(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: Int
public class Int {
// only wrap a primitive int
private int val;

// count up to the value
// in "limit"
public static void count(
Int orig, Int limit) {

if (orig == null
|| limit == null) {
return;
}

// introduce sharing
Int copy = orig;

while (orig.val < limit.val) {
copy.val++;
}
}

public static void main(String[] args) {
Random.args = args;
Int x = new Int();
x.val = Random.random();
Int y = new Int();
y.val = Random.random();
count(x, y);
}
}


public class Random {
static String[] args;
static int index = 0;

public static int random() {
String string = args[index];
index++;
return string.length();
}
}


(1) JBC2FIG (SOUND transformation)

Constructed FIGraph.

(2) Obligation:

FIGraph based on JBC Program:
Graph of 216 nodes with 1 SCC.

(3) FIGtoITRSProof (SOUND transformation)

Transformed FIGraph to ITRS rules

(4) Obligation:

ITRS problem:

The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean

The TRS R consists of the following rules:
Load529(java.lang.Object(Int(i9)), java.lang.Object(Int(i15)), java.lang.Object(Int(i9))) → Cond_Load529(i9 < i15, java.lang.Object(Int(i9)), java.lang.Object(Int(i15)), java.lang.Object(Int(i9)))
Cond_Load529(TRUE, java.lang.Object(Int(i9)), java.lang.Object(Int(i15)), java.lang.Object(Int(i9))) → Load529(java.lang.Object(Int(i9 + 1)), java.lang.Object(Int(i15)), java.lang.Object(Int(i9 + 1)))
The set Q consists of the following terms:
Load529(java.lang.Object(Int(x0)), java.lang.Object(Int(x1)), java.lang.Object(Int(x0)))
Cond_Load529(TRUE, java.lang.Object(Int(x0)), java.lang.Object(Int(x1)), java.lang.Object(Int(x0)))

(5) DuplicateArgsRemoverProof (EQUIVALENT transformation)

Some arguments are removed because they only appear as duplicates.
We removed arguments according to the following replacements:

Load529(x1, x2, x3) → Load529(x2, x3)
Cond_Load529(x1, x2, x3, x4) → Cond_Load529(x1, x3, x4)

(6) Obligation:

ITRS problem:

The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean

The TRS R consists of the following rules:
Load529(java.lang.Object(Int(i15)), java.lang.Object(Int(i9))) → Cond_Load529(i9 < i15, java.lang.Object(Int(i15)), java.lang.Object(Int(i9)))
Cond_Load529(TRUE, java.lang.Object(Int(i15)), java.lang.Object(Int(i9))) → Load529(java.lang.Object(Int(i15)), java.lang.Object(Int(i9 + 1)))
The set Q consists of the following terms:
Load529(java.lang.Object(Int(x0)), java.lang.Object(Int(x1)))
Cond_Load529(TRUE, java.lang.Object(Int(x0)), java.lang.Object(Int(x1)))

(7) ITRStoIDPProof (EQUIVALENT transformation)

Added dependency pairs

(8) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


The ITRS R consists of the following rules:
Load529(java.lang.Object(Int(i15)), java.lang.Object(Int(i9))) → Cond_Load529(i9 < i15, java.lang.Object(Int(i15)), java.lang.Object(Int(i9)))
Cond_Load529(TRUE, java.lang.Object(Int(i15)), java.lang.Object(Int(i9))) → Load529(java.lang.Object(Int(i15)), java.lang.Object(Int(i9 + 1)))

The integer pair graph contains the following rules and edges:
(0): LOAD529(java.lang.Object(Int(i15[0])), java.lang.Object(Int(i9[0]))) → COND_LOAD529(i9[0] < i15[0], java.lang.Object(Int(i15[0])), java.lang.Object(Int(i9[0])))
(1): COND_LOAD529(TRUE, java.lang.Object(Int(i15[1])), java.lang.Object(Int(i9[1]))) → LOAD529(java.lang.Object(Int(i15[1])), java.lang.Object(Int(i9[1] + 1)))

(0) -> (1), if ((java.lang.Object(Int(i15[0])) →* java.lang.Object(Int(i15[1])))∧(i9[0] < i15[0]* TRUE)∧(java.lang.Object(Int(i9[0])) →* java.lang.Object(Int(i9[1]))))


(1) -> (0), if ((java.lang.Object(Int(i15[1])) →* java.lang.Object(Int(i15[0])))∧(java.lang.Object(Int(i9[1] + 1)) →* java.lang.Object(Int(i9[0]))))



The set Q consists of the following terms:
Load529(java.lang.Object(Int(x0)), java.lang.Object(Int(x1)))
Cond_Load529(TRUE, java.lang.Object(Int(x0)), java.lang.Object(Int(x1)))

(9) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(10) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): LOAD529(java.lang.Object(Int(i15[0])), java.lang.Object(Int(i9[0]))) → COND_LOAD529(i9[0] < i15[0], java.lang.Object(Int(i15[0])), java.lang.Object(Int(i9[0])))
(1): COND_LOAD529(TRUE, java.lang.Object(Int(i15[1])), java.lang.Object(Int(i9[1]))) → LOAD529(java.lang.Object(Int(i15[1])), java.lang.Object(Int(i9[1] + 1)))

(0) -> (1), if ((java.lang.Object(Int(i15[0])) →* java.lang.Object(Int(i15[1])))∧(i9[0] < i15[0]* TRUE)∧(java.lang.Object(Int(i9[0])) →* java.lang.Object(Int(i9[1]))))


(1) -> (0), if ((java.lang.Object(Int(i15[1])) →* java.lang.Object(Int(i15[0])))∧(java.lang.Object(Int(i9[1] + 1)) →* java.lang.Object(Int(i9[0]))))



The set Q consists of the following terms:
Load529(java.lang.Object(Int(x0)), java.lang.Object(Int(x1)))
Cond_Load529(TRUE, java.lang.Object(Int(x0)), java.lang.Object(Int(x1)))

(11) ItpfGraphProof (EQUIVALENT transformation)

Applied rule ItpfICap [ICap]

(12) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): LOAD529(java.lang.Object(Int(i15[0])), java.lang.Object(Int(i9[0]))) → COND_LOAD529(i9[0] < i15[0], java.lang.Object(Int(i15[0])), java.lang.Object(Int(i9[0])))
(1): COND_LOAD529(TRUE, java.lang.Object(Int(i15[1])), java.lang.Object(Int(i9[1]))) → LOAD529(java.lang.Object(Int(i15[1])), java.lang.Object(Int(i9[1] + 1)))

(0) -> (1), if (((i15[0]* i15[1]))∧(i9[0] < i15[0]* TRUE)∧((i9[0]* i9[1])))


(1) -> (0), if (((i15[1]* i15[0]))∧((i9[1] + 1* i9[0])))



The set Q consists of the following terms:
Load529(java.lang.Object(Int(x0)), java.lang.Object(Int(x1)))
Cond_Load529(TRUE, java.lang.Object(Int(x0)), java.lang.Object(Int(x1)))

(13) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair LOAD529(java.lang.Object(Int(i15)), java.lang.Object(Int(i9))) → COND_LOAD529(<(i9, i15), java.lang.Object(Int(i15)), java.lang.Object(Int(i9))) the following chains were created:
  • We consider the chain LOAD529(java.lang.Object(Int(i15[0])), java.lang.Object(Int(i9[0]))) → COND_LOAD529(<(i9[0], i15[0]), java.lang.Object(Int(i15[0])), java.lang.Object(Int(i9[0]))), COND_LOAD529(TRUE, java.lang.Object(Int(i15[1])), java.lang.Object(Int(i9[1]))) → LOAD529(java.lang.Object(Int(i15[1])), java.lang.Object(Int(+(i9[1], 1)))) which results in the following constraint:

    (1)    (i15[0]=i15[1]<(i9[0], i15[0])=TRUEi9[0]=i9[1]LOAD529(java.lang.Object(Int(i15[0])), java.lang.Object(Int(i9[0])))≥NonInfC∧LOAD529(java.lang.Object(Int(i15[0])), java.lang.Object(Int(i9[0])))≥COND_LOAD529(<(i9[0], i15[0]), java.lang.Object(Int(i15[0])), java.lang.Object(Int(i9[0])))∧(UIncreasing(COND_LOAD529(<(i9[0], i15[0]), java.lang.Object(Int(i15[0])), java.lang.Object(Int(i9[0])))), ≥))



    We simplified constraint (1) using rule (IV) which results in the following new constraint:

    (2)    (<(i9[0], i15[0])=TRUELOAD529(java.lang.Object(Int(i15[0])), java.lang.Object(Int(i9[0])))≥NonInfC∧LOAD529(java.lang.Object(Int(i15[0])), java.lang.Object(Int(i9[0])))≥COND_LOAD529(<(i9[0], i15[0]), java.lang.Object(Int(i15[0])), java.lang.Object(Int(i9[0])))∧(UIncreasing(COND_LOAD529(<(i9[0], i15[0]), java.lang.Object(Int(i15[0])), java.lang.Object(Int(i9[0])))), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (i15[0] + [-1] + [-1]i9[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD529(<(i9[0], i15[0]), java.lang.Object(Int(i15[0])), java.lang.Object(Int(i9[0])))), ≥)∧[(-1)bni_8 + (-1)Bound*bni_8] + [(-1)bni_8]i9[0] + [bni_8]i15[0] ≥ 0∧[(-1)bso_9] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (i15[0] + [-1] + [-1]i9[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD529(<(i9[0], i15[0]), java.lang.Object(Int(i15[0])), java.lang.Object(Int(i9[0])))), ≥)∧[(-1)bni_8 + (-1)Bound*bni_8] + [(-1)bni_8]i9[0] + [bni_8]i15[0] ≥ 0∧[(-1)bso_9] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (i15[0] + [-1] + [-1]i9[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD529(<(i9[0], i15[0]), java.lang.Object(Int(i15[0])), java.lang.Object(Int(i9[0])))), ≥)∧[(-1)bni_8 + (-1)Bound*bni_8] + [(-1)bni_8]i9[0] + [bni_8]i15[0] ≥ 0∧[(-1)bso_9] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (i15[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD529(<(i9[0], i15[0]), java.lang.Object(Int(i15[0])), java.lang.Object(Int(i9[0])))), ≥)∧[(-1)Bound*bni_8] + [bni_8]i15[0] ≥ 0∧[(-1)bso_9] ≥ 0)



    We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (7)    (i15[0] ≥ 0∧i9[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD529(<(i9[0], i15[0]), java.lang.Object(Int(i15[0])), java.lang.Object(Int(i9[0])))), ≥)∧[(-1)Bound*bni_8] + [bni_8]i15[0] ≥ 0∧[(-1)bso_9] ≥ 0)


    (8)    (i15[0] ≥ 0∧i9[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD529(<(i9[0], i15[0]), java.lang.Object(Int(i15[0])), java.lang.Object(Int(i9[0])))), ≥)∧[(-1)Bound*bni_8] + [bni_8]i15[0] ≥ 0∧[(-1)bso_9] ≥ 0)







For Pair COND_LOAD529(TRUE, java.lang.Object(Int(i15)), java.lang.Object(Int(i9))) → LOAD529(java.lang.Object(Int(i15)), java.lang.Object(Int(+(i9, 1)))) the following chains were created:
  • We consider the chain COND_LOAD529(TRUE, java.lang.Object(Int(i15[1])), java.lang.Object(Int(i9[1]))) → LOAD529(java.lang.Object(Int(i15[1])), java.lang.Object(Int(+(i9[1], 1)))) which results in the following constraint:

    (9)    (COND_LOAD529(TRUE, java.lang.Object(Int(i15[1])), java.lang.Object(Int(i9[1])))≥NonInfC∧COND_LOAD529(TRUE, java.lang.Object(Int(i15[1])), java.lang.Object(Int(i9[1])))≥LOAD529(java.lang.Object(Int(i15[1])), java.lang.Object(Int(+(i9[1], 1))))∧(UIncreasing(LOAD529(java.lang.Object(Int(i15[1])), java.lang.Object(Int(+(i9[1], 1))))), ≥))



    We simplified constraint (9) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (10)    ((UIncreasing(LOAD529(java.lang.Object(Int(i15[1])), java.lang.Object(Int(+(i9[1], 1))))), ≥)∧[1 + (-1)bso_11] ≥ 0)



    We simplified constraint (10) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (11)    ((UIncreasing(LOAD529(java.lang.Object(Int(i15[1])), java.lang.Object(Int(+(i9[1], 1))))), ≥)∧[1 + (-1)bso_11] ≥ 0)



    We simplified constraint (11) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (12)    ((UIncreasing(LOAD529(java.lang.Object(Int(i15[1])), java.lang.Object(Int(+(i9[1], 1))))), ≥)∧[1 + (-1)bso_11] ≥ 0)



    We simplified constraint (12) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (13)    ((UIncreasing(LOAD529(java.lang.Object(Int(i15[1])), java.lang.Object(Int(+(i9[1], 1))))), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_11] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • LOAD529(java.lang.Object(Int(i15)), java.lang.Object(Int(i9))) → COND_LOAD529(<(i9, i15), java.lang.Object(Int(i15)), java.lang.Object(Int(i9)))
    • (i15[0] ≥ 0∧i9[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD529(<(i9[0], i15[0]), java.lang.Object(Int(i15[0])), java.lang.Object(Int(i9[0])))), ≥)∧[(-1)Bound*bni_8] + [bni_8]i15[0] ≥ 0∧[(-1)bso_9] ≥ 0)
    • (i15[0] ≥ 0∧i9[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD529(<(i9[0], i15[0]), java.lang.Object(Int(i15[0])), java.lang.Object(Int(i9[0])))), ≥)∧[(-1)Bound*bni_8] + [bni_8]i15[0] ≥ 0∧[(-1)bso_9] ≥ 0)

  • COND_LOAD529(TRUE, java.lang.Object(Int(i15)), java.lang.Object(Int(i9))) → LOAD529(java.lang.Object(Int(i15)), java.lang.Object(Int(+(i9, 1))))
    • ((UIncreasing(LOAD529(java.lang.Object(Int(i15[1])), java.lang.Object(Int(+(i9[1], 1))))), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_11] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(LOAD529(x1, x2)) = [-1] + [-1]x2 + x1   
POL(java.lang.Object(x1)) = x1   
POL(Int(x1)) = x1   
POL(COND_LOAD529(x1, x2, x3)) = [-1] + [-1]x3 + x2   
POL(<(x1, x2)) = [-1]   
POL(+(x1, x2)) = x1 + x2   
POL(1) = [1]   

The following pairs are in P>:

COND_LOAD529(TRUE, java.lang.Object(Int(i15[1])), java.lang.Object(Int(i9[1]))) → LOAD529(java.lang.Object(Int(i15[1])), java.lang.Object(Int(+(i9[1], 1))))

The following pairs are in Pbound:

LOAD529(java.lang.Object(Int(i15[0])), java.lang.Object(Int(i9[0]))) → COND_LOAD529(<(i9[0], i15[0]), java.lang.Object(Int(i15[0])), java.lang.Object(Int(i9[0])))

The following pairs are in P:

LOAD529(java.lang.Object(Int(i15[0])), java.lang.Object(Int(i9[0]))) → COND_LOAD529(<(i9[0], i15[0]), java.lang.Object(Int(i15[0])), java.lang.Object(Int(i9[0])))

There are no usable rules.

(14) Complex Obligation (AND)

(15) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): LOAD529(java.lang.Object(Int(i15[0])), java.lang.Object(Int(i9[0]))) → COND_LOAD529(i9[0] < i15[0], java.lang.Object(Int(i15[0])), java.lang.Object(Int(i9[0])))


The set Q consists of the following terms:
Load529(java.lang.Object(Int(x0)), java.lang.Object(Int(x1)))
Cond_Load529(TRUE, java.lang.Object(Int(x0)), java.lang.Object(Int(x1)))

(16) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(17) TRUE

(18) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_LOAD529(TRUE, java.lang.Object(Int(i15[1])), java.lang.Object(Int(i9[1]))) → LOAD529(java.lang.Object(Int(i15[1])), java.lang.Object(Int(i9[1] + 1)))


The set Q consists of the following terms:
Load529(java.lang.Object(Int(x0)), java.lang.Object(Int(x1)))
Cond_Load529(TRUE, java.lang.Object(Int(x0)), java.lang.Object(Int(x1)))

(19) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(20) TRUE