 0) →* TRUE)∧(i40[6] →* i40[7]))
(7) -> (2), if ((i40[7] →* i40[2])∧(i42[7] →* i40[2]))
(7) -> (6), if ((i40[7] →* i40[6])∧(i42[7] →* i42[6]))
(1) (i40[1]=i40[0]∧&&(>(i40[0], 0), !(=(i40[0], i40[0])))=TRUE∧i40[0]=i40[1]1 ⇒ NE884'(i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0])≥NonInfC∧NE884'(i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0])≥COND_NE884(&&(>(i40[0], 0), !(=(i40[0], i40[0]))), i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0])∧(UIncreasing(COND_NE884(&&(>(i40[0], 0), !(=(i40[0], i40[0]))), i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0])), ≥))
(2) (>(i40[0], 0)=TRUE∧<(i40[0], i40[0])=TRUE ⇒ NE884'(i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0])≥NonInfC∧NE884'(i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0])≥COND_NE884(&&(>(i40[0], 0), !(=(i40[0], i40[0]))), i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0])∧(UIncreasing(COND_NE884(&&(>(i40[0], 0), !(=(i40[0], i40[0]))), i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0])), ≥))
(3) (>(i40[0], 0)=TRUE∧>(i40[0], i40[0])=TRUE ⇒ NE884'(i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0])≥NonInfC∧NE884'(i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0])≥COND_NE884(&&(>(i40[0], 0), !(=(i40[0], i40[0]))), i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0])∧(UIncreasing(COND_NE884(&&(>(i40[0], 0), !(=(i40[0], i40[0]))), i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0])), ≥))
(4) (i40[0] + [-1] ≥ 0∧[-1] ≥ 0 ⇒ (UIncreasing(COND_NE884(&&(>(i40[0], 0), !(=(i40[0], i40[0]))), i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0])), ≥)∧[(-1)bni_64 + (-1)Bound*bni_64] + [(-11)bni_64]i40[0] ≥ 0∧[-1 + (-1)bso_65] ≥ 0)
(5) (i40[0] + [-1] ≥ 0∧[-1] ≥ 0 ⇒ (UIncreasing(COND_NE884(&&(>(i40[0], 0), !(=(i40[0], i40[0]))), i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0])), ≥)∧[(-1)bni_64 + (-1)Bound*bni_64] + [(-11)bni_64]i40[0] ≥ 0∧[-1 + (-1)bso_65] ≥ 0)
(6) (i40[0] + [-1] ≥ 0∧[-1] ≥ 0 ⇒ (UIncreasing(COND_NE884(&&(>(i40[0], 0), !(=(i40[0], i40[0]))), i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0])), ≥)∧[(-1)bni_64 + (-1)Bound*bni_64] + [(-11)bni_64]i40[0] ≥ 0∧[-1 + (-1)bso_65] ≥ 0)
(7) (i40[0] + [-1] ≥ 0∧[-1] ≥ 0 ⇒ (UIncreasing(COND_NE884(&&(>(i40[0], 0), !(=(i40[0], i40[0]))), i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0])), ≥)∧[(-1)bni_64 + (-1)Bound*bni_64] + [(-11)bni_64]i40[0] ≥ 0∧[-1 + (-1)bso_65] ≥ 0)
(8) (i40[0] + [-1] ≥ 0∧[-1] ≥ 0 ⇒ (UIncreasing(COND_NE884(&&(>(i40[0], 0), !(=(i40[0], i40[0]))), i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0])), ≥)∧[(-1)bni_64 + (-1)Bound*bni_64] + [(-11)bni_64]i40[0] ≥ 0∧[-1 + (-1)bso_65] ≥ 0)
(9) (i40[0] + [-1] ≥ 0∧[-1] ≥ 0 ⇒ (UIncreasing(COND_NE884(&&(>(i40[0], 0), !(=(i40[0], i40[0]))), i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0])), ≥)∧[(-1)bni_64 + (-1)Bound*bni_64] + [(-11)bni_64]i40[0] ≥ 0∧[-1 + (-1)bso_65] ≥ 0)
(10) (i40[3]=i40[0]∧&&(>(i40[0], 0), !(=(i40[0], i40[0])))=TRUE∧i40[0]=i40[1] ⇒ NE884'(i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0])≥NonInfC∧NE884'(i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0])≥COND_NE884(&&(>(i40[0], 0), !(=(i40[0], i40[0]))), i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0])∧(UIncreasing(COND_NE884(&&(>(i40[0], 0), !(=(i40[0], i40[0]))), i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0])), ≥))
(11) (>(i40[0], 0)=TRUE∧<(i40[0], i40[0])=TRUE ⇒ NE884'(i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0])≥NonInfC∧NE884'(i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0])≥COND_NE884(&&(>(i40[0], 0), !(=(i40[0], i40[0]))), i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0])∧(UIncreasing(COND_NE884(&&(>(i40[0], 0), !(=(i40[0], i40[0]))), i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0])), ≥))
(12) (>(i40[0], 0)=TRUE∧>(i40[0], i40[0])=TRUE ⇒ NE884'(i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0])≥NonInfC∧NE884'(i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0])≥COND_NE884(&&(>(i40[0], 0), !(=(i40[0], i40[0]))), i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0])∧(UIncreasing(COND_NE884(&&(>(i40[0], 0), !(=(i40[0], i40[0]))), i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0])), ≥))
(13) (i40[0] + [-1] ≥ 0∧[-1] ≥ 0 ⇒ (UIncreasing(COND_NE884(&&(>(i40[0], 0), !(=(i40[0], i40[0]))), i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0])), ≥)∧[(-1)bni_64 + (-1)Bound*bni_64] + [(-11)bni_64]i40[0] ≥ 0∧[-1 + (-1)bso_65] ≥ 0)
(14) (i40[0] + [-1] ≥ 0∧[-1] ≥ 0 ⇒ (UIncreasing(COND_NE884(&&(>(i40[0], 0), !(=(i40[0], i40[0]))), i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0])), ≥)∧[(-1)bni_64 + (-1)Bound*bni_64] + [(-11)bni_64]i40[0] ≥ 0∧[-1 + (-1)bso_65] ≥ 0)
(15) (i40[0] + [-1] ≥ 0∧[-1] ≥ 0 ⇒ (UIncreasing(COND_NE884(&&(>(i40[0], 0), !(=(i40[0], i40[0]))), i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0])), ≥)∧[(-1)bni_64 + (-1)Bound*bni_64] + [(-11)bni_64]i40[0] ≥ 0∧[-1 + (-1)bso_65] ≥ 0)
(16) (i40[0] + [-1] ≥ 0∧[-1] ≥ 0 ⇒ (UIncreasing(COND_NE884(&&(>(i40[0], 0), !(=(i40[0], i40[0]))), i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0])), ≥)∧[(-1)bni_64 + (-1)Bound*bni_64] + [(-11)bni_64]i40[0] ≥ 0∧[-1 + (-1)bso_65] ≥ 0)
(17) (i40[0] + [-1] ≥ 0∧[-1] ≥ 0 ⇒ (UIncreasing(COND_NE884(&&(>(i40[0], 0), !(=(i40[0], i40[0]))), i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0])), ≥)∧[(-1)bni_64 + (-1)Bound*bni_64] + [(-11)bni_64]i40[0] ≥ 0∧[-1 + (-1)bso_65] ≥ 0)
(18) (i40[0] + [-1] ≥ 0∧[-1] ≥ 0 ⇒ (UIncreasing(COND_NE884(&&(>(i40[0], 0), !(=(i40[0], i40[0]))), i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0])), ≥)∧[(-1)bni_64 + (-1)Bound*bni_64] + [(-11)bni_64]i40[0] ≥ 0∧[-1 + (-1)bso_65] ≥ 0)
(19) (&&(>(i40[0], 0), !(=(i40[0], i40[0])))=TRUE∧i40[0]=i40[1]∧i40[1]=i40[0]1 ⇒ COND_NE884(TRUE, i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1])≥NonInfC∧COND_NE884(TRUE, i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1])≥NE884'(i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1])∧(UIncreasing(NE884'(i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1])), ≥))
(20) (>(i40[0], 0)=TRUE∧<(i40[0], i40[0])=TRUE ⇒ COND_NE884(TRUE, i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0])≥NonInfC∧COND_NE884(TRUE, i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0])≥NE884'(i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0])∧(UIncreasing(NE884'(i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1])), ≥))
(21) (>(i40[0], 0)=TRUE∧>(i40[0], i40[0])=TRUE ⇒ COND_NE884(TRUE, i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0])≥NonInfC∧COND_NE884(TRUE, i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0])≥NE884'(i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0])∧(UIncreasing(NE884'(i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1])), ≥))
(22) (i40[0] + [-1] ≥ 0∧[-1] ≥ 0 ⇒ (UIncreasing(NE884'(i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1])), ≥)∧[(-1)bni_66 + (-1)Bound*bni_66] + [(-11)bni_66]i40[0] ≥ 0∧[(-1)bso_67] ≥ 0)
(23) (i40[0] + [-1] ≥ 0∧[-1] ≥ 0 ⇒ (UIncreasing(NE884'(i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1])), ≥)∧[(-1)bni_66 + (-1)Bound*bni_66] + [(-11)bni_66]i40[0] ≥ 0∧[(-1)bso_67] ≥ 0)
(24) (i40[0] + [-1] ≥ 0∧[-1] ≥ 0 ⇒ (UIncreasing(NE884'(i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1])), ≥)∧[(-1)bni_66 + (-1)Bound*bni_66] + [(-11)bni_66]i40[0] ≥ 0∧[(-1)bso_67] ≥ 0)
(25) (i40[0] + [-1] ≥ 0∧[-1] ≥ 0 ⇒ (UIncreasing(NE884'(i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1])), ≥)∧[(-1)bni_66 + (-1)Bound*bni_66] + [(-11)bni_66]i40[0] ≥ 0∧[(-1)bso_67] ≥ 0)
(26) (i40[0] + [-1] ≥ 0∧[-1] ≥ 0 ⇒ (UIncreasing(NE884'(i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1])), ≥)∧[(-1)bni_66 + (-1)Bound*bni_66] + [(-11)bni_66]i40[0] ≥ 0∧[(-1)bso_67] ≥ 0)
(27) (i40[0] + [-1] ≥ 0∧[-1] ≥ 0 ⇒ (UIncreasing(NE884'(i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1])), ≥)∧[(-1)bni_66 + (-1)Bound*bni_66] + [(-11)bni_66]i40[0] ≥ 0∧[(-1)bso_67] ≥ 0)
(28) (&&(>(i40[0], 0), !(=(i40[0], i40[0])))=TRUE∧i40[0]=i40[1]∧i40[1]=i40[4]∧i40[1]=i42[4] ⇒ COND_NE884(TRUE, i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1])≥NonInfC∧COND_NE884(TRUE, i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1])≥NE884'(i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1])∧(UIncreasing(NE884'(i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1])), ≥))
(29) (>(i40[0], 0)=TRUE∧<(i40[0], i40[0])=TRUE ⇒ COND_NE884(TRUE, i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0])≥NonInfC∧COND_NE884(TRUE, i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0])≥NE884'(i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0])∧(UIncreasing(NE884'(i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1])), ≥))
(30) (>(i40[0], 0)=TRUE∧>(i40[0], i40[0])=TRUE ⇒ COND_NE884(TRUE, i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0])≥NonInfC∧COND_NE884(TRUE, i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0])≥NE884'(i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0], i40[0])∧(UIncreasing(NE884'(i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1])), ≥))
(31) (i40[0] + [-1] ≥ 0∧[-1] ≥ 0 ⇒ (UIncreasing(NE884'(i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1])), ≥)∧[(-1)bni_66 + (-1)Bound*bni_66] + [(-11)bni_66]i40[0] ≥ 0∧[(-1)bso_67] ≥ 0)
(32) (i40[0] + [-1] ≥ 0∧[-1] ≥ 0 ⇒ (UIncreasing(NE884'(i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1])), ≥)∧[(-1)bni_66 + (-1)Bound*bni_66] + [(-11)bni_66]i40[0] ≥ 0∧[(-1)bso_67] ≥ 0)
(33) (i40[0] + [-1] ≥ 0∧[-1] ≥ 0 ⇒ (UIncreasing(NE884'(i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1])), ≥)∧[(-1)bni_66 + (-1)Bound*bni_66] + [(-11)bni_66]i40[0] ≥ 0∧[(-1)bso_67] ≥ 0)
(34) (i40[0] + [-1] ≥ 0∧[-1] ≥ 0 ⇒ (UIncreasing(NE884'(i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1])), ≥)∧[(-1)bni_66 + (-1)Bound*bni_66] + [(-11)bni_66]i40[0] ≥ 0∧[(-1)bso_67] ≥ 0)
(35) (i40[0] + [-1] ≥ 0∧[-1] ≥ 0 ⇒ (UIncreasing(NE884'(i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1])), ≥)∧[(-1)bni_66 + (-1)Bound*bni_66] + [(-11)bni_66]i40[0] ≥ 0∧[(-1)bso_67] ≥ 0)
(36) (i40[0] + [-1] ≥ 0∧[-1] ≥ 0 ⇒ (UIncreasing(NE884'(i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1], i40[1])), ≥)∧[(-1)bni_66 + (-1)Bound*bni_66] + [(-11)bni_66]i40[0] ≥ 0∧[(-1)bso_67] ≥ 0)
(37) (i40[5]=i40[2]∧i42[5]=i40[2]∧i40[2]=i40[3]∧&&(>(i40[2], 0), !(=(i40[2], i40[2])))=TRUE ⇒ LOAD683(i40[2], i40[2], i40[2], i40[2])≥NonInfC∧LOAD683(i40[2], i40[2], i40[2], i40[2])≥COND_LOAD683(&&(>(i40[2], 0), !(=(i40[2], i40[2]))), i40[2], i40[2], i40[2], i40[2])∧(UIncreasing(COND_LOAD683(&&(>(i40[2], 0), !(=(i40[2], i40[2]))), i40[2], i40[2], i40[2], i40[2])), ≥))
(38) (>(i40[2], 0)=TRUE∧<(i40[2], i40[2])=TRUE ⇒ LOAD683(i40[2], i40[2], i40[2], i40[2])≥NonInfC∧LOAD683(i40[2], i40[2], i40[2], i40[2])≥COND_LOAD683(&&(>(i40[2], 0), !(=(i40[2], i40[2]))), i40[2], i40[2], i40[2], i40[2])∧(UIncreasing(COND_LOAD683(&&(>(i40[2], 0), !(=(i40[2], i40[2]))), i40[2], i40[2], i40[2], i40[2])), ≥))
(39) (>(i40[2], 0)=TRUE∧>(i40[2], i40[2])=TRUE ⇒ LOAD683(i40[2], i40[2], i40[2], i40[2])≥NonInfC∧LOAD683(i40[2], i40[2], i40[2], i40[2])≥COND_LOAD683(&&(>(i40[2], 0), !(=(i40[2], i40[2]))), i40[2], i40[2], i40[2], i40[2])∧(UIncreasing(COND_LOAD683(&&(>(i40[2], 0), !(=(i40[2], i40[2]))), i40[2], i40[2], i40[2], i40[2])), ≥))
(40) (i40[2] + [-1] ≥ 0∧[-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD683(&&(>(i40[2], 0), !(=(i40[2], i40[2]))), i40[2], i40[2], i40[2], i40[2])), ≥)∧[(-1)bni_68 + (-1)Bound*bni_68] + [(-4)bni_68]i40[2] ≥ 0∧[-1 + (-1)bso_69] ≥ 0)
(41) (i40[2] + [-1] ≥ 0∧[-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD683(&&(>(i40[2], 0), !(=(i40[2], i40[2]))), i40[2], i40[2], i40[2], i40[2])), ≥)∧[(-1)bni_68 + (-1)Bound*bni_68] + [(-4)bni_68]i40[2] ≥ 0∧[-1 + (-1)bso_69] ≥ 0)
(42) (i40[2] + [-1] ≥ 0∧[-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD683(&&(>(i40[2], 0), !(=(i40[2], i40[2]))), i40[2], i40[2], i40[2], i40[2])), ≥)∧[(-1)bni_68 + (-1)Bound*bni_68] + [(-4)bni_68]i40[2] ≥ 0∧[-1 + (-1)bso_69] ≥ 0)
(43) (i40[2] + [-1] ≥ 0∧[-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD683(&&(>(i40[2], 0), !(=(i40[2], i40[2]))), i40[2], i40[2], i40[2], i40[2])), ≥)∧[(-1)bni_68 + (-1)Bound*bni_68] + [(-4)bni_68]i40[2] ≥ 0∧[-1 + (-1)bso_69] ≥ 0)
(44) (i40[2] + [-1] ≥ 0∧[-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD683(&&(>(i40[2], 0), !(=(i40[2], i40[2]))), i40[2], i40[2], i40[2], i40[2])), ≥)∧[(-1)bni_68 + (-1)Bound*bni_68] + [(-4)bni_68]i40[2] ≥ 0∧[-1 + (-1)bso_69] ≥ 0)
(45) (i40[2] + [-1] ≥ 0∧[-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD683(&&(>(i40[2], 0), !(=(i40[2], i40[2]))), i40[2], i40[2], i40[2], i40[2])), ≥)∧[(-1)bni_68 + (-1)Bound*bni_68] + [(-4)bni_68]i40[2] ≥ 0∧[-1 + (-1)bso_69] ≥ 0)
(46) (i40[7]=i40[2]∧i42[7]=i40[2]∧i40[2]=i40[3]∧&&(>(i40[2], 0), !(=(i40[2], i40[2])))=TRUE ⇒ LOAD683(i40[2], i40[2], i40[2], i40[2])≥NonInfC∧LOAD683(i40[2], i40[2], i40[2], i40[2])≥COND_LOAD683(&&(>(i40[2], 0), !(=(i40[2], i40[2]))), i40[2], i40[2], i40[2], i40[2])∧(UIncreasing(COND_LOAD683(&&(>(i40[2], 0), !(=(i40[2], i40[2]))), i40[2], i40[2], i40[2], i40[2])), ≥))
(47) (>(i40[2], 0)=TRUE∧<(i40[2], i40[2])=TRUE ⇒ LOAD683(i40[2], i40[2], i40[2], i40[2])≥NonInfC∧LOAD683(i40[2], i40[2], i40[2], i40[2])≥COND_LOAD683(