0 JBC
↳1 JBC2FIG (⇐)
↳2 FIGraph
↳3 FIGtoITRSProof (⇐)
↳4 ITRS
↳5 DuplicateArgsRemoverProof (⇔)
↳6 ITRS
↳7 ITRStoIDPProof (⇔)
↳8 IDP
↳9 UsableRulesProof (⇔)
↳10 IDP
↳11 IDPNonInfProof (⇐)
↳12 AND
↳13 IDP
↳14 IDependencyGraphProof (⇔)
↳15 TRUE
↳16 IDP
↳17 IDependencyGraphProof (⇔)
↳18 TRUE
public class DivMinus {
public static int div(int x, int y) {
int res = 0;
while (x >= y && y > 0) {
x = x-y;
res = res + 1;
}
return res;
}
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
div(x, y);
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Load1155(x1, x2, x3, x4) → Load1155(x2, x3, x4)
Cond_Load1155(x1, x2, x3, x4, x5) → Cond_Load1155(x1, x3, x4, x5)
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i122[0] →* i122[1])∧(i120[0] →* i120[1])∧(i135[0] →* i135[1])∧(i135[0] > 0 && i120[0] >= i135[0] →* TRUE))
(1) -> (0), if ((i135[1] →* i135[0])∧(i122[1] + 1 →* i122[0])∧(i120[1] - i135[1] →* i120[0]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i122[0] →* i122[1])∧(i120[0] →* i120[1])∧(i135[0] →* i135[1])∧(i135[0] > 0 && i120[0] >= i135[0] →* TRUE))
(1) -> (0), if ((i135[1] →* i135[0])∧(i122[1] + 1 →* i122[0])∧(i120[1] - i135[1] →* i120[0]))
(1) (i122[0]=i122[1]∧i120[0]=i120[1]∧i135[0]=i135[1]∧&&(>(i135[0], 0), >=(i120[0], i135[0]))=TRUE ⇒ LOAD1155(i120[0], i135[0], i122[0])≥NonInfC∧LOAD1155(i120[0], i135[0], i122[0])≥COND_LOAD1155(&&(>(i135[0], 0), >=(i120[0], i135[0])), i120[0], i135[0], i122[0])∧(UIncreasing(COND_LOAD1155(&&(>(i135[0], 0), >=(i120[0], i135[0])), i120[0], i135[0], i122[0])), ≥))
(2) (>(i135[0], 0)=TRUE∧>=(i120[0], i135[0])=TRUE ⇒ LOAD1155(i120[0], i135[0], i122[0])≥NonInfC∧LOAD1155(i120[0], i135[0], i122[0])≥COND_LOAD1155(&&(>(i135[0], 0), >=(i120[0], i135[0])), i120[0], i135[0], i122[0])∧(UIncreasing(COND_LOAD1155(&&(>(i135[0], 0), >=(i120[0], i135[0])), i120[0], i135[0], i122[0])), ≥))
(3) (i135[0] + [-1] ≥ 0∧i120[0] + [-1]i135[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1155(&&(>(i135[0], 0), >=(i120[0], i135[0])), i120[0], i135[0], i122[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]i135[0] + [bni_15]i120[0] ≥ 0∧[(-1)bso_16] ≥ 0)
(4) (i135[0] + [-1] ≥ 0∧i120[0] + [-1]i135[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1155(&&(>(i135[0], 0), >=(i120[0], i135[0])), i120[0], i135[0], i122[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]i135[0] + [bni_15]i120[0] ≥ 0∧[(-1)bso_16] ≥ 0)
(5) (i135[0] + [-1] ≥ 0∧i120[0] + [-1]i135[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1155(&&(>(i135[0], 0), >=(i120[0], i135[0])), i120[0], i135[0], i122[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]i135[0] + [bni_15]i120[0] ≥ 0∧[(-1)bso_16] ≥ 0)
(6) (i135[0] + [-1] ≥ 0∧i120[0] + [-1]i135[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1155(&&(>(i135[0], 0), >=(i120[0], i135[0])), i120[0], i135[0], i122[0])), ≥)∧0 = 0∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]i135[0] + [bni_15]i120[0] ≥ 0∧0 = 0∧[(-1)bso_16] ≥ 0)
(7) (i135[0] ≥ 0∧i120[0] + [-1] + [-1]i135[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1155(&&(>(i135[0], 0), >=(i120[0], i135[0])), i120[0], i135[0], i122[0])), ≥)∧0 = 0∧[(-2)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]i135[0] + [bni_15]i120[0] ≥ 0∧0 = 0∧[(-1)bso_16] ≥ 0)
(8) (i135[0] ≥ 0∧i120[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD1155(&&(>(i135[0], 0), >=(i120[0], i135[0])), i120[0], i135[0], i122[0])), ≥)∧0 = 0∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]i120[0] ≥ 0∧0 = 0∧[(-1)bso_16] ≥ 0)
(9) (i122[0]=i122[1]∧i120[0]=i120[1]∧i135[0]=i135[1]∧&&(>(i135[0], 0), >=(i120[0], i135[0]))=TRUE∧i135[1]=i135[0]1∧+(i122[1], 1)=i122[0]1∧-(i120[1], i135[1])=i120[0]1 ⇒ COND_LOAD1155(TRUE, i120[1], i135[1], i122[1])≥NonInfC∧COND_LOAD1155(TRUE, i120[1], i135[1], i122[1])≥LOAD1155(-(i120[1], i135[1]), i135[1], +(i122[1], 1))∧(UIncreasing(LOAD1155(-(i120[1], i135[1]), i135[1], +(i122[1], 1))), ≥))
(10) (>(i135[0], 0)=TRUE∧>=(i120[0], i135[0])=TRUE ⇒ COND_LOAD1155(TRUE, i120[0], i135[0], i122[0])≥NonInfC∧COND_LOAD1155(TRUE, i120[0], i135[0], i122[0])≥LOAD1155(-(i120[0], i135[0]), i135[0], +(i122[0], 1))∧(UIncreasing(LOAD1155(-(i120[1], i135[1]), i135[1], +(i122[1], 1))), ≥))
(11) (i135[0] + [-1] ≥ 0∧i120[0] + [-1]i135[0] ≥ 0 ⇒ (UIncreasing(LOAD1155(-(i120[1], i135[1]), i135[1], +(i122[1], 1))), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [(-1)bni_17]i135[0] + [bni_17]i120[0] ≥ 0∧[(-1)bso_18] + i135[0] ≥ 0)
(12) (i135[0] + [-1] ≥ 0∧i120[0] + [-1]i135[0] ≥ 0 ⇒ (UIncreasing(LOAD1155(-(i120[1], i135[1]), i135[1], +(i122[1], 1))), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [(-1)bni_17]i135[0] + [bni_17]i120[0] ≥ 0∧[(-1)bso_18] + i135[0] ≥ 0)
(13) (i135[0] + [-1] ≥ 0∧i120[0] + [-1]i135[0] ≥ 0 ⇒ (UIncreasing(LOAD1155(-(i120[1], i135[1]), i135[1], +(i122[1], 1))), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [(-1)bni_17]i135[0] + [bni_17]i120[0] ≥ 0∧[(-1)bso_18] + i135[0] ≥ 0)
(14) (i135[0] + [-1] ≥ 0∧i120[0] + [-1]i135[0] ≥ 0 ⇒ (UIncreasing(LOAD1155(-(i120[1], i135[1]), i135[1], +(i122[1], 1))), ≥)∧0 = 0∧[(-1)bni_17 + (-1)Bound*bni_17] + [(-1)bni_17]i135[0] + [bni_17]i120[0] ≥ 0∧0 = 0∧[(-1)bso_18] + i135[0] ≥ 0)
(15) (i135[0] ≥ 0∧i120[0] + [-1] + [-1]i135[0] ≥ 0 ⇒ (UIncreasing(LOAD1155(-(i120[1], i135[1]), i135[1], +(i122[1], 1))), ≥)∧0 = 0∧[(-2)bni_17 + (-1)Bound*bni_17] + [(-1)bni_17]i135[0] + [bni_17]i120[0] ≥ 0∧0 = 0∧[1 + (-1)bso_18] + i135[0] ≥ 0)
(16) (i135[0] ≥ 0∧i120[0] ≥ 0 ⇒ (UIncreasing(LOAD1155(-(i120[1], i135[1]), i135[1], +(i122[1], 1))), ≥)∧0 = 0∧[(-1)bni_17 + (-1)Bound*bni_17] + [bni_17]i120[0] ≥ 0∧0 = 0∧[1 + (-1)bso_18] + i135[0] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(LOAD1155(x1, x2, x3)) = [-1] + [-1]x2 + x1
POL(COND_LOAD1155(x1, x2, x3, x4)) = [-1] + [-1]x3 + x2 + [-1]x1
POL(&&(x1, x2)) = 0
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(>=(x1, x2)) = [-1]
POL(-(x1, x2)) = x1 + [-1]x2
POL(+(x1, x2)) = x1 + x2
POL(1) = [1]
COND_LOAD1155(TRUE, i120[1], i135[1], i122[1]) → LOAD1155(-(i120[1], i135[1]), i135[1], +(i122[1], 1))
LOAD1155(i120[0], i135[0], i122[0]) → COND_LOAD1155(&&(>(i135[0], 0), >=(i120[0], i135[0])), i120[0], i135[0], i122[0])
COND_LOAD1155(TRUE, i120[1], i135[1], i122[1]) → LOAD1155(-(i120[1], i135[1]), i135[1], +(i122[1], 1))
LOAD1155(i120[0], i135[0], i122[0]) → COND_LOAD1155(&&(>(i135[0], 0), >=(i120[0], i135[0])), i120[0], i135[0], i122[0])
&&(TRUE, TRUE)1 ↔ TRUE1
&&(TRUE, FALSE)1 ↔ FALSE1
&&(FALSE, TRUE)1 ↔ FALSE1
&&(FALSE, FALSE)1 ↔ FALSE1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |