0 JBC
↳1 JBC2FIG (⇐)
↳2 FIGraph
↳3 FIGtoITRSProof (⇐)
↳4 ITRS
↳5 ITRStoIDPProof (⇔)
↳6 IDP
↳7 UsableRulesProof (⇔)
↳8 IDP
↳9 IDPNonInfProof (⇐)
↳10 IDP
↳11 IDependencyGraphProof (⇔)
↳12 TRUE
public class Duplicate{
public static int round (int x) {
if (x % 2 == 0) return x;
else return x+1;
}
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
while ((x > y) && (y > 2)) {
x++;
y = 2*y;
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i11[0] →* i11[1])∧(i21[0] > 2 && i11[0] > i21[0] →* TRUE)∧(i21[0] →* i21[1]))
(1) -> (0), if ((2 * i21[1] →* i21[0])∧(i11[1] + 1 →* i11[0]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i11[0] →* i11[1])∧(i21[0] > 2 && i11[0] > i21[0] →* TRUE)∧(i21[0] →* i21[1]))
(1) -> (0), if ((2 * i21[1] →* i21[0])∧(i11[1] + 1 →* i11[0]))
(1) (i11[0]=i11[1]∧&&(>(i21[0], 2), >(i11[0], i21[0]))=TRUE∧i21[0]=i21[1] ⇒ LOAD551(2, i11[0], i21[0])≥NonInfC∧LOAD551(2, i11[0], i21[0])≥COND_LOAD551(&&(>(i21[0], 2), >(i11[0], i21[0])), 2, i11[0], i21[0])∧(UIncreasing(COND_LOAD551(&&(>(i21[0], 2), >(i11[0], i21[0])), 2, i11[0], i21[0])), ≥))
(2) (>(i21[0], 2)=TRUE∧>(i11[0], i21[0])=TRUE ⇒ LOAD551(2, i11[0], i21[0])≥NonInfC∧LOAD551(2, i11[0], i21[0])≥COND_LOAD551(&&(>(i21[0], 2), >(i11[0], i21[0])), 2, i11[0], i21[0])∧(UIncreasing(COND_LOAD551(&&(>(i21[0], 2), >(i11[0], i21[0])), 2, i11[0], i21[0])), ≥))
(3) (i21[0] + [-3] ≥ 0∧i11[0] + [-1] + [-1]i21[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD551(&&(>(i21[0], 2), >(i11[0], i21[0])), 2, i11[0], i21[0])), ≥)∧[bni_14 + (-1)Bound*bni_14] + [(-1)bni_14]i21[0] + [bni_14]i11[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(4) (i21[0] + [-3] ≥ 0∧i11[0] + [-1] + [-1]i21[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD551(&&(>(i21[0], 2), >(i11[0], i21[0])), 2, i11[0], i21[0])), ≥)∧[bni_14 + (-1)Bound*bni_14] + [(-1)bni_14]i21[0] + [bni_14]i11[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(5) (i21[0] + [-3] ≥ 0∧i11[0] + [-1] + [-1]i21[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD551(&&(>(i21[0], 2), >(i11[0], i21[0])), 2, i11[0], i21[0])), ≥)∧[bni_14 + (-1)Bound*bni_14] + [(-1)bni_14]i21[0] + [bni_14]i11[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(6) (i21[0] ≥ 0∧i11[0] + [-4] + [-1]i21[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD551(&&(>(i21[0], 2), >(i11[0], i21[0])), 2, i11[0], i21[0])), ≥)∧[(-2)bni_14 + (-1)Bound*bni_14] + [(-1)bni_14]i21[0] + [bni_14]i11[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(7) (i21[0] ≥ 0∧i11[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD551(&&(>(i21[0], 2), >(i11[0], i21[0])), 2, i11[0], i21[0])), ≥)∧[(2)bni_14 + (-1)Bound*bni_14] + [bni_14]i11[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(8) (i11[0]=i11[1]∧&&(>(i21[0], 2), >(i11[0], i21[0]))=TRUE∧i21[0]=i21[1]∧*(2, i21[1])=i21[0]1∧+(i11[1], 1)=i11[0]1 ⇒ COND_LOAD551(TRUE, 2, i11[1], i21[1])≥NonInfC∧COND_LOAD551(TRUE, 2, i11[1], i21[1])≥LOAD551(2, +(i11[1], 1), *(2, i21[1]))∧(UIncreasing(LOAD551(2, +(i11[1], 1), *(2, i21[1]))), ≥))
(9) (>(i21[0], 2)=TRUE∧>(i11[0], i21[0])=TRUE ⇒ COND_LOAD551(TRUE, 2, i11[0], i21[0])≥NonInfC∧COND_LOAD551(TRUE, 2, i11[0], i21[0])≥LOAD551(2, +(i11[0], 1), *(2, i21[0]))∧(UIncreasing(LOAD551(2, +(i11[1], 1), *(2, i21[1]))), ≥))
(10) (i21[0] + [-3] ≥ 0∧i11[0] + [-1] + [-1]i21[0] ≥ 0 ⇒ (UIncreasing(LOAD551(2, +(i11[1], 1), *(2, i21[1]))), ≥)∧[(-1)Bound*bni_16] + [(-1)bni_16]i21[0] + [bni_16]i11[0] ≥ 0∧[-2 + (-1)bso_17] + i21[0] ≥ 0)
(11) (i21[0] + [-3] ≥ 0∧i11[0] + [-1] + [-1]i21[0] ≥ 0 ⇒ (UIncreasing(LOAD551(2, +(i11[1], 1), *(2, i21[1]))), ≥)∧[(-1)Bound*bni_16] + [(-1)bni_16]i21[0] + [bni_16]i11[0] ≥ 0∧[-2 + (-1)bso_17] + i21[0] ≥ 0)
(12) (i21[0] + [-3] ≥ 0∧i11[0] + [-1] + [-1]i21[0] ≥ 0 ⇒ (UIncreasing(LOAD551(2, +(i11[1], 1), *(2, i21[1]))), ≥)∧[(-1)Bound*bni_16] + [(-1)bni_16]i21[0] + [bni_16]i11[0] ≥ 0∧[-2 + (-1)bso_17] + i21[0] ≥ 0)
(13) (i21[0] ≥ 0∧i11[0] + [-4] + [-1]i21[0] ≥ 0 ⇒ (UIncreasing(LOAD551(2, +(i11[1], 1), *(2, i21[1]))), ≥)∧[(-1)Bound*bni_16 + (-3)bni_16] + [(-1)bni_16]i21[0] + [bni_16]i11[0] ≥ 0∧[1 + (-1)bso_17] + i21[0] ≥ 0)
(14) (i21[0] ≥ 0∧i11[0] ≥ 0 ⇒ (UIncreasing(LOAD551(2, +(i11[1], 1), *(2, i21[1]))), ≥)∧[(-1)Bound*bni_16 + bni_16] + [bni_16]i11[0] ≥ 0∧[1 + (-1)bso_17] + i21[0] ≥ 0)
POL(TRUE) = [2]
POL(FALSE) = 0
POL(LOAD551(x1, x2, x3)) = [-1] + [-1]x3 + x2 + x1
POL(2) = [2]
POL(COND_LOAD551(x1, x2, x3, x4)) = [-1]x4 + x3
POL(&&(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(1) = [1]
POL(*(x1, x2)) = x1·x2
LOAD551(2, i11[0], i21[0]) → COND_LOAD551(&&(>(i21[0], 2), >(i11[0], i21[0])), 2, i11[0], i21[0])
COND_LOAD551(TRUE, 2, i11[1], i21[1]) → LOAD551(2, +(i11[1], 1), *(2, i21[1]))
LOAD551(2, i11[0], i21[0]) → COND_LOAD551(&&(>(i21[0], 2), >(i11[0], i21[0])), 2, i11[0], i21[0])
COND_LOAD551(TRUE, 2, i11[1], i21[1]) → LOAD551(2, +(i11[1], 1), *(2, i21[1]))
FALSE1 → &&(FALSE, TRUE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |