(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: AProVEMath
/**
* Abstract class to provide some additional mathematical functions
* which are not provided by java.lang.Math.
*
* @author fuhs
*/
public abstract class AProVEMath {

/**
* Returns <code>base<sup>exponent</sup></code>.
* Works considerably faster than java.lang.Math.pow(double, double).
*
* @param base base of the power
* @param exponent non-negative exponent of the power
* @return base<sup>exponent</sup>
*/
public static int power (int base, int exponent) {
if (exponent == 0) {
return 1;
}
else if (exponent == 1) {
return base;
}
else if (base == 2) {
return base << (exponent-1);
}
else {
int result = 1;
while (exponent > 0) {
if (exponent % 2 == 1) {
result *= base;
}
base *= base;
exponent /= 2;
}
return result;
}
}

public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
power(x, y);
}
}


public class Random {
static String[] args;
static int index = 0;

public static int random() {
String string = args[index];
index++;
return string.length();
}
}


(1) JBC2FIG (SOUND transformation)

Constructed FIGraph.

(2) Obligation:

FIGraph based on JBC Program:
Graph of 238 nodes with 1 SCC.

(3) FIGtoITRSProof (SOUND transformation)

Transformed FIGraph to ITRS rules

(4) Obligation:

ITRS problem:

The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean

The TRS R consists of the following rules:
Load1494(i358, i362, i360) → Cond_Load1494(i362 > 0 && 1 = i362 % 2, i358, i362, i360)
Cond_Load1494(TRUE, i358, i362, i360) → Load1533(i358, i362, i360 * i358)
Load1533(i358, i362, i360) → Load1494(i358 * i358, i362 / 2, i360)
Load1494(i358, i362, i360) → Cond_Load14941(i362 % 2 >= 0 && !(i362 % 2 = 1) && i362 > 0, i358, i362, i360)
Cond_Load14941(TRUE, i358, i362, i360) → Load1494(i358 * i358, i362 / 2, i360)
The set Q consists of the following terms:
Load1494(x0, x1, x2)
Cond_Load1494(TRUE, x0, x1, x2)
Load1533(x0, x1, x2)
Cond_Load14941(TRUE, x0, x1, x2)

(5) ITRStoIDPProof (EQUIVALENT transformation)

Added dependency pairs

(6) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


The ITRS R consists of the following rules:
Load1494(i358, i362, i360) → Cond_Load1494(i362 > 0 && 1 = i362 % 2, i358, i362, i360)
Cond_Load1494(TRUE, i358, i362, i360) → Load1533(i358, i362, i360 * i358)
Load1533(i358, i362, i360) → Load1494(i358 * i358, i362 / 2, i360)
Load1494(i358, i362, i360) → Cond_Load14941(i362 % 2 >= 0 && !(i362 % 2 = 1) && i362 > 0, i358, i362, i360)
Cond_Load14941(TRUE, i358, i362, i360) → Load1494(i358 * i358, i362 / 2, i360)

The integer pair graph contains the following rules and edges:
(0): LOAD1494(i358[0], i362[0], i360[0]) → COND_LOAD1494(i362[0] > 0 && 1 = i362[0] % 2, i358[0], i362[0], i360[0])
(1): COND_LOAD1494(TRUE, i358[1], i362[1], i360[1]) → LOAD1533(i358[1], i362[1], i360[1] * i358[1])
(2): LOAD1533(i358[2], i362[2], i360[2]) → LOAD1494(i358[2] * i358[2], i362[2] / 2, i360[2])
(3): LOAD1494(i358[3], i362[3], i360[3]) → COND_LOAD14941(i362[3] % 2 >= 0 && !(i362[3] % 2 = 1) && i362[3] > 0, i358[3], i362[3], i360[3])
(4): COND_LOAD14941(TRUE, i358[4], i362[4], i360[4]) → LOAD1494(i358[4] * i358[4], i362[4] / 2, i360[4])

(0) -> (1), if ((i362[0]* i362[1])∧(i362[0] > 0 && 1 = i362[0] % 2* TRUE)∧(i358[0]* i358[1])∧(i360[0]* i360[1]))


(1) -> (2), if ((i360[1] * i358[1]* i360[2])∧(i358[1]* i358[2])∧(i362[1]* i362[2]))


(2) -> (0), if ((i358[2] * i358[2]* i358[0])∧(i362[2] / 2* i362[0])∧(i360[2]* i360[0]))


(2) -> (3), if ((i360[2]* i360[3])∧(i358[2] * i358[2]* i358[3])∧(i362[2] / 2* i362[3]))


(3) -> (4), if ((i358[3]* i358[4])∧(i360[3]* i360[4])∧(i362[3] % 2 >= 0 && !(i362[3] % 2 = 1) && i362[3] > 0* TRUE)∧(i362[3]* i362[4]))


(4) -> (0), if ((i360[4]* i360[0])∧(i362[4] / 2* i362[0])∧(i358[4] * i358[4]* i358[0]))


(4) -> (3), if ((i358[4] * i358[4]* i358[3])∧(i360[4]* i360[3])∧(i362[4] / 2* i362[3]))



The set Q consists of the following terms:
Load1494(x0, x1, x2)
Cond_Load1494(TRUE, x0, x1, x2)
Load1533(x0, x1, x2)
Cond_Load14941(TRUE, x0, x1, x2)

(7) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(8) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): LOAD1494(i358[0], i362[0], i360[0]) → COND_LOAD1494(i362[0] > 0 && 1 = i362[0] % 2, i358[0], i362[0], i360[0])
(1): COND_LOAD1494(TRUE, i358[1], i362[1], i360[1]) → LOAD1533(i358[1], i362[1], i360[1] * i358[1])
(2): LOAD1533(i358[2], i362[2], i360[2]) → LOAD1494(i358[2] * i358[2], i362[2] / 2, i360[2])
(3): LOAD1494(i358[3], i362[3], i360[3]) → COND_LOAD14941(i362[3] % 2 >= 0 && !(i362[3] % 2 = 1) && i362[3] > 0, i358[3], i362[3], i360[3])
(4): COND_LOAD14941(TRUE, i358[4], i362[4], i360[4]) → LOAD1494(i358[4] * i358[4], i362[4] / 2, i360[4])

(0) -> (1), if ((i362[0]* i362[1])∧(i362[0] > 0 && 1 = i362[0] % 2* TRUE)∧(i358[0]* i358[1])∧(i360[0]* i360[1]))


(1) -> (2), if ((i360[1] * i358[1]* i360[2])∧(i358[1]* i358[2])∧(i362[1]* i362[2]))


(2) -> (0), if ((i358[2] * i358[2]* i358[0])∧(i362[2] / 2* i362[0])∧(i360[2]* i360[0]))


(2) -> (3), if ((i360[2]* i360[3])∧(i358[2] * i358[2]* i358[3])∧(i362[2] / 2* i362[3]))


(3) -> (4), if ((i358[3]* i358[4])∧(i360[3]* i360[4])∧(i362[3] % 2 >= 0 && !(i362[3] % 2 = 1) && i362[3] > 0* TRUE)∧(i362[3]* i362[4]))


(4) -> (0), if ((i360[4]* i360[0])∧(i362[4] / 2* i362[0])∧(i358[4] * i358[4]* i358[0]))


(4) -> (3), if ((i358[4] * i358[4]* i358[3])∧(i360[4]* i360[3])∧(i362[4] / 2* i362[3]))



The set Q consists of the following terms:
Load1494(x0, x1, x2)
Cond_Load1494(TRUE, x0, x1, x2)
Load1533(x0, x1, x2)
Cond_Load14941(TRUE, x0, x1, x2)

(9) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair LOAD1494(i358, i362, i360) → COND_LOAD1494(&&(>(i362, 0), =(1, %(i362, 2))), i358, i362, i360) the following chains were created:
  • We consider the chain LOAD1494(i358[0], i362[0], i360[0]) → COND_LOAD1494(&&(>(i362[0], 0), =(1, %(i362[0], 2))), i358[0], i362[0], i360[0]), COND_LOAD1494(TRUE, i358[1], i362[1], i360[1]) → LOAD1533(i358[1], i362[1], *(i360[1], i358[1])) which results in the following constraint:

    (1)    (i362[0]=i362[1]&&(>(i362[0], 0), =(1, %(i362[0], 2)))=TRUEi358[0]=i358[1]i360[0]=i360[1]LOAD1494(i358[0], i362[0], i360[0])≥NonInfC∧LOAD1494(i358[0], i362[0], i360[0])≥COND_LOAD1494(&&(>(i362[0], 0), =(1, %(i362[0], 2))), i358[0], i362[0], i360[0])∧(UIncreasing(COND_LOAD1494(&&(>(i362[0], 0), =(1, %(i362[0], 2))), i358[0], i362[0], i360[0])), ≥))



    We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (>(i362[0], 0)=TRUE>=(1, %(i362[0], 2))=TRUE<=(1, %(i362[0], 2))=TRUELOAD1494(i358[0], i362[0], i360[0])≥NonInfC∧LOAD1494(i358[0], i362[0], i360[0])≥COND_LOAD1494(&&(>(i362[0], 0), =(1, %(i362[0], 2))), i358[0], i362[0], i360[0])∧(UIncreasing(COND_LOAD1494(&&(>(i362[0], 0), =(1, %(i362[0], 2))), i358[0], i362[0], i360[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (i362[0] + [-1] ≥ 0∧[1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1494(&&(>(i362[0], 0), =(1, %(i362[0], 2))), i358[0], i362[0], i360[0])), ≥)∧[(-1)Bound*bni_30] + [bni_30]i362[0] ≥ 0∧[(-1)bso_31] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (i362[0] + [-1] ≥ 0∧[1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1494(&&(>(i362[0], 0), =(1, %(i362[0], 2))), i358[0], i362[0], i360[0])), ≥)∧[(-1)Bound*bni_30] + [bni_30]i362[0] ≥ 0∧[(-1)bso_31] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (i362[0] + [-1] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1494(&&(>(i362[0], 0), =(1, %(i362[0], 2))), i358[0], i362[0], i360[0])), ≥)∧[(-1)Bound*bni_30] + [bni_30]i362[0] ≥ 0∧[(-1)bso_31] ≥ 0)



    We simplified constraint (5) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (6)    (i362[0] + [-1] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1494(&&(>(i362[0], 0), =(1, %(i362[0], 2))), i358[0], i362[0], i360[0])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_30] + [bni_30]i362[0] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_31] ≥ 0)



    We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (7)    (i362[0] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1494(&&(>(i362[0], 0), =(1, %(i362[0], 2))), i358[0], i362[0], i360[0])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_30 + bni_30] + [bni_30]i362[0] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_31] ≥ 0)



    We simplified constraint (7) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (8)    (i362[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1494(&&(>(i362[0], 0), =(1, %(i362[0], 2))), i358[0], i362[0], i360[0])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_30 + bni_30] + [bni_30]i362[0] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_31] ≥ 0)







For Pair COND_LOAD1494(TRUE, i358, i362, i360) → LOAD1533(i358, i362, *(i360, i358)) the following chains were created:
  • We consider the chain LOAD1494(i358[0], i362[0], i360[0]) → COND_LOAD1494(&&(>(i362[0], 0), =(1, %(i362[0], 2))), i358[0], i362[0], i360[0]), COND_LOAD1494(TRUE, i358[1], i362[1], i360[1]) → LOAD1533(i358[1], i362[1], *(i360[1], i358[1])) which results in the following constraint:

    (9)    (i362[0]=i362[1]&&(>(i362[0], 0), =(1, %(i362[0], 2)))=TRUEi358[0]=i358[1]i360[0]=i360[1]COND_LOAD1494(TRUE, i358[1], i362[1], i360[1])≥NonInfC∧COND_LOAD1494(TRUE, i358[1], i362[1], i360[1])≥LOAD1533(i358[1], i362[1], *(i360[1], i358[1]))∧(UIncreasing(LOAD1533(i358[1], i362[1], *(i360[1], i358[1]))), ≥))



    We simplified constraint (9) using rules (III), (IDP_BOOLEAN) which results in the following new constraint:

    (10)    (>(i362[0], 0)=TRUE>=(1, %(i362[0], 2))=TRUE<=(1, %(i362[0], 2))=TRUECOND_LOAD1494(TRUE, i358[0], i362[0], i360[0])≥NonInfC∧COND_LOAD1494(TRUE, i358[0], i362[0], i360[0])≥LOAD1533(i358[0], i362[0], *(i360[0], i358[0]))∧(UIncreasing(LOAD1533(i358[1], i362[1], *(i360[1], i358[1]))), ≥))



    We simplified constraint (10) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (11)    (i362[0] + [-1] ≥ 0∧[1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0 ⇒ (UIncreasing(LOAD1533(i358[1], i362[1], *(i360[1], i358[1]))), ≥)∧[(-1)Bound*bni_32] + [bni_32]i362[0] ≥ 0∧[1 + (-1)bso_33] ≥ 0)



    We simplified constraint (11) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (12)    (i362[0] + [-1] ≥ 0∧[1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0 ⇒ (UIncreasing(LOAD1533(i358[1], i362[1], *(i360[1], i358[1]))), ≥)∧[(-1)Bound*bni_32] + [bni_32]i362[0] ≥ 0∧[1 + (-1)bso_33] ≥ 0)



    We simplified constraint (12) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (13)    (i362[0] + [-1] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(LOAD1533(i358[1], i362[1], *(i360[1], i358[1]))), ≥)∧[(-1)Bound*bni_32] + [bni_32]i362[0] ≥ 0∧[1 + (-1)bso_33] ≥ 0)



    We simplified constraint (13) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (14)    (i362[0] + [-1] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(LOAD1533(i358[1], i362[1], *(i360[1], i358[1]))), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_32] + [bni_32]i362[0] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_33] ≥ 0)



    We simplified constraint (14) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (15)    (i362[0] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(LOAD1533(i358[1], i362[1], *(i360[1], i358[1]))), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_32 + bni_32] + [bni_32]i362[0] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_33] ≥ 0)



    We simplified constraint (15) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (16)    (i362[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(LOAD1533(i358[1], i362[1], *(i360[1], i358[1]))), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_32 + bni_32] + [bni_32]i362[0] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_33] ≥ 0)







For Pair LOAD1533(i358, i362, i360) → LOAD1494(*(i358, i358), /(i362, 2), i360) the following chains were created:
  • We consider the chain LOAD1494(i358[0], i362[0], i360[0]) → COND_LOAD1494(&&(>(i362[0], 0), =(1, %(i362[0], 2))), i358[0], i362[0], i360[0]), COND_LOAD1494(TRUE, i358[1], i362[1], i360[1]) → LOAD1533(i358[1], i362[1], *(i360[1], i358[1])), LOAD1533(i358[2], i362[2], i360[2]) → LOAD1494(*(i358[2], i358[2]), /(i362[2], 2), i360[2]) which results in the following constraint:

    (17)    (i362[0]=i362[1]&&(>(i362[0], 0), =(1, %(i362[0], 2)))=TRUEi358[0]=i358[1]i360[0]=i360[1]*(i360[1], i358[1])=i360[2]i358[1]=i358[2]i362[1]=i362[2]LOAD1533(i358[2], i362[2], i360[2])≥NonInfC∧LOAD1533(i358[2], i362[2], i360[2])≥LOAD1494(*(i358[2], i358[2]), /(i362[2], 2), i360[2])∧(UIncreasing(LOAD1494(*(i358[2], i358[2]), /(i362[2], 2), i360[2])), ≥))



    We simplified constraint (17) using rules (III), (IDP_BOOLEAN) which results in the following new constraint:

    (18)    (>(i362[0], 0)=TRUE>=(1, %(i362[0], 2))=TRUE<=(1, %(i362[0], 2))=TRUELOAD1533(i358[1], i362[0], *(i360[1], i358[1]))≥NonInfC∧LOAD1533(i358[1], i362[0], *(i360[1], i358[1]))≥LOAD1494(*(i358[1], i358[1]), /(i362[0], 2), *(i360[1], i358[1]))∧(UIncreasing(LOAD1494(*(i358[2], i358[2]), /(i362[2], 2), i360[2])), ≥))



    We simplified constraint (18) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (19)    (i362[0] + [-1] ≥ 0∧[1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[2], i358[2]), /(i362[2], 2), i360[2])), ≥)∧[(-1)bni_34 + (-1)Bound*bni_34] + [bni_34]i362[0] ≥ 0∧[(-1)bso_38] + i362[0] + [-1]max{i362[0], [-1]i362[0]} ≥ 0)



    We simplified constraint (19) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (20)    (i362[0] + [-1] ≥ 0∧[1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[2], i358[2]), /(i362[2], 2), i360[2])), ≥)∧[(-1)bni_34 + (-1)Bound*bni_34] + [bni_34]i362[0] ≥ 0∧[(-1)bso_38] + i362[0] + [-1]max{i362[0], [-1]i362[0]} ≥ 0)



    We simplified constraint (20) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (21)    (i362[0] + [-1] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0∧[2]i362[0] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[2], i358[2]), /(i362[2], 2), i360[2])), ≥)∧[(-1)bni_34 + (-1)Bound*bni_34] + [bni_34]i362[0] ≥ 0∧[(-1)bso_38] ≥ 0)



    We simplified constraint (21) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (22)    (i362[0] + [-1] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0∧[2]i362[0] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[2], i358[2]), /(i362[2], 2), i360[2])), ≥)∧0 = 0∧0 = 0∧[(-1)bni_34 + (-1)Bound*bni_34] + [bni_34]i362[0] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_38] ≥ 0)



    We simplified constraint (22) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (23)    (i362[0] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0∧[2] + [2]i362[0] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[2], i358[2]), /(i362[2], 2), i360[2])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_34] + [bni_34]i362[0] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_38] ≥ 0)



    We simplified constraint (23) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (24)    (i362[0] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0∧[2] + [2]i362[0] ≥ 0∧i358[1] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[2], i358[2]), /(i362[2], 2), i360[2])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_34] + [bni_34]i362[0] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_38] ≥ 0)


    (25)    (i362[0] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0∧[2] + [2]i362[0] ≥ 0∧i358[1] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[2], i358[2]), /(i362[2], 2), i360[2])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_34] + [bni_34]i362[0] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_38] ≥ 0)



    We simplified constraint (24) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (26)    (i362[0] ≥ 0∧[1] ≥ 0∧i358[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] + i362[0] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[2], i358[2]), /(i362[2], 2), i360[2])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_34] + [bni_34]i362[0] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_38] ≥ 0)



    We simplified constraint (25) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (27)    (i362[0] ≥ 0∧[1] ≥ 0∧i358[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] + i362[0] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[2], i358[2]), /(i362[2], 2), i360[2])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_34] + [bni_34]i362[0] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_38] ≥ 0)







For Pair LOAD1494(i358, i362, i360) → COND_LOAD14941(&&(&&(>=(%(i362, 2), 0), !(=(%(i362, 2), 1))), >(i362, 0)), i358, i362, i360) the following chains were created:
  • We consider the chain LOAD1494(i358[3], i362[3], i360[3]) → COND_LOAD14941(&&(&&(>=(%(i362[3], 2), 0), !(=(%(i362[3], 2), 1))), >(i362[3], 0)), i358[3], i362[3], i360[3]), COND_LOAD14941(TRUE, i358[4], i362[4], i360[4]) → LOAD1494(*(i358[4], i358[4]), /(i362[4], 2), i360[4]) which results in the following constraint:

    (28)    (i358[3]=i358[4]i360[3]=i360[4]&&(&&(>=(%(i362[3], 2), 0), !(=(%(i362[3], 2), 1))), >(i362[3], 0))=TRUEi362[3]=i362[4]LOAD1494(i358[3], i362[3], i360[3])≥NonInfC∧LOAD1494(i358[3], i362[3], i360[3])≥COND_LOAD14941(&&(&&(>=(%(i362[3], 2), 0), !(=(%(i362[3], 2), 1))), >(i362[3], 0)), i358[3], i362[3], i360[3])∧(UIncreasing(COND_LOAD14941(&&(&&(>=(%(i362[3], 2), 0), !(=(%(i362[3], 2), 1))), >(i362[3], 0)), i358[3], i362[3], i360[3])), ≥))



    We simplified constraint (28) using rules (IV), (IDP_BOOLEAN) which results in the following new constraints:

    (29)    (>(i362[3], 0)=TRUE>=(%(i362[3], 2), 0)=TRUE<(%(i362[3], 2), 1)=TRUELOAD1494(i358[3], i362[3], i360[3])≥NonInfC∧LOAD1494(i358[3], i362[3], i360[3])≥COND_LOAD14941(&&(&&(>=(%(i362[3], 2), 0), !(=(%(i362[3], 2), 1))), >(i362[3], 0)), i358[3], i362[3], i360[3])∧(UIncreasing(COND_LOAD14941(&&(&&(>=(%(i362[3], 2), 0), !(=(%(i362[3], 2), 1))), >(i362[3], 0)), i358[3], i362[3], i360[3])), ≥))


    (30)    (>(i362[3], 0)=TRUE>=(%(i362[3], 2), 0)=TRUE>(%(i362[3], 2), 1)=TRUELOAD1494(i358[3], i362[3], i360[3])≥NonInfC∧LOAD1494(i358[3], i362[3], i360[3])≥COND_LOAD14941(&&(&&(>=(%(i362[3], 2), 0), !(=(%(i362[3], 2), 1))), >(i362[3], 0)), i358[3], i362[3], i360[3])∧(UIncreasing(COND_LOAD14941(&&(&&(>=(%(i362[3], 2), 0), !(=(%(i362[3], 2), 1))), >(i362[3], 0)), i358[3], i362[3], i360[3])), ≥))



    We simplified constraint (29) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (31)    (i362[3] + [-1] ≥ 0∧max{[2], [-2]} ≥ 0∧[-1]min{[2], [-2]} ≥ 0 ⇒ (UIncreasing(COND_LOAD14941(&&(&&(>=(%(i362[3], 2), 0), !(=(%(i362[3], 2), 1))), >(i362[3], 0)), i358[3], i362[3], i360[3])), ≥)∧[(-1)Bound*bni_39] + [bni_39]i362[3] ≥ 0∧[1 + (-1)bso_40] ≥ 0)



    We simplified constraint (30) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (32)    (i362[3] + [-1] ≥ 0∧max{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-2] ≥ 0 ⇒ (UIncreasing(COND_LOAD14941(&&(&&(>=(%(i362[3], 2), 0), !(=(%(i362[3], 2), 1))), >(i362[3], 0)), i358[3], i362[3], i360[3])), ≥)∧[(-1)Bound*bni_39] + [bni_39]i362[3] ≥ 0∧[1 + (-1)bso_40] ≥ 0)



    We simplified constraint (31) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (33)    (i362[3] + [-1] ≥ 0∧max{[2], [-2]} ≥ 0∧[-1]min{[2], [-2]} ≥ 0 ⇒ (UIncreasing(COND_LOAD14941(&&(&&(>=(%(i362[3], 2), 0), !(=(%(i362[3], 2), 1))), >(i362[3], 0)), i358[3], i362[3], i360[3])), ≥)∧[(-1)Bound*bni_39] + [bni_39]i362[3] ≥ 0∧[1 + (-1)bso_40] ≥ 0)



    We simplified constraint (32) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (34)    (i362[3] + [-1] ≥ 0∧max{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-2] ≥ 0 ⇒ (UIncreasing(COND_LOAD14941(&&(&&(>=(%(i362[3], 2), 0), !(=(%(i362[3], 2), 1))), >(i362[3], 0)), i358[3], i362[3], i360[3])), ≥)∧[(-1)Bound*bni_39] + [bni_39]i362[3] ≥ 0∧[1 + (-1)bso_40] ≥ 0)



    We simplified constraint (33) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (35)    (i362[3] + [-1] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD14941(&&(&&(>=(%(i362[3], 2), 0), !(=(%(i362[3], 2), 1))), >(i362[3], 0)), i358[3], i362[3], i360[3])), ≥)∧[(-1)Bound*bni_39] + [bni_39]i362[3] ≥ 0∧[1 + (-1)bso_40] ≥ 0)



    We simplified constraint (34) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (36)    (i362[3] + [-1] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(COND_LOAD14941(&&(&&(>=(%(i362[3], 2), 0), !(=(%(i362[3], 2), 1))), >(i362[3], 0)), i358[3], i362[3], i360[3])), ≥)∧[(-1)Bound*bni_39] + [bni_39]i362[3] ≥ 0∧[1 + (-1)bso_40] ≥ 0)



    We simplified constraint (35) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (37)    (i362[3] + [-1] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD14941(&&(&&(>=(%(i362[3], 2), 0), !(=(%(i362[3], 2), 1))), >(i362[3], 0)), i358[3], i362[3], i360[3])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_39] + [bni_39]i362[3] ≥ 0∧0 = 0∧0 = 0∧[1 + (-1)bso_40] ≥ 0)



    We simplified constraint (36) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (38)    (i362[3] + [-1] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(COND_LOAD14941(&&(&&(>=(%(i362[3], 2), 0), !(=(%(i362[3], 2), 1))), >(i362[3], 0)), i358[3], i362[3], i360[3])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_39] + [bni_39]i362[3] ≥ 0∧0 = 0∧0 = 0∧[1 + (-1)bso_40] ≥ 0)



    We simplified constraint (37) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (39)    (i362[3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD14941(&&(&&(>=(%(i362[3], 2), 0), !(=(%(i362[3], 2), 1))), >(i362[3], 0)), i358[3], i362[3], i360[3])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_39 + bni_39] + [bni_39]i362[3] ≥ 0∧0 = 0∧0 = 0∧[1 + (-1)bso_40] ≥ 0)



    We simplified constraint (39) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (40)    (i362[3] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_LOAD14941(&&(&&(>=(%(i362[3], 2), 0), !(=(%(i362[3], 2), 1))), >(i362[3], 0)), i358[3], i362[3], i360[3])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_39 + bni_39] + [bni_39]i362[3] ≥ 0∧0 = 0∧0 = 0∧[1 + (-1)bso_40] ≥ 0)



    We simplified constraint (38) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (41)    (i362[3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(COND_LOAD14941(&&(&&(>=(%(i362[3], 2), 0), !(=(%(i362[3], 2), 1))), >(i362[3], 0)), i358[3], i362[3], i360[3])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_39 + bni_39] + [bni_39]i362[3] ≥ 0∧0 = 0∧0 = 0∧[1 + (-1)bso_40] ≥ 0)



    We simplified constraint (41) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (42)    (i362[3] ≥ 0∧0 ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_LOAD14941(&&(&&(>=(%(i362[3], 2), 0), !(=(%(i362[3], 2), 1))), >(i362[3], 0)), i358[3], i362[3], i360[3])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_39 + bni_39] + [bni_39]i362[3] ≥ 0∧0 = 0∧0 = 0∧[1 + (-1)bso_40] ≥ 0)







For Pair COND_LOAD14941(TRUE, i358, i362, i360) → LOAD1494(*(i358, i358), /(i362, 2), i360) the following chains were created:
  • We consider the chain LOAD1494(i358[3], i362[3], i360[3]) → COND_LOAD14941(&&(&&(>=(%(i362[3], 2), 0), !(=(%(i362[3], 2), 1))), >(i362[3], 0)), i358[3], i362[3], i360[3]), COND_LOAD14941(TRUE, i358[4], i362[4], i360[4]) → LOAD1494(*(i358[4], i358[4]), /(i362[4], 2), i360[4]) which results in the following constraint:

    (43)    (i358[3]=i358[4]i360[3]=i360[4]&&(&&(>=(%(i362[3], 2), 0), !(=(%(i362[3], 2), 1))), >(i362[3], 0))=TRUEi362[3]=i362[4]COND_LOAD14941(TRUE, i358[4], i362[4], i360[4])≥NonInfC∧COND_LOAD14941(TRUE, i358[4], i362[4], i360[4])≥LOAD1494(*(i358[4], i358[4]), /(i362[4], 2), i360[4])∧(UIncreasing(LOAD1494(*(i358[4], i358[4]), /(i362[4], 2), i360[4])), ≥))



    We simplified constraint (43) using rules (III), (IDP_BOOLEAN) which results in the following new constraints:

    (44)    (>(i362[3], 0)=TRUE>=(%(i362[3], 2), 0)=TRUE<(%(i362[3], 2), 1)=TRUECOND_LOAD14941(TRUE, i358[3], i362[3], i360[3])≥NonInfC∧COND_LOAD14941(TRUE, i358[3], i362[3], i360[3])≥LOAD1494(*(i358[3], i358[3]), /(i362[3], 2), i360[3])∧(UIncreasing(LOAD1494(*(i358[4], i358[4]), /(i362[4], 2), i360[4])), ≥))


    (45)    (>(i362[3], 0)=TRUE>=(%(i362[3], 2), 0)=TRUE>(%(i362[3], 2), 1)=TRUECOND_LOAD14941(TRUE, i358[3], i362[3], i360[3])≥NonInfC∧COND_LOAD14941(TRUE, i358[3], i362[3], i360[3])≥LOAD1494(*(i358[3], i358[3]), /(i362[3], 2), i360[3])∧(UIncreasing(LOAD1494(*(i358[4], i358[4]), /(i362[4], 2), i360[4])), ≥))



    We simplified constraint (44) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (46)    (i362[3] + [-1] ≥ 0∧max{[2], [-2]} ≥ 0∧[-1]min{[2], [-2]} ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[4], i358[4]), /(i362[4], 2), i360[4])), ≥)∧[(-1)bni_41 + (-1)Bound*bni_41] + [bni_41]i362[3] ≥ 0∧[(-1)bso_42] + i362[3] + [-1]max{i362[3], [-1]i362[3]} ≥ 0)



    We simplified constraint (45) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (47)    (i362[3] + [-1] ≥ 0∧max{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-2] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[4], i358[4]), /(i362[4], 2), i360[4])), ≥)∧[(-1)bni_41 + (-1)Bound*bni_41] + [bni_41]i362[3] ≥ 0∧[(-1)bso_42] + i362[3] + [-1]max{i362[3], [-1]i362[3]} ≥ 0)



    We simplified constraint (46) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (48)    (i362[3] + [-1] ≥ 0∧max{[2], [-2]} ≥ 0∧[-1]min{[2], [-2]} ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[4], i358[4]), /(i362[4], 2), i360[4])), ≥)∧[(-1)bni_41 + (-1)Bound*bni_41] + [bni_41]i362[3] ≥ 0∧[(-1)bso_42] + i362[3] + [-1]max{i362[3], [-1]i362[3]} ≥ 0)



    We simplified constraint (47) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (49)    (i362[3] + [-1] ≥ 0∧max{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-2] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[4], i358[4]), /(i362[4], 2), i360[4])), ≥)∧[(-1)bni_41 + (-1)Bound*bni_41] + [bni_41]i362[3] ≥ 0∧[(-1)bso_42] + i362[3] + [-1]max{i362[3], [-1]i362[3]} ≥ 0)



    We simplified constraint (48) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (50)    (i362[3] + [-1] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[2]i362[3] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[4], i358[4]), /(i362[4], 2), i360[4])), ≥)∧[(-1)bni_41 + (-1)Bound*bni_41] + [bni_41]i362[3] ≥ 0∧[(-1)bso_42] ≥ 0)



    We simplified constraint (49) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (51)    (i362[3] + [-1] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧0 ≥ 0∧[2]i362[3] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[4], i358[4]), /(i362[4], 2), i360[4])), ≥)∧[(-1)bni_41 + (-1)Bound*bni_41] + [bni_41]i362[3] ≥ 0∧[(-1)bso_42] ≥ 0)



    We simplified constraint (50) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (52)    (i362[3] + [-1] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[2]i362[3] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[4], i358[4]), /(i362[4], 2), i360[4])), ≥)∧0 = 0∧0 = 0∧[(-1)bni_41 + (-1)Bound*bni_41] + [bni_41]i362[3] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_42] ≥ 0)



    We simplified constraint (51) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (53)    (i362[3] + [-1] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧0 ≥ 0∧[2]i362[3] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[4], i358[4]), /(i362[4], 2), i360[4])), ≥)∧0 = 0∧0 = 0∧[(-1)bni_41 + (-1)Bound*bni_41] + [bni_41]i362[3] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_42] ≥ 0)



    We simplified constraint (52) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (54)    (i362[3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[2] + [2]i362[3] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[4], i358[4]), /(i362[4], 2), i360[4])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_41] + [bni_41]i362[3] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_42] ≥ 0)



    We simplified constraint (54) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (55)    (i362[3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[2] + [2]i362[3] ≥ 0∧i358[3] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[4], i358[4]), /(i362[4], 2), i360[4])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_41] + [bni_41]i362[3] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_42] ≥ 0)


    (56)    (i362[3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[2] + [2]i362[3] ≥ 0∧i358[3] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[4], i358[4]), /(i362[4], 2), i360[4])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_41] + [bni_41]i362[3] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_42] ≥ 0)



    We simplified constraint (55) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (57)    (i362[3] ≥ 0∧i358[3] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] + i362[3] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[4], i358[4]), /(i362[4], 2), i360[4])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_41] + [bni_41]i362[3] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_42] ≥ 0)



    We simplified constraint (56) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (58)    (i362[3] ≥ 0∧i358[3] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] + i362[3] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[4], i358[4]), /(i362[4], 2), i360[4])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_41] + [bni_41]i362[3] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_42] ≥ 0)



    We simplified constraint (53) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (59)    (i362[3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧0 ≥ 0∧[2] + [2]i362[3] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[4], i358[4]), /(i362[4], 2), i360[4])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_41] + [bni_41]i362[3] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_42] ≥ 0)



    We simplified constraint (59) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (60)    (i362[3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧0 ≥ 0∧[2] + [2]i362[3] ≥ 0∧i358[3] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[4], i358[4]), /(i362[4], 2), i360[4])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_41] + [bni_41]i362[3] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_42] ≥ 0)


    (61)    (i362[3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧0 ≥ 0∧[2] + [2]i362[3] ≥ 0∧i358[3] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[4], i358[4]), /(i362[4], 2), i360[4])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_41] + [bni_41]i362[3] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_42] ≥ 0)



    We simplified constraint (60) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (62)    (i362[3] ≥ 0∧0 ≥ 0∧i358[3] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] + i362[3] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[4], i358[4]), /(i362[4], 2), i360[4])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_41] + [bni_41]i362[3] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_42] ≥ 0)



    We simplified constraint (61) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (63)    (i362[3] ≥ 0∧0 ≥ 0∧i358[3] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] + i362[3] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[4], i358[4]), /(i362[4], 2), i360[4])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_41] + [bni_41]i362[3] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_42] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • LOAD1494(i358, i362, i360) → COND_LOAD1494(&&(>(i362, 0), =(1, %(i362, 2))), i358, i362, i360)
    • (i362[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1494(&&(>(i362[0], 0), =(1, %(i362[0], 2))), i358[0], i362[0], i360[0])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_30 + bni_30] + [bni_30]i362[0] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_31] ≥ 0)

  • COND_LOAD1494(TRUE, i358, i362, i360) → LOAD1533(i358, i362, *(i360, i358))
    • (i362[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(LOAD1533(i358[1], i362[1], *(i360[1], i358[1]))), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_32 + bni_32] + [bni_32]i362[0] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_33] ≥ 0)

  • LOAD1533(i358, i362, i360) → LOAD1494(*(i358, i358), /(i362, 2), i360)
    • (i362[0] ≥ 0∧[1] ≥ 0∧i358[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] + i362[0] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[2], i358[2]), /(i362[2], 2), i360[2])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_34] + [bni_34]i362[0] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_38] ≥ 0)
    • (i362[0] ≥ 0∧[1] ≥ 0∧i358[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] + i362[0] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[2], i358[2]), /(i362[2], 2), i360[2])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_34] + [bni_34]i362[0] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_38] ≥ 0)

  • LOAD1494(i358, i362, i360) → COND_LOAD14941(&&(&&(>=(%(i362, 2), 0), !(=(%(i362, 2), 1))), >(i362, 0)), i358, i362, i360)
    • (i362[3] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_LOAD14941(&&(&&(>=(%(i362[3], 2), 0), !(=(%(i362[3], 2), 1))), >(i362[3], 0)), i358[3], i362[3], i360[3])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_39 + bni_39] + [bni_39]i362[3] ≥ 0∧0 = 0∧0 = 0∧[1 + (-1)bso_40] ≥ 0)
    • (i362[3] ≥ 0∧0 ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_LOAD14941(&&(&&(>=(%(i362[3], 2), 0), !(=(%(i362[3], 2), 1))), >(i362[3], 0)), i358[3], i362[3], i360[3])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_39 + bni_39] + [bni_39]i362[3] ≥ 0∧0 = 0∧0 = 0∧[1 + (-1)bso_40] ≥ 0)

  • COND_LOAD14941(TRUE, i358, i362, i360) → LOAD1494(*(i358, i358), /(i362, 2), i360)
    • (i362[3] ≥ 0∧i358[3] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] + i362[3] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[4], i358[4]), /(i362[4], 2), i360[4])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_41] + [bni_41]i362[3] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_42] ≥ 0)
    • (i362[3] ≥ 0∧i358[3] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] + i362[3] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[4], i358[4]), /(i362[4], 2), i360[4])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_41] + [bni_41]i362[3] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_42] ≥ 0)
    • (i362[3] ≥ 0∧0 ≥ 0∧i358[3] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] + i362[3] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[4], i358[4]), /(i362[4], 2), i360[4])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_41] + [bni_41]i362[3] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_42] ≥ 0)
    • (i362[3] ≥ 0∧0 ≥ 0∧i358[3] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] + i362[3] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[4], i358[4]), /(i362[4], 2), i360[4])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_41] + [bni_41]i362[3] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_42] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(LOAD1494(x1, x2, x3)) = x2   
POL(COND_LOAD1494(x1, x2, x3, x4)) = x3   
POL(&&(x1, x2)) = [-1]   
POL(>(x1, x2)) = [-1]   
POL(0) = 0   
POL(=(x1, x2)) = [-1]   
POL(1) = [1]   
POL(2) = [2]   
POL(LOAD1533(x1, x2, x3)) = [-1] + x2   
POL(*(x1, x2)) = x1·x2   
POL(COND_LOAD14941(x1, x2, x3, x4)) = [-1] + x3   
POL(>=(x1, x2)) = [-1]   
POL(!(x1)) = [-1]   

Polynomial Interpretations with Context Sensitive Arithemetic Replacement
POL(TermCSAR-Mode @ Context)

POL(%(x1, 2)-1 @ {}) = min{x2, [-1]x2}   
POL(%(x1, 2)1 @ {}) = max{x2, [-1]x2}   
POL(/(x1, 2)1 @ {LOAD1494_3/1}) = max{x1, [-1]x1} + [-1]   

The following pairs are in P>:

COND_LOAD1494(TRUE, i358[1], i362[1], i360[1]) → LOAD1533(i358[1], i362[1], *(i360[1], i358[1]))
LOAD1494(i358[3], i362[3], i360[3]) → COND_LOAD14941(&&(&&(>=(%(i362[3], 2), 0), !(=(%(i362[3], 2), 1))), >(i362[3], 0)), i358[3], i362[3], i360[3])

The following pairs are in Pbound:

LOAD1494(i358[0], i362[0], i360[0]) → COND_LOAD1494(&&(>(i362[0], 0), =(1, %(i362[0], 2))), i358[0], i362[0], i360[0])
COND_LOAD1494(TRUE, i358[1], i362[1], i360[1]) → LOAD1533(i358[1], i362[1], *(i360[1], i358[1]))
LOAD1533(i358[2], i362[2], i360[2]) → LOAD1494(*(i358[2], i358[2]), /(i362[2], 2), i360[2])
LOAD1494(i358[3], i362[3], i360[3]) → COND_LOAD14941(&&(&&(>=(%(i362[3], 2), 0), !(=(%(i362[3], 2), 1))), >(i362[3], 0)), i358[3], i362[3], i360[3])
COND_LOAD14941(TRUE, i358[4], i362[4], i360[4]) → LOAD1494(*(i358[4], i358[4]), /(i362[4], 2), i360[4])

The following pairs are in P:

LOAD1494(i358[0], i362[0], i360[0]) → COND_LOAD1494(&&(>(i362[0], 0), =(1, %(i362[0], 2))), i358[0], i362[0], i360[0])
LOAD1533(i358[2], i362[2], i360[2]) → LOAD1494(*(i358[2], i358[2]), /(i362[2], 2), i360[2])
COND_LOAD14941(TRUE, i358[4], i362[4], i360[4]) → LOAD1494(*(i358[4], i358[4]), /(i362[4], 2), i360[4])

At least the following rules have been oriented under context sensitive arithmetic replacement:

/1

(10) Complex Obligation (AND)

(11) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): LOAD1494(i358[0], i362[0], i360[0]) → COND_LOAD1494(i362[0] > 0 && 1 = i362[0] % 2, i358[0], i362[0], i360[0])
(2): LOAD1533(i358[2], i362[2], i360[2]) → LOAD1494(i358[2] * i358[2], i362[2] / 2, i360[2])
(4): COND_LOAD14941(TRUE, i358[4], i362[4], i360[4]) → LOAD1494(i358[4] * i358[4], i362[4] / 2, i360[4])

(2) -> (0), if ((i358[2] * i358[2]* i358[0])∧(i362[2] / 2* i362[0])∧(i360[2]* i360[0]))


(4) -> (0), if ((i360[4]* i360[0])∧(i362[4] / 2* i362[0])∧(i358[4] * i358[4]* i358[0]))



The set Q consists of the following terms:
Load1494(x0, x1, x2)
Cond_Load1494(TRUE, x0, x1, x2)
Load1533(x0, x1, x2)
Cond_Load14941(TRUE, x0, x1, x2)

(12) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 3 less nodes.

(13) TRUE

(14) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:
none


R is empty.

The integer pair graph is empty.

The set Q consists of the following terms:
Load1494(x0, x1, x2)
Cond_Load1494(TRUE, x0, x1, x2)
Load1533(x0, x1, x2)
Cond_Load14941(TRUE, x0, x1, x2)

(15) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs.

(16) TRUE