0 JBC
↳1 JBC2FIG (⇐)
↳2 FIGraph
↳3 FIGtoITRSProof (⇐)
↳4 ITRS
↳5 ITRStoIDPProof (⇔)
↳6 IDP
↳7 UsableRulesProof (⇔)
↳8 IDP
↳9 IDPNonInfProof (⇐)
↳10 AND
↳11 IDP
↳12 IDependencyGraphProof (⇔)
↳13 TRUE
↳14 IDP
↳15 IDependencyGraphProof (⇔)
↳16 TRUE
/**
* Abstract class to provide some additional mathematical functions
* which are not provided by java.lang.Math.
*
* @author fuhs
*/
public abstract class AProVEMath {
/**
* Returns <code>base<sup>exponent</sup></code>.
* Works considerably faster than java.lang.Math.pow(double, double).
*
* @param base base of the power
* @param exponent non-negative exponent of the power
* @return base<sup>exponent</sup>
*/
public static int power (int base, int exponent) {
if (exponent == 0) {
return 1;
}
else if (exponent == 1) {
return base;
}
else if (base == 2) {
return base << (exponent-1);
}
else {
int result = 1;
while (exponent > 0) {
if (exponent % 2 == 1) {
result *= base;
}
base *= base;
exponent /= 2;
}
return result;
}
}
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
power(x, y);
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i362[0] →* i362[1])∧(i362[0] > 0 && 1 = i362[0] % 2 →* TRUE)∧(i358[0] →* i358[1])∧(i360[0] →* i360[1]))
(1) -> (2), if ((i360[1] * i358[1] →* i360[2])∧(i358[1] →* i358[2])∧(i362[1] →* i362[2]))
(2) -> (0), if ((i358[2] * i358[2] →* i358[0])∧(i362[2] / 2 →* i362[0])∧(i360[2] →* i360[0]))
(2) -> (3), if ((i360[2] →* i360[3])∧(i358[2] * i358[2] →* i358[3])∧(i362[2] / 2 →* i362[3]))
(3) -> (4), if ((i358[3] →* i358[4])∧(i360[3] →* i360[4])∧(i362[3] % 2 >= 0 && !(i362[3] % 2 = 1) && i362[3] > 0 →* TRUE)∧(i362[3] →* i362[4]))
(4) -> (0), if ((i360[4] →* i360[0])∧(i362[4] / 2 →* i362[0])∧(i358[4] * i358[4] →* i358[0]))
(4) -> (3), if ((i358[4] * i358[4] →* i358[3])∧(i360[4] →* i360[3])∧(i362[4] / 2 →* i362[3]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i362[0] →* i362[1])∧(i362[0] > 0 && 1 = i362[0] % 2 →* TRUE)∧(i358[0] →* i358[1])∧(i360[0] →* i360[1]))
(1) -> (2), if ((i360[1] * i358[1] →* i360[2])∧(i358[1] →* i358[2])∧(i362[1] →* i362[2]))
(2) -> (0), if ((i358[2] * i358[2] →* i358[0])∧(i362[2] / 2 →* i362[0])∧(i360[2] →* i360[0]))
(2) -> (3), if ((i360[2] →* i360[3])∧(i358[2] * i358[2] →* i358[3])∧(i362[2] / 2 →* i362[3]))
(3) -> (4), if ((i358[3] →* i358[4])∧(i360[3] →* i360[4])∧(i362[3] % 2 >= 0 && !(i362[3] % 2 = 1) && i362[3] > 0 →* TRUE)∧(i362[3] →* i362[4]))
(4) -> (0), if ((i360[4] →* i360[0])∧(i362[4] / 2 →* i362[0])∧(i358[4] * i358[4] →* i358[0]))
(4) -> (3), if ((i358[4] * i358[4] →* i358[3])∧(i360[4] →* i360[3])∧(i362[4] / 2 →* i362[3]))
(1) (i362[0]=i362[1]∧&&(>(i362[0], 0), =(1, %(i362[0], 2)))=TRUE∧i358[0]=i358[1]∧i360[0]=i360[1] ⇒ LOAD1494(i358[0], i362[0], i360[0])≥NonInfC∧LOAD1494(i358[0], i362[0], i360[0])≥COND_LOAD1494(&&(>(i362[0], 0), =(1, %(i362[0], 2))), i358[0], i362[0], i360[0])∧(UIncreasing(COND_LOAD1494(&&(>(i362[0], 0), =(1, %(i362[0], 2))), i358[0], i362[0], i360[0])), ≥))
(2) (>(i362[0], 0)=TRUE∧>=(1, %(i362[0], 2))=TRUE∧<=(1, %(i362[0], 2))=TRUE ⇒ LOAD1494(i358[0], i362[0], i360[0])≥NonInfC∧LOAD1494(i358[0], i362[0], i360[0])≥COND_LOAD1494(&&(>(i362[0], 0), =(1, %(i362[0], 2))), i358[0], i362[0], i360[0])∧(UIncreasing(COND_LOAD1494(&&(>(i362[0], 0), =(1, %(i362[0], 2))), i358[0], i362[0], i360[0])), ≥))
(3) (i362[0] + [-1] ≥ 0∧[1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1494(&&(>(i362[0], 0), =(1, %(i362[0], 2))), i358[0], i362[0], i360[0])), ≥)∧[(-1)Bound*bni_30] + [bni_30]i362[0] ≥ 0∧[(-1)bso_31] ≥ 0)
(4) (i362[0] + [-1] ≥ 0∧[1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1494(&&(>(i362[0], 0), =(1, %(i362[0], 2))), i358[0], i362[0], i360[0])), ≥)∧[(-1)Bound*bni_30] + [bni_30]i362[0] ≥ 0∧[(-1)bso_31] ≥ 0)
(5) (i362[0] + [-1] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1494(&&(>(i362[0], 0), =(1, %(i362[0], 2))), i358[0], i362[0], i360[0])), ≥)∧[(-1)Bound*bni_30] + [bni_30]i362[0] ≥ 0∧[(-1)bso_31] ≥ 0)
(6) (i362[0] + [-1] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1494(&&(>(i362[0], 0), =(1, %(i362[0], 2))), i358[0], i362[0], i360[0])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_30] + [bni_30]i362[0] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_31] ≥ 0)
(7) (i362[0] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1494(&&(>(i362[0], 0), =(1, %(i362[0], 2))), i358[0], i362[0], i360[0])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_30 + bni_30] + [bni_30]i362[0] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_31] ≥ 0)
(8) (i362[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1494(&&(>(i362[0], 0), =(1, %(i362[0], 2))), i358[0], i362[0], i360[0])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_30 + bni_30] + [bni_30]i362[0] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_31] ≥ 0)
(9) (i362[0]=i362[1]∧&&(>(i362[0], 0), =(1, %(i362[0], 2)))=TRUE∧i358[0]=i358[1]∧i360[0]=i360[1] ⇒ COND_LOAD1494(TRUE, i358[1], i362[1], i360[1])≥NonInfC∧COND_LOAD1494(TRUE, i358[1], i362[1], i360[1])≥LOAD1533(i358[1], i362[1], *(i360[1], i358[1]))∧(UIncreasing(LOAD1533(i358[1], i362[1], *(i360[1], i358[1]))), ≥))
(10) (>(i362[0], 0)=TRUE∧>=(1, %(i362[0], 2))=TRUE∧<=(1, %(i362[0], 2))=TRUE ⇒ COND_LOAD1494(TRUE, i358[0], i362[0], i360[0])≥NonInfC∧COND_LOAD1494(TRUE, i358[0], i362[0], i360[0])≥LOAD1533(i358[0], i362[0], *(i360[0], i358[0]))∧(UIncreasing(LOAD1533(i358[1], i362[1], *(i360[1], i358[1]))), ≥))
(11) (i362[0] + [-1] ≥ 0∧[1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0 ⇒ (UIncreasing(LOAD1533(i358[1], i362[1], *(i360[1], i358[1]))), ≥)∧[(-1)Bound*bni_32] + [bni_32]i362[0] ≥ 0∧[1 + (-1)bso_33] ≥ 0)
(12) (i362[0] + [-1] ≥ 0∧[1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0 ⇒ (UIncreasing(LOAD1533(i358[1], i362[1], *(i360[1], i358[1]))), ≥)∧[(-1)Bound*bni_32] + [bni_32]i362[0] ≥ 0∧[1 + (-1)bso_33] ≥ 0)
(13) (i362[0] + [-1] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(LOAD1533(i358[1], i362[1], *(i360[1], i358[1]))), ≥)∧[(-1)Bound*bni_32] + [bni_32]i362[0] ≥ 0∧[1 + (-1)bso_33] ≥ 0)
(14) (i362[0] + [-1] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(LOAD1533(i358[1], i362[1], *(i360[1], i358[1]))), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_32] + [bni_32]i362[0] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_33] ≥ 0)
(15) (i362[0] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(LOAD1533(i358[1], i362[1], *(i360[1], i358[1]))), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_32 + bni_32] + [bni_32]i362[0] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_33] ≥ 0)
(16) (i362[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(LOAD1533(i358[1], i362[1], *(i360[1], i358[1]))), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_32 + bni_32] + [bni_32]i362[0] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_33] ≥ 0)
(17) (i362[0]=i362[1]∧&&(>(i362[0], 0), =(1, %(i362[0], 2)))=TRUE∧i358[0]=i358[1]∧i360[0]=i360[1]∧*(i360[1], i358[1])=i360[2]∧i358[1]=i358[2]∧i362[1]=i362[2] ⇒ LOAD1533(i358[2], i362[2], i360[2])≥NonInfC∧LOAD1533(i358[2], i362[2], i360[2])≥LOAD1494(*(i358[2], i358[2]), /(i362[2], 2), i360[2])∧(UIncreasing(LOAD1494(*(i358[2], i358[2]), /(i362[2], 2), i360[2])), ≥))
(18) (>(i362[0], 0)=TRUE∧>=(1, %(i362[0], 2))=TRUE∧<=(1, %(i362[0], 2))=TRUE ⇒ LOAD1533(i358[1], i362[0], *(i360[1], i358[1]))≥NonInfC∧LOAD1533(i358[1], i362[0], *(i360[1], i358[1]))≥LOAD1494(*(i358[1], i358[1]), /(i362[0], 2), *(i360[1], i358[1]))∧(UIncreasing(LOAD1494(*(i358[2], i358[2]), /(i362[2], 2), i360[2])), ≥))
(19) (i362[0] + [-1] ≥ 0∧[1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[2], i358[2]), /(i362[2], 2), i360[2])), ≥)∧[(-1)bni_34 + (-1)Bound*bni_34] + [bni_34]i362[0] ≥ 0∧[(-1)bso_38] + i362[0] + [-1]max{i362[0], [-1]i362[0]} ≥ 0)
(20) (i362[0] + [-1] ≥ 0∧[1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[2], i358[2]), /(i362[2], 2), i360[2])), ≥)∧[(-1)bni_34 + (-1)Bound*bni_34] + [bni_34]i362[0] ≥ 0∧[(-1)bso_38] + i362[0] + [-1]max{i362[0], [-1]i362[0]} ≥ 0)
(21) (i362[0] + [-1] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0∧[2]i362[0] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[2], i358[2]), /(i362[2], 2), i360[2])), ≥)∧[(-1)bni_34 + (-1)Bound*bni_34] + [bni_34]i362[0] ≥ 0∧[(-1)bso_38] ≥ 0)
(22) (i362[0] + [-1] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0∧[2]i362[0] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[2], i358[2]), /(i362[2], 2), i360[2])), ≥)∧0 = 0∧0 = 0∧[(-1)bni_34 + (-1)Bound*bni_34] + [bni_34]i362[0] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_38] ≥ 0)
(23) (i362[0] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0∧[2] + [2]i362[0] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[2], i358[2]), /(i362[2], 2), i360[2])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_34] + [bni_34]i362[0] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_38] ≥ 0)
(24) (i362[0] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0∧[2] + [2]i362[0] ≥ 0∧i358[1] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[2], i358[2]), /(i362[2], 2), i360[2])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_34] + [bni_34]i362[0] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_38] ≥ 0)
(25) (i362[0] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0∧[2] + [2]i362[0] ≥ 0∧i358[1] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[2], i358[2]), /(i362[2], 2), i360[2])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_34] + [bni_34]i362[0] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_38] ≥ 0)
(26) (i362[0] ≥ 0∧[1] ≥ 0∧i358[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] + i362[0] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[2], i358[2]), /(i362[2], 2), i360[2])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_34] + [bni_34]i362[0] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_38] ≥ 0)
(27) (i362[0] ≥ 0∧[1] ≥ 0∧i358[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] + i362[0] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[2], i358[2]), /(i362[2], 2), i360[2])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_34] + [bni_34]i362[0] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_38] ≥ 0)
(28) (i358[3]=i358[4]∧i360[3]=i360[4]∧&&(&&(>=(%(i362[3], 2), 0), !(=(%(i362[3], 2), 1))), >(i362[3], 0))=TRUE∧i362[3]=i362[4] ⇒ LOAD1494(i358[3], i362[3], i360[3])≥NonInfC∧LOAD1494(i358[3], i362[3], i360[3])≥COND_LOAD14941(&&(&&(>=(%(i362[3], 2), 0), !(=(%(i362[3], 2), 1))), >(i362[3], 0)), i358[3], i362[3], i360[3])∧(UIncreasing(COND_LOAD14941(&&(&&(>=(%(i362[3], 2), 0), !(=(%(i362[3], 2), 1))), >(i362[3], 0)), i358[3], i362[3], i360[3])), ≥))
(29) (>(i362[3], 0)=TRUE∧>=(%(i362[3], 2), 0)=TRUE∧<(%(i362[3], 2), 1)=TRUE ⇒ LOAD1494(i358[3], i362[3], i360[3])≥NonInfC∧LOAD1494(i358[3], i362[3], i360[3])≥COND_LOAD14941(&&(&&(>=(%(i362[3], 2), 0), !(=(%(i362[3], 2), 1))), >(i362[3], 0)), i358[3], i362[3], i360[3])∧(UIncreasing(COND_LOAD14941(&&(&&(>=(%(i362[3], 2), 0), !(=(%(i362[3], 2), 1))), >(i362[3], 0)), i358[3], i362[3], i360[3])), ≥))
(30) (>(i362[3], 0)=TRUE∧>=(%(i362[3], 2), 0)=TRUE∧>(%(i362[3], 2), 1)=TRUE ⇒ LOAD1494(i358[3], i362[3], i360[3])≥NonInfC∧LOAD1494(i358[3], i362[3], i360[3])≥COND_LOAD14941(&&(&&(>=(%(i362[3], 2), 0), !(=(%(i362[3], 2), 1))), >(i362[3], 0)), i358[3], i362[3], i360[3])∧(UIncreasing(COND_LOAD14941(&&(&&(>=(%(i362[3], 2), 0), !(=(%(i362[3], 2), 1))), >(i362[3], 0)), i358[3], i362[3], i360[3])), ≥))
(31) (i362[3] + [-1] ≥ 0∧max{[2], [-2]} ≥ 0∧[-1]min{[2], [-2]} ≥ 0 ⇒ (UIncreasing(COND_LOAD14941(&&(&&(>=(%(i362[3], 2), 0), !(=(%(i362[3], 2), 1))), >(i362[3], 0)), i358[3], i362[3], i360[3])), ≥)∧[(-1)Bound*bni_39] + [bni_39]i362[3] ≥ 0∧[1 + (-1)bso_40] ≥ 0)
(32) (i362[3] + [-1] ≥ 0∧max{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-2] ≥ 0 ⇒ (UIncreasing(COND_LOAD14941(&&(&&(>=(%(i362[3], 2), 0), !(=(%(i362[3], 2), 1))), >(i362[3], 0)), i358[3], i362[3], i360[3])), ≥)∧[(-1)Bound*bni_39] + [bni_39]i362[3] ≥ 0∧[1 + (-1)bso_40] ≥ 0)
(33) (i362[3] + [-1] ≥ 0∧max{[2], [-2]} ≥ 0∧[-1]min{[2], [-2]} ≥ 0 ⇒ (UIncreasing(COND_LOAD14941(&&(&&(>=(%(i362[3], 2), 0), !(=(%(i362[3], 2), 1))), >(i362[3], 0)), i358[3], i362[3], i360[3])), ≥)∧[(-1)Bound*bni_39] + [bni_39]i362[3] ≥ 0∧[1 + (-1)bso_40] ≥ 0)
(34) (i362[3] + [-1] ≥ 0∧max{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-2] ≥ 0 ⇒ (UIncreasing(COND_LOAD14941(&&(&&(>=(%(i362[3], 2), 0), !(=(%(i362[3], 2), 1))), >(i362[3], 0)), i358[3], i362[3], i360[3])), ≥)∧[(-1)Bound*bni_39] + [bni_39]i362[3] ≥ 0∧[1 + (-1)bso_40] ≥ 0)
(35) (i362[3] + [-1] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD14941(&&(&&(>=(%(i362[3], 2), 0), !(=(%(i362[3], 2), 1))), >(i362[3], 0)), i358[3], i362[3], i360[3])), ≥)∧[(-1)Bound*bni_39] + [bni_39]i362[3] ≥ 0∧[1 + (-1)bso_40] ≥ 0)
(36) (i362[3] + [-1] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(COND_LOAD14941(&&(&&(>=(%(i362[3], 2), 0), !(=(%(i362[3], 2), 1))), >(i362[3], 0)), i358[3], i362[3], i360[3])), ≥)∧[(-1)Bound*bni_39] + [bni_39]i362[3] ≥ 0∧[1 + (-1)bso_40] ≥ 0)
(37) (i362[3] + [-1] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD14941(&&(&&(>=(%(i362[3], 2), 0), !(=(%(i362[3], 2), 1))), >(i362[3], 0)), i358[3], i362[3], i360[3])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_39] + [bni_39]i362[3] ≥ 0∧0 = 0∧0 = 0∧[1 + (-1)bso_40] ≥ 0)
(38) (i362[3] + [-1] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(COND_LOAD14941(&&(&&(>=(%(i362[3], 2), 0), !(=(%(i362[3], 2), 1))), >(i362[3], 0)), i358[3], i362[3], i360[3])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_39] + [bni_39]i362[3] ≥ 0∧0 = 0∧0 = 0∧[1 + (-1)bso_40] ≥ 0)
(39) (i362[3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD14941(&&(&&(>=(%(i362[3], 2), 0), !(=(%(i362[3], 2), 1))), >(i362[3], 0)), i358[3], i362[3], i360[3])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_39 + bni_39] + [bni_39]i362[3] ≥ 0∧0 = 0∧0 = 0∧[1 + (-1)bso_40] ≥ 0)
(40) (i362[3] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_LOAD14941(&&(&&(>=(%(i362[3], 2), 0), !(=(%(i362[3], 2), 1))), >(i362[3], 0)), i358[3], i362[3], i360[3])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_39 + bni_39] + [bni_39]i362[3] ≥ 0∧0 = 0∧0 = 0∧[1 + (-1)bso_40] ≥ 0)
(41) (i362[3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(COND_LOAD14941(&&(&&(>=(%(i362[3], 2), 0), !(=(%(i362[3], 2), 1))), >(i362[3], 0)), i358[3], i362[3], i360[3])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_39 + bni_39] + [bni_39]i362[3] ≥ 0∧0 = 0∧0 = 0∧[1 + (-1)bso_40] ≥ 0)
(42) (i362[3] ≥ 0∧0 ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_LOAD14941(&&(&&(>=(%(i362[3], 2), 0), !(=(%(i362[3], 2), 1))), >(i362[3], 0)), i358[3], i362[3], i360[3])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_39 + bni_39] + [bni_39]i362[3] ≥ 0∧0 = 0∧0 = 0∧[1 + (-1)bso_40] ≥ 0)
(43) (i358[3]=i358[4]∧i360[3]=i360[4]∧&&(&&(>=(%(i362[3], 2), 0), !(=(%(i362[3], 2), 1))), >(i362[3], 0))=TRUE∧i362[3]=i362[4] ⇒ COND_LOAD14941(TRUE, i358[4], i362[4], i360[4])≥NonInfC∧COND_LOAD14941(TRUE, i358[4], i362[4], i360[4])≥LOAD1494(*(i358[4], i358[4]), /(i362[4], 2), i360[4])∧(UIncreasing(LOAD1494(*(i358[4], i358[4]), /(i362[4], 2), i360[4])), ≥))
(44) (>(i362[3], 0)=TRUE∧>=(%(i362[3], 2), 0)=TRUE∧<(%(i362[3], 2), 1)=TRUE ⇒ COND_LOAD14941(TRUE, i358[3], i362[3], i360[3])≥NonInfC∧COND_LOAD14941(TRUE, i358[3], i362[3], i360[3])≥LOAD1494(*(i358[3], i358[3]), /(i362[3], 2), i360[3])∧(UIncreasing(LOAD1494(*(i358[4], i358[4]), /(i362[4], 2), i360[4])), ≥))
(45) (>(i362[3], 0)=TRUE∧>=(%(i362[3], 2), 0)=TRUE∧>(%(i362[3], 2), 1)=TRUE ⇒ COND_LOAD14941(TRUE, i358[3], i362[3], i360[3])≥NonInfC∧COND_LOAD14941(TRUE, i358[3], i362[3], i360[3])≥LOAD1494(*(i358[3], i358[3]), /(i362[3], 2), i360[3])∧(UIncreasing(LOAD1494(*(i358[4], i358[4]), /(i362[4], 2), i360[4])), ≥))
(46) (i362[3] + [-1] ≥ 0∧max{[2], [-2]} ≥ 0∧[-1]min{[2], [-2]} ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[4], i358[4]), /(i362[4], 2), i360[4])), ≥)∧[(-1)bni_41 + (-1)Bound*bni_41] + [bni_41]i362[3] ≥ 0∧[(-1)bso_42] + i362[3] + [-1]max{i362[3], [-1]i362[3]} ≥ 0)
(47) (i362[3] + [-1] ≥ 0∧max{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-2] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[4], i358[4]), /(i362[4], 2), i360[4])), ≥)∧[(-1)bni_41 + (-1)Bound*bni_41] + [bni_41]i362[3] ≥ 0∧[(-1)bso_42] + i362[3] + [-1]max{i362[3], [-1]i362[3]} ≥ 0)
(48) (i362[3] + [-1] ≥ 0∧max{[2], [-2]} ≥ 0∧[-1]min{[2], [-2]} ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[4], i358[4]), /(i362[4], 2), i360[4])), ≥)∧[(-1)bni_41 + (-1)Bound*bni_41] + [bni_41]i362[3] ≥ 0∧[(-1)bso_42] + i362[3] + [-1]max{i362[3], [-1]i362[3]} ≥ 0)
(49) (i362[3] + [-1] ≥ 0∧max{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-2] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[4], i358[4]), /(i362[4], 2), i360[4])), ≥)∧[(-1)bni_41 + (-1)Bound*bni_41] + [bni_41]i362[3] ≥ 0∧[(-1)bso_42] + i362[3] + [-1]max{i362[3], [-1]i362[3]} ≥ 0)
(50) (i362[3] + [-1] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[2]i362[3] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[4], i358[4]), /(i362[4], 2), i360[4])), ≥)∧[(-1)bni_41 + (-1)Bound*bni_41] + [bni_41]i362[3] ≥ 0∧[(-1)bso_42] ≥ 0)
(51) (i362[3] + [-1] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧0 ≥ 0∧[2]i362[3] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[4], i358[4]), /(i362[4], 2), i360[4])), ≥)∧[(-1)bni_41 + (-1)Bound*bni_41] + [bni_41]i362[3] ≥ 0∧[(-1)bso_42] ≥ 0)
(52) (i362[3] + [-1] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[2]i362[3] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[4], i358[4]), /(i362[4], 2), i360[4])), ≥)∧0 = 0∧0 = 0∧[(-1)bni_41 + (-1)Bound*bni_41] + [bni_41]i362[3] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_42] ≥ 0)
(53) (i362[3] + [-1] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧0 ≥ 0∧[2]i362[3] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[4], i358[4]), /(i362[4], 2), i360[4])), ≥)∧0 = 0∧0 = 0∧[(-1)bni_41 + (-1)Bound*bni_41] + [bni_41]i362[3] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_42] ≥ 0)
(54) (i362[3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[2] + [2]i362[3] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[4], i358[4]), /(i362[4], 2), i360[4])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_41] + [bni_41]i362[3] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_42] ≥ 0)
(55) (i362[3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[2] + [2]i362[3] ≥ 0∧i358[3] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[4], i358[4]), /(i362[4], 2), i360[4])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_41] + [bni_41]i362[3] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_42] ≥ 0)
(56) (i362[3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[2] + [2]i362[3] ≥ 0∧i358[3] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[4], i358[4]), /(i362[4], 2), i360[4])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_41] + [bni_41]i362[3] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_42] ≥ 0)
(57) (i362[3] ≥ 0∧i358[3] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] + i362[3] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[4], i358[4]), /(i362[4], 2), i360[4])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_41] + [bni_41]i362[3] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_42] ≥ 0)
(58) (i362[3] ≥ 0∧i358[3] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] + i362[3] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[4], i358[4]), /(i362[4], 2), i360[4])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_41] + [bni_41]i362[3] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_42] ≥ 0)
(59) (i362[3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧0 ≥ 0∧[2] + [2]i362[3] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[4], i358[4]), /(i362[4], 2), i360[4])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_41] + [bni_41]i362[3] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_42] ≥ 0)
(60) (i362[3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧0 ≥ 0∧[2] + [2]i362[3] ≥ 0∧i358[3] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[4], i358[4]), /(i362[4], 2), i360[4])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_41] + [bni_41]i362[3] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_42] ≥ 0)
(61) (i362[3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧0 ≥ 0∧[2] + [2]i362[3] ≥ 0∧i358[3] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[4], i358[4]), /(i362[4], 2), i360[4])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_41] + [bni_41]i362[3] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_42] ≥ 0)
(62) (i362[3] ≥ 0∧0 ≥ 0∧i358[3] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] + i362[3] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[4], i358[4]), /(i362[4], 2), i360[4])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_41] + [bni_41]i362[3] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_42] ≥ 0)
(63) (i362[3] ≥ 0∧0 ≥ 0∧i358[3] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] + i362[3] ≥ 0 ⇒ (UIncreasing(LOAD1494(*(i358[4], i358[4]), /(i362[4], 2), i360[4])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_41] + [bni_41]i362[3] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_42] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(LOAD1494(x1, x2, x3)) = x2
POL(COND_LOAD1494(x1, x2, x3, x4)) = x3
POL(&&(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(=(x1, x2)) = [-1]
POL(1) = [1]
POL(2) = [2]
POL(LOAD1533(x1, x2, x3)) = [-1] + x2
POL(*(x1, x2)) = x1·x2
POL(COND_LOAD14941(x1, x2, x3, x4)) = [-1] + x3
POL(>=(x1, x2)) = [-1]
POL(!(x1)) = [-1]
Polynomial Interpretations with Context Sensitive Arithemetic Replacement
POL(TermCSAR-Mode @ Context)
POL(%(x1, 2)-1 @ {}) = min{x2, [-1]x2}
POL(%(x1, 2)1 @ {}) = max{x2, [-1]x2}
POL(/(x1, 2)1 @ {LOAD1494_3/1}) = max{x1, [-1]x1} + [-1]
COND_LOAD1494(TRUE, i358[1], i362[1], i360[1]) → LOAD1533(i358[1], i362[1], *(i360[1], i358[1]))
LOAD1494(i358[3], i362[3], i360[3]) → COND_LOAD14941(&&(&&(>=(%(i362[3], 2), 0), !(=(%(i362[3], 2), 1))), >(i362[3], 0)), i358[3], i362[3], i360[3])
LOAD1494(i358[0], i362[0], i360[0]) → COND_LOAD1494(&&(>(i362[0], 0), =(1, %(i362[0], 2))), i358[0], i362[0], i360[0])
COND_LOAD1494(TRUE, i358[1], i362[1], i360[1]) → LOAD1533(i358[1], i362[1], *(i360[1], i358[1]))
LOAD1533(i358[2], i362[2], i360[2]) → LOAD1494(*(i358[2], i358[2]), /(i362[2], 2), i360[2])
LOAD1494(i358[3], i362[3], i360[3]) → COND_LOAD14941(&&(&&(>=(%(i362[3], 2), 0), !(=(%(i362[3], 2), 1))), >(i362[3], 0)), i358[3], i362[3], i360[3])
COND_LOAD14941(TRUE, i358[4], i362[4], i360[4]) → LOAD1494(*(i358[4], i358[4]), /(i362[4], 2), i360[4])
LOAD1494(i358[0], i362[0], i360[0]) → COND_LOAD1494(&&(>(i362[0], 0), =(1, %(i362[0], 2))), i358[0], i362[0], i360[0])
LOAD1533(i358[2], i362[2], i360[2]) → LOAD1494(*(i358[2], i358[2]), /(i362[2], 2), i360[2])
COND_LOAD14941(TRUE, i358[4], i362[4], i360[4]) → LOAD1494(*(i358[4], i358[4]), /(i362[4], 2), i360[4])
/1 →
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(2) -> (0), if ((i358[2] * i358[2] →* i358[0])∧(i362[2] / 2 →* i362[0])∧(i360[2] →* i360[0]))
(4) -> (0), if ((i360[4] →* i360[0])∧(i362[4] / 2 →* i362[0])∧(i358[4] * i358[4] →* i358[0]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |