(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: DivMinus
public class DivMinus {
public static int div(int x, int y) {
int res = 0;
while (x >= y && y > 0) {
x = x-y;
res = res + 1;
}
return res;
}

public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
div(x, y);
}
}


public class Random {
static String[] args;
static int index = 0;

public static int random() {
String string = args[index];
index++;
return string.length();
}
}


(1) JBC2FIG (SOUND transformation)

Constructed FIGraph.

(2) Obligation:

FIGraph based on JBC Program:
Graph of 205 nodes with 1 SCC.

(3) FIGtoITRSProof (SOUND transformation)

Transformed FIGraph to ITRS rules

(4) Obligation:

ITRS problem:

The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean

The TRS R consists of the following rules:
Load1155(i135, i120, i135, i122) → Cond_Load1155(i135 > 0 && i120 >= i135, i135, i120, i135, i122)
Cond_Load1155(TRUE, i135, i120, i135, i122) → Load1155(i135, i120 - i135, i135, i122 + 1)
The set Q consists of the following terms:
Load1155(x0, x1, x0, x2)
Cond_Load1155(TRUE, x0, x1, x0, x2)

(5) DuplicateArgsRemoverProof (EQUIVALENT transformation)

Some arguments are removed because they only appear as duplicates.
We removed arguments according to the following replacements:

Load1155(x1, x2, x3, x4) → Load1155(x2, x3, x4)
Cond_Load1155(x1, x2, x3, x4, x5) → Cond_Load1155(x1, x3, x4, x5)

(6) Obligation:

ITRS problem:

The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean

The TRS R consists of the following rules:
Load1155(i120, i135, i122) → Cond_Load1155(i135 > 0 && i120 >= i135, i120, i135, i122)
Cond_Load1155(TRUE, i120, i135, i122) → Load1155(i120 - i135, i135, i122 + 1)
The set Q consists of the following terms:
Load1155(x0, x1, x2)
Cond_Load1155(TRUE, x0, x1, x2)

(7) ITRStoIDPProof (EQUIVALENT transformation)

Added dependency pairs

(8) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


The ITRS R consists of the following rules:
Load1155(i120, i135, i122) → Cond_Load1155(i135 > 0 && i120 >= i135, i120, i135, i122)
Cond_Load1155(TRUE, i120, i135, i122) → Load1155(i120 - i135, i135, i122 + 1)

The integer pair graph contains the following rules and edges:
(0): LOAD1155(i120[0], i135[0], i122[0]) → COND_LOAD1155(i135[0] > 0 && i120[0] >= i135[0], i120[0], i135[0], i122[0])
(1): COND_LOAD1155(TRUE, i120[1], i135[1], i122[1]) → LOAD1155(i120[1] - i135[1], i135[1], i122[1] + 1)

(0) -> (1), if ((i122[0]* i122[1])∧(i120[0]* i120[1])∧(i135[0]* i135[1])∧(i135[0] > 0 && i120[0] >= i135[0]* TRUE))


(1) -> (0), if ((i135[1]* i135[0])∧(i122[1] + 1* i122[0])∧(i120[1] - i135[1]* i120[0]))



The set Q consists of the following terms:
Load1155(x0, x1, x2)
Cond_Load1155(TRUE, x0, x1, x2)

(9) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(10) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): LOAD1155(i120[0], i135[0], i122[0]) → COND_LOAD1155(i135[0] > 0 && i120[0] >= i135[0], i120[0], i135[0], i122[0])
(1): COND_LOAD1155(TRUE, i120[1], i135[1], i122[1]) → LOAD1155(i120[1] - i135[1], i135[1], i122[1] + 1)

(0) -> (1), if ((i122[0]* i122[1])∧(i120[0]* i120[1])∧(i135[0]* i135[1])∧(i135[0] > 0 && i120[0] >= i135[0]* TRUE))


(1) -> (0), if ((i135[1]* i135[0])∧(i122[1] + 1* i122[0])∧(i120[1] - i135[1]* i120[0]))



The set Q consists of the following terms:
Load1155(x0, x1, x2)
Cond_Load1155(TRUE, x0, x1, x2)

(11) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair LOAD1155(i120, i135, i122) → COND_LOAD1155(&&(>(i135, 0), >=(i120, i135)), i120, i135, i122) the following chains were created:
  • We consider the chain LOAD1155(i120[0], i135[0], i122[0]) → COND_LOAD1155(&&(>(i135[0], 0), >=(i120[0], i135[0])), i120[0], i135[0], i122[0]), COND_LOAD1155(TRUE, i120[1], i135[1], i122[1]) → LOAD1155(-(i120[1], i135[1]), i135[1], +(i122[1], 1)) which results in the following constraint:

    (1)    (i122[0]=i122[1]i120[0]=i120[1]i135[0]=i135[1]&&(>(i135[0], 0), >=(i120[0], i135[0]))=TRUELOAD1155(i120[0], i135[0], i122[0])≥NonInfC∧LOAD1155(i120[0], i135[0], i122[0])≥COND_LOAD1155(&&(>(i135[0], 0), >=(i120[0], i135[0])), i120[0], i135[0], i122[0])∧(UIncreasing(COND_LOAD1155(&&(>(i135[0], 0), >=(i120[0], i135[0])), i120[0], i135[0], i122[0])), ≥))



    We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (>(i135[0], 0)=TRUE>=(i120[0], i135[0])=TRUELOAD1155(i120[0], i135[0], i122[0])≥NonInfC∧LOAD1155(i120[0], i135[0], i122[0])≥COND_LOAD1155(&&(>(i135[0], 0), >=(i120[0], i135[0])), i120[0], i135[0], i122[0])∧(UIncreasing(COND_LOAD1155(&&(>(i135[0], 0), >=(i120[0], i135[0])), i120[0], i135[0], i122[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (i135[0] + [-1] ≥ 0∧i120[0] + [-1]i135[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1155(&&(>(i135[0], 0), >=(i120[0], i135[0])), i120[0], i135[0], i122[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]i135[0] + [bni_15]i120[0] ≥ 0∧[(-1)bso_16] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (i135[0] + [-1] ≥ 0∧i120[0] + [-1]i135[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1155(&&(>(i135[0], 0), >=(i120[0], i135[0])), i120[0], i135[0], i122[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]i135[0] + [bni_15]i120[0] ≥ 0∧[(-1)bso_16] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (i135[0] + [-1] ≥ 0∧i120[0] + [-1]i135[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1155(&&(>(i135[0], 0), >=(i120[0], i135[0])), i120[0], i135[0], i122[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]i135[0] + [bni_15]i120[0] ≥ 0∧[(-1)bso_16] ≥ 0)



    We simplified constraint (5) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (6)    (i135[0] + [-1] ≥ 0∧i120[0] + [-1]i135[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1155(&&(>(i135[0], 0), >=(i120[0], i135[0])), i120[0], i135[0], i122[0])), ≥)∧0 = 0∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]i135[0] + [bni_15]i120[0] ≥ 0∧0 = 0∧[(-1)bso_16] ≥ 0)



    We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (7)    (i135[0] ≥ 0∧i120[0] + [-1] + [-1]i135[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1155(&&(>(i135[0], 0), >=(i120[0], i135[0])), i120[0], i135[0], i122[0])), ≥)∧0 = 0∧[(-2)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]i135[0] + [bni_15]i120[0] ≥ 0∧0 = 0∧[(-1)bso_16] ≥ 0)



    We simplified constraint (7) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (8)    (i135[0] ≥ 0∧i120[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1155(&&(>(i135[0], 0), >=(i120[0], i135[0])), i120[0], i135[0], i122[0])), ≥)∧0 = 0∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]i120[0] ≥ 0∧0 = 0∧[(-1)bso_16] ≥ 0)







For Pair COND_LOAD1155(TRUE, i120, i135, i122) → LOAD1155(-(i120, i135), i135, +(i122, 1)) the following chains were created:
  • We consider the chain LOAD1155(i120[0], i135[0], i122[0]) → COND_LOAD1155(&&(>(i135[0], 0), >=(i120[0], i135[0])), i120[0], i135[0], i122[0]), COND_LOAD1155(TRUE, i120[1], i135[1], i122[1]) → LOAD1155(-(i120[1], i135[1]), i135[1], +(i122[1], 1)), LOAD1155(i120[0], i135[0], i122[0]) → COND_LOAD1155(&&(>(i135[0], 0), >=(i120[0], i135[0])), i120[0], i135[0], i122[0]) which results in the following constraint:

    (9)    (i122[0]=i122[1]i120[0]=i120[1]i135[0]=i135[1]&&(>(i135[0], 0), >=(i120[0], i135[0]))=TRUEi135[1]=i135[0]1+(i122[1], 1)=i122[0]1-(i120[1], i135[1])=i120[0]1COND_LOAD1155(TRUE, i120[1], i135[1], i122[1])≥NonInfC∧COND_LOAD1155(TRUE, i120[1], i135[1], i122[1])≥LOAD1155(-(i120[1], i135[1]), i135[1], +(i122[1], 1))∧(UIncreasing(LOAD1155(-(i120[1], i135[1]), i135[1], +(i122[1], 1))), ≥))



    We simplified constraint (9) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (10)    (>(i135[0], 0)=TRUE>=(i120[0], i135[0])=TRUECOND_LOAD1155(TRUE, i120[0], i135[0], i122[0])≥NonInfC∧COND_LOAD1155(TRUE, i120[0], i135[0], i122[0])≥LOAD1155(-(i120[0], i135[0]), i135[0], +(i122[0], 1))∧(UIncreasing(LOAD1155(-(i120[1], i135[1]), i135[1], +(i122[1], 1))), ≥))



    We simplified constraint (10) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (11)    (i135[0] + [-1] ≥ 0∧i120[0] + [-1]i135[0] ≥ 0 ⇒ (UIncreasing(LOAD1155(-(i120[1], i135[1]), i135[1], +(i122[1], 1))), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [(-1)bni_17]i135[0] + [bni_17]i120[0] ≥ 0∧[(-1)bso_18] + i135[0] ≥ 0)



    We simplified constraint (11) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (12)    (i135[0] + [-1] ≥ 0∧i120[0] + [-1]i135[0] ≥ 0 ⇒ (UIncreasing(LOAD1155(-(i120[1], i135[1]), i135[1], +(i122[1], 1))), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [(-1)bni_17]i135[0] + [bni_17]i120[0] ≥ 0∧[(-1)bso_18] + i135[0] ≥ 0)



    We simplified constraint (12) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (13)    (i135[0] + [-1] ≥ 0∧i120[0] + [-1]i135[0] ≥ 0 ⇒ (UIncreasing(LOAD1155(-(i120[1], i135[1]), i135[1], +(i122[1], 1))), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [(-1)bni_17]i135[0] + [bni_17]i120[0] ≥ 0∧[(-1)bso_18] + i135[0] ≥ 0)



    We simplified constraint (13) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (14)    (i135[0] + [-1] ≥ 0∧i120[0] + [-1]i135[0] ≥ 0 ⇒ (UIncreasing(LOAD1155(-(i120[1], i135[1]), i135[1], +(i122[1], 1))), ≥)∧0 = 0∧[(-1)bni_17 + (-1)Bound*bni_17] + [(-1)bni_17]i135[0] + [bni_17]i120[0] ≥ 0∧0 = 0∧[(-1)bso_18] + i135[0] ≥ 0)



    We simplified constraint (14) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (15)    (i135[0] ≥ 0∧i120[0] + [-1] + [-1]i135[0] ≥ 0 ⇒ (UIncreasing(LOAD1155(-(i120[1], i135[1]), i135[1], +(i122[1], 1))), ≥)∧0 = 0∧[(-2)bni_17 + (-1)Bound*bni_17] + [(-1)bni_17]i135[0] + [bni_17]i120[0] ≥ 0∧0 = 0∧[1 + (-1)bso_18] + i135[0] ≥ 0)



    We simplified constraint (15) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (16)    (i135[0] ≥ 0∧i120[0] ≥ 0 ⇒ (UIncreasing(LOAD1155(-(i120[1], i135[1]), i135[1], +(i122[1], 1))), ≥)∧0 = 0∧[(-1)bni_17 + (-1)Bound*bni_17] + [bni_17]i120[0] ≥ 0∧0 = 0∧[1 + (-1)bso_18] + i135[0] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • LOAD1155(i120, i135, i122) → COND_LOAD1155(&&(>(i135, 0), >=(i120, i135)), i120, i135, i122)
    • (i135[0] ≥ 0∧i120[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1155(&&(>(i135[0], 0), >=(i120[0], i135[0])), i120[0], i135[0], i122[0])), ≥)∧0 = 0∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]i120[0] ≥ 0∧0 = 0∧[(-1)bso_16] ≥ 0)

  • COND_LOAD1155(TRUE, i120, i135, i122) → LOAD1155(-(i120, i135), i135, +(i122, 1))
    • (i135[0] ≥ 0∧i120[0] ≥ 0 ⇒ (UIncreasing(LOAD1155(-(i120[1], i135[1]), i135[1], +(i122[1], 1))), ≥)∧0 = 0∧[(-1)bni_17 + (-1)Bound*bni_17] + [bni_17]i120[0] ≥ 0∧0 = 0∧[1 + (-1)bso_18] + i135[0] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(LOAD1155(x1, x2, x3)) = [-1] + [-1]x2 + x1   
POL(COND_LOAD1155(x1, x2, x3, x4)) = [-1] + [-1]x3 + x2 + [-1]x1   
POL(&&(x1, x2)) = 0   
POL(>(x1, x2)) = [-1]   
POL(0) = 0   
POL(>=(x1, x2)) = [-1]   
POL(-(x1, x2)) = x1 + [-1]x2   
POL(+(x1, x2)) = x1 + x2   
POL(1) = [1]   

The following pairs are in P>:

COND_LOAD1155(TRUE, i120[1], i135[1], i122[1]) → LOAD1155(-(i120[1], i135[1]), i135[1], +(i122[1], 1))

The following pairs are in Pbound:

LOAD1155(i120[0], i135[0], i122[0]) → COND_LOAD1155(&&(>(i135[0], 0), >=(i120[0], i135[0])), i120[0], i135[0], i122[0])
COND_LOAD1155(TRUE, i120[1], i135[1], i122[1]) → LOAD1155(-(i120[1], i135[1]), i135[1], +(i122[1], 1))

The following pairs are in P:

LOAD1155(i120[0], i135[0], i122[0]) → COND_LOAD1155(&&(>(i135[0], 0), >=(i120[0], i135[0])), i120[0], i135[0], i122[0])

At least the following rules have been oriented under context sensitive arithmetic replacement:

&&(TRUE, TRUE)1TRUE1
&&(TRUE, FALSE)1FALSE1
&&(FALSE, TRUE)1FALSE1
&&(FALSE, FALSE)1FALSE1

(12) Complex Obligation (AND)

(13) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): LOAD1155(i120[0], i135[0], i122[0]) → COND_LOAD1155(i135[0] > 0 && i120[0] >= i135[0], i120[0], i135[0], i122[0])


The set Q consists of the following terms:
Load1155(x0, x1, x2)
Cond_Load1155(TRUE, x0, x1, x2)

(14) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(15) TRUE

(16) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:
none


R is empty.

The integer pair graph is empty.

The set Q consists of the following terms:
Load1155(x0, x1, x2)
Cond_Load1155(TRUE, x0, x1, x2)

(17) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs.

(18) TRUE