0 JBC
↳1 JBC2FIG (⇐)
↳2 FIGraph
↳3 FIGtoITRSProof (⇐)
↳4 ITRS
↳5 ITRStoIDPProof (⇔)
↳6 IDP
↳7 UsableRulesProof (⇔)
↳8 IDP
↳9 IDPNonInfProof (⇐)
↳10 AND
↳11 IDP
↳12 IDependencyGraphProof (⇔)
↳13 TRUE
↳14 IDP
↳15 IDependencyGraphProof (⇔)
↳16 TRUE
public class CountUpRound{
public static int round (int x) {
if (x % 2 == 0) return x;
else return x+1;
}
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
while (x > y) {
y = round(y+1);
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i42[0] →* i42[1])∧(!(i42[0] + 1 % 2 = 0) && i11[0] > i42[0] →* TRUE)∧(i11[0] →* i11[1]))
(1) -> (2), if ((i42[1] + 1 + 1 →* i70[2])∧(i11[1] →* i11[2]))
(2) -> (0), if ((i70[2] →* i42[0])∧(i11[2] →* i11[0]))
(2) -> (3), if ((i70[2] →* i42[3])∧(i11[2] →* i11[3]))
(3) -> (4), if ((i11[3] →* i11[4])∧(i42[3] →* i42[4])∧(i11[3] > i42[3] && 0 = i42[3] + 1 % 2 →* TRUE))
(4) -> (0), if ((i11[4] →* i11[0])∧(i42[4] + 1 →* i42[0]))
(4) -> (3), if ((i42[4] + 1 →* i42[3])∧(i11[4] →* i11[3]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i42[0] →* i42[1])∧(!(i42[0] + 1 % 2 = 0) && i11[0] > i42[0] →* TRUE)∧(i11[0] →* i11[1]))
(1) -> (2), if ((i42[1] + 1 + 1 →* i70[2])∧(i11[1] →* i11[2]))
(2) -> (0), if ((i70[2] →* i42[0])∧(i11[2] →* i11[0]))
(2) -> (3), if ((i70[2] →* i42[3])∧(i11[2] →* i11[3]))
(3) -> (4), if ((i11[3] →* i11[4])∧(i42[3] →* i42[4])∧(i11[3] > i42[3] && 0 = i42[3] + 1 % 2 →* TRUE))
(4) -> (0), if ((i11[4] →* i11[0])∧(i42[4] + 1 →* i42[0]))
(4) -> (3), if ((i42[4] + 1 →* i42[3])∧(i11[4] →* i11[3]))
(1) (i42[0]=i42[1]∧&&(!(=(%(+(i42[0], 1), 2), 0)), >(i11[0], i42[0]))=TRUE∧i11[0]=i11[1] ⇒ LOAD761(i11[0], i42[0])≥NonInfC∧LOAD761(i11[0], i42[0])≥COND_LOAD761(&&(!(=(%(+(i42[0], 1), 2), 0)), >(i11[0], i42[0])), i11[0], i42[0])∧(UIncreasing(COND_LOAD761(&&(!(=(%(+(i42[0], 1), 2), 0)), >(i11[0], i42[0])), i11[0], i42[0])), ≥))
(2) (>(i11[0], i42[0])=TRUE∧<(%(+(i42[0], 1), 2), 0)=TRUE ⇒ LOAD761(i11[0], i42[0])≥NonInfC∧LOAD761(i11[0], i42[0])≥COND_LOAD761(&&(!(=(%(+(i42[0], 1), 2), 0)), >(i11[0], i42[0])), i11[0], i42[0])∧(UIncreasing(COND_LOAD761(&&(!(=(%(+(i42[0], 1), 2), 0)), >(i11[0], i42[0])), i11[0], i42[0])), ≥))
(3) (>(i11[0], i42[0])=TRUE∧>(%(+(i42[0], 1), 2), 0)=TRUE ⇒ LOAD761(i11[0], i42[0])≥NonInfC∧LOAD761(i11[0], i42[0])≥COND_LOAD761(&&(!(=(%(+(i42[0], 1), 2), 0)), >(i11[0], i42[0])), i11[0], i42[0])∧(UIncreasing(COND_LOAD761(&&(!(=(%(+(i42[0], 1), 2), 0)), >(i11[0], i42[0])), i11[0], i42[0])), ≥))
(4) (i11[0] + [-1] + [-1]i42[0] ≥ 0∧[-1] + [-1]min{[2], [-2]} ≥ 0 ⇒ (UIncreasing(COND_LOAD761(&&(!(=(%(+(i42[0], 1), 2), 0)), >(i11[0], i42[0])), i11[0], i42[0])), ≥)∧[(-1)Bound*bni_14] + [bni_14]i11[0] + [(-1)bni_14]i42[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(5) (i11[0] + [-1] + [-1]i42[0] ≥ 0∧max{[2], [-2]} + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD761(&&(!(=(%(+(i42[0], 1), 2), 0)), >(i11[0], i42[0])), i11[0], i42[0])), ≥)∧[(-1)Bound*bni_14] + [bni_14]i11[0] + [(-1)bni_14]i42[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(6) (i11[0] + [-1] + [-1]i42[0] ≥ 0∧[-1] + [-1]min{[2], [-2]} ≥ 0 ⇒ (UIncreasing(COND_LOAD761(&&(!(=(%(+(i42[0], 1), 2), 0)), >(i11[0], i42[0])), i11[0], i42[0])), ≥)∧[(-1)Bound*bni_14] + [bni_14]i11[0] + [(-1)bni_14]i42[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(7) (i11[0] + [-1] + [-1]i42[0] ≥ 0∧max{[2], [-2]} + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD761(&&(!(=(%(+(i42[0], 1), 2), 0)), >(i11[0], i42[0])), i11[0], i42[0])), ≥)∧[(-1)Bound*bni_14] + [bni_14]i11[0] + [(-1)bni_14]i42[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(8) (i11[0] + [-1] + [-1]i42[0] ≥ 0∧[4] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_LOAD761(&&(!(=(%(+(i42[0], 1), 2), 0)), >(i11[0], i42[0])), i11[0], i42[0])), ≥)∧[(-1)Bound*bni_14] + [bni_14]i11[0] + [(-1)bni_14]i42[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(9) (i11[0] + [-1] + [-1]i42[0] ≥ 0∧[4] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_LOAD761(&&(!(=(%(+(i42[0], 1), 2), 0)), >(i11[0], i42[0])), i11[0], i42[0])), ≥)∧[(-1)Bound*bni_14] + [bni_14]i11[0] + [(-1)bni_14]i42[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(10) (i11[0] ≥ 0∧[4] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_LOAD761(&&(!(=(%(+(i42[0], 1), 2), 0)), >(i11[0], i42[0])), i11[0], i42[0])), ≥)∧[(-1)Bound*bni_14 + bni_14] + [bni_14]i11[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(11) (i11[0] ≥ 0∧[4] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_LOAD761(&&(!(=(%(+(i42[0], 1), 2), 0)), >(i11[0], i42[0])), i11[0], i42[0])), ≥)∧[(-1)Bound*bni_14 + bni_14] + [bni_14]i11[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(12) (i11[0] ≥ 0∧[4] ≥ 0∧[1] ≥ 0∧i42[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD761(&&(!(=(%(+(i42[0], 1), 2), 0)), >(i11[0], i42[0])), i11[0], i42[0])), ≥)∧[(-1)Bound*bni_14 + bni_14] + [bni_14]i11[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(13) (i11[0] ≥ 0∧[4] ≥ 0∧[1] ≥ 0∧i42[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD761(&&(!(=(%(+(i42[0], 1), 2), 0)), >(i11[0], i42[0])), i11[0], i42[0])), ≥)∧[(-1)Bound*bni_14 + bni_14] + [bni_14]i11[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(14) (i11[0] ≥ 0∧[1] ≥ 0∧i42[0] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_LOAD761(&&(!(=(%(+(i42[0], 1), 2), 0)), >(i11[0], i42[0])), i11[0], i42[0])), ≥)∧[(-1)Bound*bni_14 + bni_14] + [bni_14]i11[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(15) (i11[0] ≥ 0∧[1] ≥ 0∧i42[0] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_LOAD761(&&(!(=(%(+(i42[0], 1), 2), 0)), >(i11[0], i42[0])), i11[0], i42[0])), ≥)∧[(-1)Bound*bni_14 + bni_14] + [bni_14]i11[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(16) (i11[0] ≥ 0∧[4] ≥ 0∧[1] ≥ 0∧i42[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD761(&&(!(=(%(+(i42[0], 1), 2), 0)), >(i11[0], i42[0])), i11[0], i42[0])), ≥)∧[(-1)Bound*bni_14 + bni_14] + [bni_14]i11[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(17) (i11[0] ≥ 0∧[4] ≥ 0∧[1] ≥ 0∧i42[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD761(&&(!(=(%(+(i42[0], 1), 2), 0)), >(i11[0], i42[0])), i11[0], i42[0])), ≥)∧[(-1)Bound*bni_14 + bni_14] + [bni_14]i11[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(18) (i11[0] ≥ 0∧[1] ≥ 0∧i42[0] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_LOAD761(&&(!(=(%(+(i42[0], 1), 2), 0)), >(i11[0], i42[0])), i11[0], i42[0])), ≥)∧[(-1)Bound*bni_14 + bni_14] + [bni_14]i11[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(19) (i11[0] ≥ 0∧[1] ≥ 0∧i42[0] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_LOAD761(&&(!(=(%(+(i42[0], 1), 2), 0)), >(i11[0], i42[0])), i11[0], i42[0])), ≥)∧[(-1)Bound*bni_14 + bni_14] + [bni_14]i11[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(20) (COND_LOAD761(TRUE, i11[1], i42[1])≥NonInfC∧COND_LOAD761(TRUE, i11[1], i42[1])≥STORE1059(i11[1], +(+(i42[1], 1), 1))∧(UIncreasing(STORE1059(i11[1], +(+(i42[1], 1), 1))), ≥))
(21) ((UIncreasing(STORE1059(i11[1], +(+(i42[1], 1), 1))), ≥)∧[(-1)bso_17] ≥ 0)
(22) ((UIncreasing(STORE1059(i11[1], +(+(i42[1], 1), 1))), ≥)∧[(-1)bso_17] ≥ 0)
(23) ((UIncreasing(STORE1059(i11[1], +(+(i42[1], 1), 1))), ≥)∧[(-1)bso_17] ≥ 0)
(24) ((UIncreasing(STORE1059(i11[1], +(+(i42[1], 1), 1))), ≥)∧0 = 0∧0 = 0∧[(-1)bso_17] ≥ 0)
(25) (i70[2]=i42[0]∧i11[2]=i11[0] ⇒ STORE1059(i11[2], i70[2])≥NonInfC∧STORE1059(i11[2], i70[2])≥LOAD761(i11[2], i70[2])∧(UIncreasing(LOAD761(i11[2], i70[2])), ≥))
(26) (STORE1059(i11[2], i70[2])≥NonInfC∧STORE1059(i11[2], i70[2])≥LOAD761(i11[2], i70[2])∧(UIncreasing(LOAD761(i11[2], i70[2])), ≥))
(27) ((UIncreasing(LOAD761(i11[2], i70[2])), ≥)∧[1 + (-1)bso_19] ≥ 0)
(28) ((UIncreasing(LOAD761(i11[2], i70[2])), ≥)∧[1 + (-1)bso_19] ≥ 0)
(29) ((UIncreasing(LOAD761(i11[2], i70[2])), ≥)∧[1 + (-1)bso_19] ≥ 0)
(30) ((UIncreasing(LOAD761(i11[2], i70[2])), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_19] ≥ 0)
(31) (i70[2]=i42[3]∧i11[2]=i11[3] ⇒ STORE1059(i11[2], i70[2])≥NonInfC∧STORE1059(i11[2], i70[2])≥LOAD761(i11[2], i70[2])∧(UIncreasing(LOAD761(i11[2], i70[2])), ≥))
(32) (STORE1059(i11[2], i70[2])≥NonInfC∧STORE1059(i11[2], i70[2])≥LOAD761(i11[2], i70[2])∧(UIncreasing(LOAD761(i11[2], i70[2])), ≥))
(33) ((UIncreasing(LOAD761(i11[2], i70[2])), ≥)∧[1 + (-1)bso_19] ≥ 0)
(34) ((UIncreasing(LOAD761(i11[2], i70[2])), ≥)∧[1 + (-1)bso_19] ≥ 0)
(35) ((UIncreasing(LOAD761(i11[2], i70[2])), ≥)∧[1 + (-1)bso_19] ≥ 0)
(36) ((UIncreasing(LOAD761(i11[2], i70[2])), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_19] ≥ 0)
(37) (i11[3]=i11[4]∧i42[3]=i42[4]∧&&(>(i11[3], i42[3]), =(0, %(+(i42[3], 1), 2)))=TRUE ⇒ LOAD761(i11[3], i42[3])≥NonInfC∧LOAD761(i11[3], i42[3])≥COND_LOAD7611(&&(>(i11[3], i42[3]), =(0, %(+(i42[3], 1), 2))), i11[3], i42[3])∧(UIncreasing(COND_LOAD7611(&&(>(i11[3], i42[3]), =(0, %(+(i42[3], 1), 2))), i11[3], i42[3])), ≥))
(38) (>(i11[3], i42[3])=TRUE∧>=(0, %(+(i42[3], 1), 2))=TRUE∧<=(0, %(+(i42[3], 1), 2))=TRUE ⇒ LOAD761(i11[3], i42[3])≥NonInfC∧LOAD761(i11[3], i42[3])≥COND_LOAD7611(&&(>(i11[3], i42[3]), =(0, %(+(i42[3], 1), 2))), i11[3], i42[3])∧(UIncreasing(COND_LOAD7611(&&(>(i11[3], i42[3]), =(0, %(+(i42[3], 1), 2))), i11[3], i42[3])), ≥))
(39) (i11[3] + [-1] + [-1]i42[3] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0 ⇒ (UIncreasing(COND_LOAD7611(&&(>(i11[3], i42[3]), =(0, %(+(i42[3], 1), 2))), i11[3], i42[3])), ≥)∧[(-1)Bound*bni_20] + [bni_20]i11[3] + [(-1)bni_20]i42[3] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(40) (i11[3] + [-1] + [-1]i42[3] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0 ⇒ (UIncreasing(COND_LOAD7611(&&(>(i11[3], i42[3]), =(0, %(+(i42[3], 1), 2))), i11[3], i42[3])), ≥)∧[(-1)Bound*bni_20] + [bni_20]i11[3] + [(-1)bni_20]i42[3] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(41) (i11[3] + [-1] + [-1]i42[3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD7611(&&(>(i11[3], i42[3]), =(0, %(+(i42[3], 1), 2))), i11[3], i42[3])), ≥)∧[(-1)Bound*bni_20] + [bni_20]i11[3] + [(-1)bni_20]i42[3] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(42) (i11[3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD7611(&&(>(i11[3], i42[3]), =(0, %(+(i42[3], 1), 2))), i11[3], i42[3])), ≥)∧[(-1)Bound*bni_20 + bni_20] + [bni_20]i11[3] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(43) (i11[3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧i42[3] ≥ 0 ⇒ (UIncreasing(COND_LOAD7611(&&(>(i11[3], i42[3]), =(0, %(+(i42[3], 1), 2))), i11[3], i42[3])), ≥)∧[(-1)Bound*bni_20 + bni_20] + [bni_20]i11[3] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(44) (i11[3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧i42[3] ≥ 0 ⇒ (UIncreasing(COND_LOAD7611(&&(>(i11[3], i42[3]), =(0, %(+(i42[3], 1), 2))), i11[3], i42[3])), ≥)∧[(-1)Bound*bni_20 + bni_20] + [bni_20]i11[3] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(45) (i11[3] ≥ 0∧i42[3] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_LOAD7611(&&(>(i11[3], i42[3]), =(0, %(+(i42[3], 1), 2))), i11[3], i42[3])), ≥)∧[(-1)Bound*bni_20 + bni_20] + [bni_20]i11[3] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(46) (i11[3] ≥ 0∧i42[3] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_LOAD7611(&&(>(i11[3], i42[3]), =(0, %(+(i42[3], 1), 2))), i11[3], i42[3])), ≥)∧[(-1)Bound*bni_20 + bni_20] + [bni_20]i11[3] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(47) (COND_LOAD7611(TRUE, i11[4], i42[4])≥NonInfC∧COND_LOAD7611(TRUE, i11[4], i42[4])≥LOAD761(i11[4], +(i42[4], 1))∧(UIncreasing(LOAD761(i11[4], +(i42[4], 1))), ≥))
(48) ((UIncreasing(LOAD761(i11[4], +(i42[4], 1))), ≥)∧[(-1)bso_23] ≥ 0)
(49) ((UIncreasing(LOAD761(i11[4], +(i42[4], 1))), ≥)∧[(-1)bso_23] ≥ 0)
(50) ((UIncreasing(LOAD761(i11[4], +(i42[4], 1))), ≥)∧[(-1)bso_23] ≥ 0)
(51) ((UIncreasing(LOAD761(i11[4], +(i42[4], 1))), ≥)∧0 = 0∧0 = 0∧[(-1)bso_23] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(LOAD761(x1, x2)) = x1 + [-1]x2
POL(COND_LOAD761(x1, x2, x3)) = [-1] + x2 + [-1]x3
POL(&&(x1, x2)) = [-1]
POL(!(x1)) = [-1]
POL(=(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(1) = [1]
POL(2) = [2]
POL(0) = 0
POL(>(x1, x2)) = [-1]
POL(STORE1059(x1, x2)) = [1] + [-1]x2 + x1
POL(COND_LOAD7611(x1, x2, x3)) = [-1] + [-1]x3 + x2
Polynomial Interpretations with Context Sensitive Arithemetic Replacement
POL(TermCSAR-Mode @ Context)
POL(%(x1, 2)-1 @ {}) = min{x2, [-1]x2}
POL(%(x1, 2)1 @ {}) = max{x2, [-1]x2}
LOAD761(i11[0], i42[0]) → COND_LOAD761(&&(!(=(%(+(i42[0], 1), 2), 0)), >(i11[0], i42[0])), i11[0], i42[0])
STORE1059(i11[2], i70[2]) → LOAD761(i11[2], i70[2])
LOAD761(i11[3], i42[3]) → COND_LOAD7611(&&(>(i11[3], i42[3]), =(0, %(+(i42[3], 1), 2))), i11[3], i42[3])
LOAD761(i11[0], i42[0]) → COND_LOAD761(&&(!(=(%(+(i42[0], 1), 2), 0)), >(i11[0], i42[0])), i11[0], i42[0])
LOAD761(i11[3], i42[3]) → COND_LOAD7611(&&(>(i11[3], i42[3]), =(0, %(+(i42[3], 1), 2))), i11[3], i42[3])
COND_LOAD761(TRUE, i11[1], i42[1]) → STORE1059(i11[1], +(+(i42[1], 1), 1))
COND_LOAD7611(TRUE, i11[4], i42[4]) → LOAD761(i11[4], +(i42[4], 1))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(1) -> (2), if ((i42[1] + 1 + 1 →* i70[2])∧(i11[1] →* i11[2]))