(0) Obligation:
JBC Problem based on JBC Program:
Manifest-Version: 1.0
Created-By: 1.6.0_22 (Sun Microsystems Inc.)
Main-Class: TimesPlusUserDef
public class TimesPlusUserDef {
public static void main(String[] args) {
int x, y;
x = args[0].length();
y = args[1].length();
times(x, y);
}
public static int times(int x, int y) {
if (y == 0)
return 0;
if (y > 0)
return plus(times(x, y - 1), x);
return 0;
}
public static int plus(int x, int y) {
if (y > 0) {
return 1 + plus(x, y-1);
} else if (x > 0) {
return 1 + plus(x-1, y);
} else {
return 0;
}
}
}
(1) JBC2FIG (SOUND transformation)
Constructed FIGraph.
(2) Obligation:
FIGraph based on JBC Program:
TimesPlusUserDef.main([Ljava/lang/String;)V: Graph of 134 nodes with 0 SCCs.
TimesPlusUserDef.times(II)I: Graph of 47 nodes with 0 SCCs.
TimesPlusUserDef.plus(II)I: Graph of 62 nodes with 0 SCCs.
(3) FIGtoITRSProof (SOUND transformation)
Transformed FIGraph SCCs to IDPs. Logs:
Log for SCC 0: Generated 24 rules for P and 38 rules for R.
Combined rules. Obtained 2 rules for P and 8 rules for R.
Filtered ground terms:
1364_1_plus_InvokeMethod(x1, x2, x3, x4, x5, x6) → 1364_1_plus_InvokeMethod(x1, x2, x3, x5, x6)
1333_0_plus_LE(x1, x2, x3, x4) → 1333_0_plus_LE(x2, x3, x4)
Cond_1333_0_plus_LE1(x1, x2, x3, x4, x5) → Cond_1333_0_plus_LE1(x1, x3, x4, x5)
1380_1_plus_InvokeMethod(x1, x2, x3, x4) → 1380_1_plus_InvokeMethod(x1, x3, x4)
Cond_1333_0_plus_LE(x1, x2, x3, x4, x5) → Cond_1333_0_plus_LE(x1, x3, x4, x5)
1537_0_plus_Return(x1, x2, x3) → 1537_0_plus_Return(x2, x3)
1580_0_plus_Return(x1) → 1580_0_plus_Return
1397_0_plus_Return(x1, x2) → 1397_0_plus_Return
1379_0_plus_Return(x1, x2, x3, x4) → 1379_0_plus_Return(x2, x3)
1351_0_plus_Return(x1, x2) → 1351_0_plus_Return
Filtered duplicate args:
1364_1_plus_InvokeMethod(x1, x2, x3, x4, x5) → 1364_1_plus_InvokeMethod(x1, x3, x4, x5)
1333_0_plus_LE(x1, x2, x3) → 1333_0_plus_LE(x1, x3)
Cond_1333_0_plus_LE1(x1, x2, x3, x4) → Cond_1333_0_plus_LE1(x1, x2, x4)
Cond_1333_0_plus_LE(x1, x2, x3, x4) → Cond_1333_0_plus_LE(x1, x2, x4)
Filtered unneeded arguments:
1380_1_plus_InvokeMethod(x1, x2, x3) → 1380_1_plus_InvokeMethod(x1, x2)
1364_1_plus_InvokeMethod(x1, x2, x3, x4) → 1364_1_plus_InvokeMethod(x1, x3, x4)
Combined rules. Obtained 2 rules for P and 8 rules for R.
Finished conversion. Obtained 2 rules for P and 8 rules for R. System has predefined symbols.
Log for SCC 1: Generated 12 rules for P and 97 rules for R.
Combined rules. Obtained 1 rules for P and 26 rules for R.
Filtered ground terms:
457_0_times_NE(x1, x2, x3, x4) → 457_0_times_NE(x2, x3, x4)
Cond_457_0_times_NE(x1, x2, x3, x4, x5) → Cond_457_0_times_NE(x1, x3, x4, x5)
1580_0_plus_Return(x1, x2) → 1580_0_plus_Return(x2)
Cond_1380_1_plus_InvokeMethod1(x1, x2, x3, x4, x5) → Cond_1380_1_plus_InvokeMethod1(x1, x4, x5)
1397_0_plus_Return(x1, x2) → 1397_0_plus_Return
1380_1_plus_InvokeMethod(x1, x2, x3, x4) → 1380_1_plus_InvokeMethod(x1, x3, x4)
Cond_1380_1_plus_InvokeMethod(x1, x2, x3, x4, x5) → Cond_1380_1_plus_InvokeMethod(x1, x2, x4, x5)
1351_0_plus_Return(x1, x2) → 1351_0_plus_Return
1333_0_plus_LE(x1, x2, x3, x4) → 1333_0_plus_LE(x2, x3, x4)
Cond_1333_0_plus_LE7(x1, x2, x3, x4, x5) → Cond_1333_0_plus_LE7(x1, x3, x4, x5)
1550_0_plus_Return(x1, x2, x3) → 1550_0_plus_Return(x2, x3)
Cond_1333_0_plus_LE6(x1, x2, x3, x4, x5) → Cond_1333_0_plus_LE6(x1, x3, x4, x5)
1507_0_plus_Return(x1, x2, x3) → 1507_0_plus_Return(x2, x3)
Cond_1333_0_plus_LE5(x1, x2, x3, x4, x5) → Cond_1333_0_plus_LE5(x1, x3, x4, x5)
1459_0_plus_Return(x1, x2, x3) → 1459_0_plus_Return(x2, x3)
Cond_1333_0_plus_LE4(x1, x2, x3, x4, x5) → Cond_1333_0_plus_LE4(x1, x3, x4, x5)
1417_0_plus_Return(x1, x2, x3) → 1417_0_plus_Return(x2, x3)
Cond_1333_0_plus_LE3(x1, x2, x3, x4, x5) → Cond_1333_0_plus_LE3(x1, x3, x4, x5)
1387_0_plus_Return(x1, x2, x3) → 1387_0_plus_Return(x2, x3)
Cond_1333_0_plus_LE2(x1, x2, x3, x4, x5) → Cond_1333_0_plus_LE2(x1, x3, x4, x5)
Cond_1333_0_plus_LE1(x1, x2, x3, x4, x5) → Cond_1333_0_plus_LE1(x1, x3, x4, x5)
1537_0_plus_Return(x1, x2, x3, x4) → 1537_0_plus_Return(x2, x3, x4)
Cond_1364_1_plus_InvokeMethod3(x1, x2, x3, x4, x5, x6, x7) → Cond_1364_1_plus_InvokeMethod3(x1, x2, x3, x4, x6, x7)
1379_0_plus_Return(x1, x2, x3, x4) → 1379_0_plus_Return(x2, x3)
1364_1_plus_InvokeMethod(x1, x2, x3, x4, x5, x6) → 1364_1_plus_InvokeMethod(x1, x2, x3, x5, x6)
Cond_1364_1_plus_InvokeMethod2(x1, x2, x3, x4, x5, x6, x7) → Cond_1364_1_plus_InvokeMethod2(x1, x3, x4, x6)
Cond_1364_1_plus_InvokeMethod1(x1, x2, x3, x4, x5, x6, x7) → Cond_1364_1_plus_InvokeMethod1(x1, x2, x3, x4, x6)
Cond_1364_1_plus_InvokeMethod(x1, x2, x3, x4, x5, x6, x7) → Cond_1364_1_plus_InvokeMethod(x1, x2, x3, x4, x6, x7)
Cond_1333_0_plus_LE(x1, x2, x3, x4, x5) → Cond_1333_0_plus_LE(x1, x3, x4, x5)
1522_0_times_Return(x1, x2) → 1522_0_times_Return(x2)
1566_0_times_Return(x1, x2) → 1566_0_times_Return(x2)
1361_0_times_Return(x1, x2) → 1361_0_times_Return
596_0_times_Return(x1, x2, x3, x4) → 596_0_times_Return(x2)
Filtered duplicate args:
754_1_times_InvokeMethod(x1, x2, x3, x4) → 754_1_times_InvokeMethod(x1, x3, x4)
457_0_times_NE(x1, x2, x3) → 457_0_times_NE(x1, x3)
Cond_457_0_times_NE(x1, x2, x3, x4) → Cond_457_0_times_NE(x1, x2, x4)
1333_0_plus_LE(x1, x2, x3) → 1333_0_plus_LE(x1, x3)
Cond_1333_0_plus_LE7(x1, x2, x3, x4) → Cond_1333_0_plus_LE7(x1, x2, x4)
Cond_1333_0_plus_LE6(x1, x2, x3, x4) → Cond_1333_0_plus_LE6(x1, x2, x4)
Cond_1333_0_plus_LE5(x1, x2, x3, x4) → Cond_1333_0_plus_LE5(x1, x2, x4)
Cond_1333_0_plus_LE4(x1, x2, x3, x4) → Cond_1333_0_plus_LE4(x1, x2, x4)
Cond_1333_0_plus_LE3(x1, x2, x3, x4) → Cond_1333_0_plus_LE3(x1, x2, x4)
Cond_1333_0_plus_LE2(x1, x2, x3, x4) → Cond_1333_0_plus_LE2(x1, x2, x4)
Cond_1333_0_plus_LE1(x1, x2, x3, x4) → Cond_1333_0_plus_LE1(x1, x2, x4)
Cond_1364_1_plus_InvokeMethod3(x1, x2, x3, x4, x5, x6) → Cond_1364_1_plus_InvokeMethod3(x1, x2, x4, x5, x6)
1364_1_plus_InvokeMethod(x1, x2, x3, x4, x5) → 1364_1_plus_InvokeMethod(x1, x3, x4, x5)
Cond_1364_1_plus_InvokeMethod2(x1, x2, x3, x4) → Cond_1364_1_plus_InvokeMethod2(x1, x3, x4)
Cond_1364_1_plus_InvokeMethod1(x1, x2, x3, x4, x5) → Cond_1364_1_plus_InvokeMethod1(x1, x2, x4, x5)
Cond_1364_1_plus_InvokeMethod(x1, x2, x3, x4, x5, x6) → Cond_1364_1_plus_InvokeMethod(x1, x2, x4, x5, x6)
Cond_1333_0_plus_LE(x1, x2, x3, x4) → Cond_1333_0_plus_LE(x1, x2, x4)
Filtered unneeded arguments:
Cond_1333_0_plus_LE1(x1, x2, x3) → Cond_1333_0_plus_LE1(x1)
1380_1_plus_InvokeMethod(x1, x2, x3) → 1380_1_plus_InvokeMethod(x1, x2)
Cond_1380_1_plus_InvokeMethod(x1, x2, x3, x4) → Cond_1380_1_plus_InvokeMethod(x1, x2)
Cond_1380_1_plus_InvokeMethod1(x1, x2, x3) → Cond_1380_1_plus_InvokeMethod1(x1)
Combined rules. Obtained 1 rules for P and 26 rules for R.
Finished conversion. Obtained 1 rules for P and 26 rules for R. System has predefined symbols.
(4) Complex Obligation (AND)
(5) Obligation:
IDP problem:
The following function symbols are pre-defined:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
| ~ | Bwxor: (Integer, Integer) -> Integer |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
The following domains are used:
Boolean, Integer
The ITRS R consists of the following rules:
1380_1_plus_InvokeMethod(
1351_0_plus_Return,
0) →
1397_0_plus_Return1380_1_plus_InvokeMethod(
1397_0_plus_Return,
x2) →
1580_0_plus_Return1380_1_plus_InvokeMethod(
1580_0_plus_Return,
x1) →
1580_0_plus_Return1364_1_plus_InvokeMethod(
1351_0_plus_Return,
x1,
0) →
1379_0_plus_Return(
x1,
x2)
1364_1_plus_InvokeMethod(
1379_0_plus_Return(
x0,
x1),
x0,
x1) →
1537_0_plus_Return(
x0,
x3)
1364_1_plus_InvokeMethod(
1397_0_plus_Return,
x1,
0) →
1537_0_plus_Return(
x1,
x2)
1364_1_plus_InvokeMethod(
1537_0_plus_Return(
x0,
x1),
x0,
x1) →
1537_0_plus_Return(
x0,
x2)
1364_1_plus_InvokeMethod(
1580_0_plus_Return,
x0,
0) →
1537_0_plus_Return(
x0,
x1)
The integer pair graph contains the following rules and edges:
(0):
1333_0_PLUS_LE(
x0[0],
x1[0]) →
COND_1333_0_PLUS_LE(
x1[0] <= 0 && x0[0] > 0,
x0[0],
x1[0])
(1):
COND_1333_0_PLUS_LE(
TRUE,
x0[1],
x1[1]) →
1333_0_PLUS_LE(
x0[1] - 1,
x1[1])
(2):
1333_0_PLUS_LE(
x0[2],
x1[2]) →
COND_1333_0_PLUS_LE1(
x1[2] > 0,
x0[2],
x1[2])
(3):
COND_1333_0_PLUS_LE1(
TRUE,
x0[3],
x1[3]) →
1333_0_PLUS_LE(
x0[3],
x1[3] - 1)
(0) -> (1), if ((x1[0] <= 0 && x0[0] > 0 →* TRUE)∧(x0[0] →* x0[1])∧(x1[0] →* x1[1]))
(1) -> (0), if ((x0[1] - 1 →* x0[0])∧(x1[1] →* x1[0]))
(1) -> (2), if ((x0[1] - 1 →* x0[2])∧(x1[1] →* x1[2]))
(2) -> (3), if ((x1[2] > 0 →* TRUE)∧(x0[2] →* x0[3])∧(x1[2] →* x1[3]))
(3) -> (0), if ((x0[3] →* x0[0])∧(x1[3] - 1 →* x1[0]))
(3) -> (2), if ((x0[3] →* x0[2])∧(x1[3] - 1 →* x1[2]))
The set Q consists of the following terms:
1380_1_plus_InvokeMethod(
1351_0_plus_Return,
0)
1380_1_plus_InvokeMethod(
1397_0_plus_Return,
x0)
1380_1_plus_InvokeMethod(
1580_0_plus_Return,
x0)
1364_1_plus_InvokeMethod(
1351_0_plus_Return,
x0,
0)
1364_1_plus_InvokeMethod(
1379_0_plus_Return(
x0,
x1),
x0,
x1)
1364_1_plus_InvokeMethod(
1397_0_plus_Return,
x0,
0)
1364_1_plus_InvokeMethod(
1537_0_plus_Return(
x0,
x1),
x0,
x1)
1364_1_plus_InvokeMethod(
1580_0_plus_Return,
x0,
0)
(6) IDPNonInfProof (SOUND transformation)
The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that
final constraints are written in
bold face.
For Pair
1333_0_PLUS_LE(
x0,
x1) →
COND_1333_0_PLUS_LE(
&&(
<=(
x1,
0),
>(
x0,
0)),
x0,
x1) the following chains were created:
- We consider the chain 1333_0_PLUS_LE(x0[0], x1[0]) → COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0]), COND_1333_0_PLUS_LE(TRUE, x0[1], x1[1]) → 1333_0_PLUS_LE(-(x0[1], 1), x1[1]) which results in the following constraint:
(1) (&&(<=(x1[0], 0), >(x0[0], 0))=TRUE∧x0[0]=x0[1]∧x1[0]=x1[1] ⇒ 1333_0_PLUS_LE(x0[0], x1[0])≥NonInfC∧1333_0_PLUS_LE(x0[0], x1[0])≥COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])∧(UIncreasing(COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥))
We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:
(2) (<=(x1[0], 0)=TRUE∧>(x0[0], 0)=TRUE ⇒ 1333_0_PLUS_LE(x0[0], x1[0])≥NonInfC∧1333_0_PLUS_LE(x0[0], x1[0])≥COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])∧(UIncreasing(COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥))
We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(3) ([-1]x1[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x1[0] ≥ 0∧[(-1)bso_19] ≥ 0)
We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(4) ([-1]x1[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x1[0] ≥ 0∧[(-1)bso_19] ≥ 0)
We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(5) ([-1]x1[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x1[0] ≥ 0∧[(-1)bso_19] ≥ 0)
We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:
(6) (x1[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [(-1)bni_18]x1[0] ≥ 0∧[(-1)bso_19] ≥ 0)
We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint:
(7) (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [(-1)bni_18]x1[0] ≥ 0∧[(-1)bso_19] ≥ 0)
For Pair
COND_1333_0_PLUS_LE(
TRUE,
x0,
x1) →
1333_0_PLUS_LE(
-(
x0,
1),
x1) the following chains were created:
- We consider the chain COND_1333_0_PLUS_LE(TRUE, x0[1], x1[1]) → 1333_0_PLUS_LE(-(x0[1], 1), x1[1]) which results in the following constraint:
(8) (COND_1333_0_PLUS_LE(TRUE, x0[1], x1[1])≥NonInfC∧COND_1333_0_PLUS_LE(TRUE, x0[1], x1[1])≥1333_0_PLUS_LE(-(x0[1], 1), x1[1])∧(UIncreasing(1333_0_PLUS_LE(-(x0[1], 1), x1[1])), ≥))
We simplified constraint (8) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(9) ((UIncreasing(1333_0_PLUS_LE(-(x0[1], 1), x1[1])), ≥)∧[(-1)bso_21] ≥ 0)
We simplified constraint (9) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(10) ((UIncreasing(1333_0_PLUS_LE(-(x0[1], 1), x1[1])), ≥)∧[(-1)bso_21] ≥ 0)
We simplified constraint (10) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(11) ((UIncreasing(1333_0_PLUS_LE(-(x0[1], 1), x1[1])), ≥)∧[(-1)bso_21] ≥ 0)
We simplified constraint (11) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:
(12) ((UIncreasing(1333_0_PLUS_LE(-(x0[1], 1), x1[1])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_21] ≥ 0)
For Pair
1333_0_PLUS_LE(
x0,
x1) →
COND_1333_0_PLUS_LE1(
>(
x1,
0),
x0,
x1) the following chains were created:
- We consider the chain 1333_0_PLUS_LE(x0[2], x1[2]) → COND_1333_0_PLUS_LE1(>(x1[2], 0), x0[2], x1[2]), COND_1333_0_PLUS_LE1(TRUE, x0[3], x1[3]) → 1333_0_PLUS_LE(x0[3], -(x1[3], 1)) which results in the following constraint:
(13) (>(x1[2], 0)=TRUE∧x0[2]=x0[3]∧x1[2]=x1[3] ⇒ 1333_0_PLUS_LE(x0[2], x1[2])≥NonInfC∧1333_0_PLUS_LE(x0[2], x1[2])≥COND_1333_0_PLUS_LE1(>(x1[2], 0), x0[2], x1[2])∧(UIncreasing(COND_1333_0_PLUS_LE1(>(x1[2], 0), x0[2], x1[2])), ≥))
We simplified constraint (13) using rule (IV) which results in the following new constraint:
(14) (>(x1[2], 0)=TRUE ⇒ 1333_0_PLUS_LE(x0[2], x1[2])≥NonInfC∧1333_0_PLUS_LE(x0[2], x1[2])≥COND_1333_0_PLUS_LE1(>(x1[2], 0), x0[2], x1[2])∧(UIncreasing(COND_1333_0_PLUS_LE1(>(x1[2], 0), x0[2], x1[2])), ≥))
We simplified constraint (14) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(15) (x1[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1333_0_PLUS_LE1(>(x1[2], 0), x0[2], x1[2])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]x1[2] ≥ 0∧[(-1)bso_23] ≥ 0)
We simplified constraint (15) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(16) (x1[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1333_0_PLUS_LE1(>(x1[2], 0), x0[2], x1[2])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]x1[2] ≥ 0∧[(-1)bso_23] ≥ 0)
We simplified constraint (16) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(17) (x1[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1333_0_PLUS_LE1(>(x1[2], 0), x0[2], x1[2])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]x1[2] ≥ 0∧[(-1)bso_23] ≥ 0)
We simplified constraint (17) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:
(18) (x1[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1333_0_PLUS_LE1(>(x1[2], 0), x0[2], x1[2])), ≥)∧0 = 0∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]x1[2] ≥ 0∧0 = 0∧[(-1)bso_23] ≥ 0)
We simplified constraint (18) using rule (IDP_SMT_SPLIT) which results in the following new constraint:
(19) (x1[2] ≥ 0 ⇒ (UIncreasing(COND_1333_0_PLUS_LE1(>(x1[2], 0), x0[2], x1[2])), ≥)∧0 = 0∧[(-1)Bound*bni_22] + [bni_22]x1[2] ≥ 0∧0 = 0∧[(-1)bso_23] ≥ 0)
For Pair
COND_1333_0_PLUS_LE1(
TRUE,
x0,
x1) →
1333_0_PLUS_LE(
x0,
-(
x1,
1)) the following chains were created:
- We consider the chain COND_1333_0_PLUS_LE1(TRUE, x0[3], x1[3]) → 1333_0_PLUS_LE(x0[3], -(x1[3], 1)) which results in the following constraint:
(20) (COND_1333_0_PLUS_LE1(TRUE, x0[3], x1[3])≥NonInfC∧COND_1333_0_PLUS_LE1(TRUE, x0[3], x1[3])≥1333_0_PLUS_LE(x0[3], -(x1[3], 1))∧(UIncreasing(1333_0_PLUS_LE(x0[3], -(x1[3], 1))), ≥))
We simplified constraint (20) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(21) ((UIncreasing(1333_0_PLUS_LE(x0[3], -(x1[3], 1))), ≥)∧[1 + (-1)bso_25] ≥ 0)
We simplified constraint (21) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(22) ((UIncreasing(1333_0_PLUS_LE(x0[3], -(x1[3], 1))), ≥)∧[1 + (-1)bso_25] ≥ 0)
We simplified constraint (22) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(23) ((UIncreasing(1333_0_PLUS_LE(x0[3], -(x1[3], 1))), ≥)∧[1 + (-1)bso_25] ≥ 0)
We simplified constraint (23) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:
(24) ((UIncreasing(1333_0_PLUS_LE(x0[3], -(x1[3], 1))), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_25] ≥ 0)
To summarize, we get the following constraints P
≥ for the following pairs.
- 1333_0_PLUS_LE(x0, x1) → COND_1333_0_PLUS_LE(&&(<=(x1, 0), >(x0, 0)), x0, x1)
- (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [(-1)bni_18]x1[0] ≥ 0∧[(-1)bso_19] ≥ 0)
- COND_1333_0_PLUS_LE(TRUE, x0, x1) → 1333_0_PLUS_LE(-(x0, 1), x1)
- ((UIncreasing(1333_0_PLUS_LE(-(x0[1], 1), x1[1])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_21] ≥ 0)
- 1333_0_PLUS_LE(x0, x1) → COND_1333_0_PLUS_LE1(>(x1, 0), x0, x1)
- (x1[2] ≥ 0 ⇒ (UIncreasing(COND_1333_0_PLUS_LE1(>(x1[2], 0), x0[2], x1[2])), ≥)∧0 = 0∧[(-1)Bound*bni_22] + [bni_22]x1[2] ≥ 0∧0 = 0∧[(-1)bso_23] ≥ 0)
- COND_1333_0_PLUS_LE1(TRUE, x0, x1) → 1333_0_PLUS_LE(x0, -(x1, 1))
- ((UIncreasing(1333_0_PLUS_LE(x0[3], -(x1[3], 1))), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_25] ≥ 0)
The constraints for P
> respective P
bound are constructed from P
≥ where we just replace every occurence of "t ≥ s" in P
≥ by "t > s" respective "t ≥
c". Here
c stands for the fresh constant used for P
bound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:
POL(TRUE) = 0
POL(FALSE) = 0
POL(1380_1_plus_InvokeMethod(x1, x2)) = [-1]
POL(1351_0_plus_Return) = [-1]
POL(0) = 0
POL(1397_0_plus_Return) = [-1]
POL(1580_0_plus_Return) = [-1]
POL(1364_1_plus_InvokeMethod(x1, x2, x3)) = [-1]
POL(1379_0_plus_Return(x1, x2)) = [-1]
POL(1537_0_plus_Return(x1, x2)) = [-1]
POL(1333_0_PLUS_LE(x1, x2)) = [-1] + x2
POL(COND_1333_0_PLUS_LE(x1, x2, x3)) = [-1] + x3
POL(&&(x1, x2)) = [-1]
POL(<=(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(-(x1, x2)) = x1 + [-1]x2
POL(1) = [1]
POL(COND_1333_0_PLUS_LE1(x1, x2, x3)) = [-1] + x3
The following pairs are in P
>:
COND_1333_0_PLUS_LE1(TRUE, x0[3], x1[3]) → 1333_0_PLUS_LE(x0[3], -(x1[3], 1))
The following pairs are in P
bound:
1333_0_PLUS_LE(x0[2], x1[2]) → COND_1333_0_PLUS_LE1(>(x1[2], 0), x0[2], x1[2])
The following pairs are in P
≥:
1333_0_PLUS_LE(x0[0], x1[0]) → COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])
COND_1333_0_PLUS_LE(TRUE, x0[1], x1[1]) → 1333_0_PLUS_LE(-(x0[1], 1), x1[1])
1333_0_PLUS_LE(x0[2], x1[2]) → COND_1333_0_PLUS_LE1(>(x1[2], 0), x0[2], x1[2])
There are no usable rules.
(7) Complex Obligation (AND)
(8) Obligation:
IDP problem:
The following function symbols are pre-defined:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
| ~ | Bwxor: (Integer, Integer) -> Integer |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
The following domains are used:
Boolean, Integer
The ITRS R consists of the following rules:
1380_1_plus_InvokeMethod(
1351_0_plus_Return,
0) →
1397_0_plus_Return1380_1_plus_InvokeMethod(
1397_0_plus_Return,
x2) →
1580_0_plus_Return1380_1_plus_InvokeMethod(
1580_0_plus_Return,
x1) →
1580_0_plus_Return1364_1_plus_InvokeMethod(
1351_0_plus_Return,
x1,
0) →
1379_0_plus_Return(
x1,
x2)
1364_1_plus_InvokeMethod(
1379_0_plus_Return(
x0,
x1),
x0,
x1) →
1537_0_plus_Return(
x0,
x3)
1364_1_plus_InvokeMethod(
1397_0_plus_Return,
x1,
0) →
1537_0_plus_Return(
x1,
x2)
1364_1_plus_InvokeMethod(
1537_0_plus_Return(
x0,
x1),
x0,
x1) →
1537_0_plus_Return(
x0,
x2)
1364_1_plus_InvokeMethod(
1580_0_plus_Return,
x0,
0) →
1537_0_plus_Return(
x0,
x1)
The integer pair graph contains the following rules and edges:
(0):
1333_0_PLUS_LE(
x0[0],
x1[0]) →
COND_1333_0_PLUS_LE(
x1[0] <= 0 && x0[0] > 0,
x0[0],
x1[0])
(1):
COND_1333_0_PLUS_LE(
TRUE,
x0[1],
x1[1]) →
1333_0_PLUS_LE(
x0[1] - 1,
x1[1])
(2):
1333_0_PLUS_LE(
x0[2],
x1[2]) →
COND_1333_0_PLUS_LE1(
x1[2] > 0,
x0[2],
x1[2])
(1) -> (0), if ((x0[1] - 1 →* x0[0])∧(x1[1] →* x1[0]))
(0) -> (1), if ((x1[0] <= 0 && x0[0] > 0 →* TRUE)∧(x0[0] →* x0[1])∧(x1[0] →* x1[1]))
(1) -> (2), if ((x0[1] - 1 →* x0[2])∧(x1[1] →* x1[2]))
The set Q consists of the following terms:
1380_1_plus_InvokeMethod(
1351_0_plus_Return,
0)
1380_1_plus_InvokeMethod(
1397_0_plus_Return,
x0)
1380_1_plus_InvokeMethod(
1580_0_plus_Return,
x0)
1364_1_plus_InvokeMethod(
1351_0_plus_Return,
x0,
0)
1364_1_plus_InvokeMethod(
1379_0_plus_Return(
x0,
x1),
x0,
x1)
1364_1_plus_InvokeMethod(
1397_0_plus_Return,
x0,
0)
1364_1_plus_InvokeMethod(
1537_0_plus_Return(
x0,
x1),
x0,
x1)
1364_1_plus_InvokeMethod(
1580_0_plus_Return,
x0,
0)
(9) IDependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(10) Obligation:
IDP problem:
The following function symbols are pre-defined:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
| ~ | Bwxor: (Integer, Integer) -> Integer |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
The following domains are used:
Integer, Boolean
The ITRS R consists of the following rules:
1380_1_plus_InvokeMethod(
1351_0_plus_Return,
0) →
1397_0_plus_Return1380_1_plus_InvokeMethod(
1397_0_plus_Return,
x2) →
1580_0_plus_Return1380_1_plus_InvokeMethod(
1580_0_plus_Return,
x1) →
1580_0_plus_Return1364_1_plus_InvokeMethod(
1351_0_plus_Return,
x1,
0) →
1379_0_plus_Return(
x1,
x2)
1364_1_plus_InvokeMethod(
1379_0_plus_Return(
x0,
x1),
x0,
x1) →
1537_0_plus_Return(
x0,
x3)
1364_1_plus_InvokeMethod(
1397_0_plus_Return,
x1,
0) →
1537_0_plus_Return(
x1,
x2)
1364_1_plus_InvokeMethod(
1537_0_plus_Return(
x0,
x1),
x0,
x1) →
1537_0_plus_Return(
x0,
x2)
1364_1_plus_InvokeMethod(
1580_0_plus_Return,
x0,
0) →
1537_0_plus_Return(
x0,
x1)
The integer pair graph contains the following rules and edges:
(1):
COND_1333_0_PLUS_LE(
TRUE,
x0[1],
x1[1]) →
1333_0_PLUS_LE(
x0[1] - 1,
x1[1])
(0):
1333_0_PLUS_LE(
x0[0],
x1[0]) →
COND_1333_0_PLUS_LE(
x1[0] <= 0 && x0[0] > 0,
x0[0],
x1[0])
(1) -> (0), if ((x0[1] - 1 →* x0[0])∧(x1[1] →* x1[0]))
(0) -> (1), if ((x1[0] <= 0 && x0[0] > 0 →* TRUE)∧(x0[0] →* x0[1])∧(x1[0] →* x1[1]))
The set Q consists of the following terms:
1380_1_plus_InvokeMethod(
1351_0_plus_Return,
0)
1380_1_plus_InvokeMethod(
1397_0_plus_Return,
x0)
1380_1_plus_InvokeMethod(
1580_0_plus_Return,
x0)
1364_1_plus_InvokeMethod(
1351_0_plus_Return,
x0,
0)
1364_1_plus_InvokeMethod(
1379_0_plus_Return(
x0,
x1),
x0,
x1)
1364_1_plus_InvokeMethod(
1397_0_plus_Return,
x0,
0)
1364_1_plus_InvokeMethod(
1537_0_plus_Return(
x0,
x1),
x0,
x1)
1364_1_plus_InvokeMethod(
1580_0_plus_Return,
x0,
0)
(11) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(12) Obligation:
IDP problem:
The following function symbols are pre-defined:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
| ~ | Bwxor: (Integer, Integer) -> Integer |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
The following domains are used:
Integer, Boolean
R is empty.
The integer pair graph contains the following rules and edges:
(1):
COND_1333_0_PLUS_LE(
TRUE,
x0[1],
x1[1]) →
1333_0_PLUS_LE(
x0[1] - 1,
x1[1])
(0):
1333_0_PLUS_LE(
x0[0],
x1[0]) →
COND_1333_0_PLUS_LE(
x1[0] <= 0 && x0[0] > 0,
x0[0],
x1[0])
(1) -> (0), if ((x0[1] - 1 →* x0[0])∧(x1[1] →* x1[0]))
(0) -> (1), if ((x1[0] <= 0 && x0[0] > 0 →* TRUE)∧(x0[0] →* x0[1])∧(x1[0] →* x1[1]))
The set Q consists of the following terms:
1380_1_plus_InvokeMethod(
1351_0_plus_Return,
0)
1380_1_plus_InvokeMethod(
1397_0_plus_Return,
x0)
1380_1_plus_InvokeMethod(
1580_0_plus_Return,
x0)
1364_1_plus_InvokeMethod(
1351_0_plus_Return,
x0,
0)
1364_1_plus_InvokeMethod(
1379_0_plus_Return(
x0,
x1),
x0,
x1)
1364_1_plus_InvokeMethod(
1397_0_plus_Return,
x0,
0)
1364_1_plus_InvokeMethod(
1537_0_plus_Return(
x0,
x1),
x0,
x1)
1364_1_plus_InvokeMethod(
1580_0_plus_Return,
x0,
0)
(13) IDPNonInfProof (SOUND transformation)
The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that
final constraints are written in
bold face.
For Pair
COND_1333_0_PLUS_LE(
TRUE,
x0[1],
x1[1]) →
1333_0_PLUS_LE(
-(
x0[1],
1),
x1[1]) the following chains were created:
- We consider the chain COND_1333_0_PLUS_LE(TRUE, x0[1], x1[1]) → 1333_0_PLUS_LE(-(x0[1], 1), x1[1]) which results in the following constraint:
(1) (COND_1333_0_PLUS_LE(TRUE, x0[1], x1[1])≥NonInfC∧COND_1333_0_PLUS_LE(TRUE, x0[1], x1[1])≥1333_0_PLUS_LE(-(x0[1], 1), x1[1])∧(UIncreasing(1333_0_PLUS_LE(-(x0[1], 1), x1[1])), ≥))
We simplified constraint (1) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(2) ((UIncreasing(1333_0_PLUS_LE(-(x0[1], 1), x1[1])), ≥)∧[(-1)bso_11] ≥ 0)
We simplified constraint (2) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(3) ((UIncreasing(1333_0_PLUS_LE(-(x0[1], 1), x1[1])), ≥)∧[(-1)bso_11] ≥ 0)
We simplified constraint (3) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(4) ((UIncreasing(1333_0_PLUS_LE(-(x0[1], 1), x1[1])), ≥)∧[(-1)bso_11] ≥ 0)
We simplified constraint (4) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:
(5) ((UIncreasing(1333_0_PLUS_LE(-(x0[1], 1), x1[1])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_11] ≥ 0)
For Pair
1333_0_PLUS_LE(
x0[0],
x1[0]) →
COND_1333_0_PLUS_LE(
&&(
<=(
x1[0],
0),
>(
x0[0],
0)),
x0[0],
x1[0]) the following chains were created:
- We consider the chain 1333_0_PLUS_LE(x0[0], x1[0]) → COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0]), COND_1333_0_PLUS_LE(TRUE, x0[1], x1[1]) → 1333_0_PLUS_LE(-(x0[1], 1), x1[1]) which results in the following constraint:
(6) (&&(<=(x1[0], 0), >(x0[0], 0))=TRUE∧x0[0]=x0[1]∧x1[0]=x1[1] ⇒ 1333_0_PLUS_LE(x0[0], x1[0])≥NonInfC∧1333_0_PLUS_LE(x0[0], x1[0])≥COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])∧(UIncreasing(COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥))
We simplified constraint (6) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:
(7) (<=(x1[0], 0)=TRUE∧>(x0[0], 0)=TRUE ⇒ 1333_0_PLUS_LE(x0[0], x1[0])≥NonInfC∧1333_0_PLUS_LE(x0[0], x1[0])≥COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])∧(UIncreasing(COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥))
We simplified constraint (7) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(8) ([-1]x1[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[bni_12 + (-1)Bound*bni_12] + [(2)bni_12]x0[0] + [(-1)bni_12]x1[0] ≥ 0∧[2 + (-1)bso_13] ≥ 0)
We simplified constraint (8) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(9) ([-1]x1[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[bni_12 + (-1)Bound*bni_12] + [(2)bni_12]x0[0] + [(-1)bni_12]x1[0] ≥ 0∧[2 + (-1)bso_13] ≥ 0)
We simplified constraint (9) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(10) ([-1]x1[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[bni_12 + (-1)Bound*bni_12] + [(2)bni_12]x0[0] + [(-1)bni_12]x1[0] ≥ 0∧[2 + (-1)bso_13] ≥ 0)
We simplified constraint (10) using rule (IDP_SMT_SPLIT) which results in the following new constraint:
(11) (x1[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[bni_12 + (-1)Bound*bni_12] + [(2)bni_12]x0[0] + [bni_12]x1[0] ≥ 0∧[2 + (-1)bso_13] ≥ 0)
We simplified constraint (11) using rule (IDP_SMT_SPLIT) which results in the following new constraint:
(12) (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[(3)bni_12 + (-1)Bound*bni_12] + [(2)bni_12]x0[0] + [bni_12]x1[0] ≥ 0∧[2 + (-1)bso_13] ≥ 0)
To summarize, we get the following constraints P
≥ for the following pairs.
- COND_1333_0_PLUS_LE(TRUE, x0[1], x1[1]) → 1333_0_PLUS_LE(-(x0[1], 1), x1[1])
- ((UIncreasing(1333_0_PLUS_LE(-(x0[1], 1), x1[1])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_11] ≥ 0)
- 1333_0_PLUS_LE(x0[0], x1[0]) → COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])
- (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[(3)bni_12 + (-1)Bound*bni_12] + [(2)bni_12]x0[0] + [bni_12]x1[0] ≥ 0∧[2 + (-1)bso_13] ≥ 0)
The constraints for P
> respective P
bound are constructed from P
≥ where we just replace every occurence of "t ≥ s" in P
≥ by "t > s" respective "t ≥
c". Here
c stands for the fresh constant used for P
bound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_1333_0_PLUS_LE(x1, x2, x3)) = [-1] + [-1]x3 + [2]x2
POL(1333_0_PLUS_LE(x1, x2)) = [1] + [2]x1 + [-1]x2
POL(-(x1, x2)) = x1 + [-1]x2
POL(1) = [1]
POL(&&(x1, x2)) = [-1]
POL(<=(x1, x2)) = [-1]
POL(0) = 0
POL(>(x1, x2)) = [-1]
The following pairs are in P
>:
1333_0_PLUS_LE(x0[0], x1[0]) → COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])
The following pairs are in P
bound:
1333_0_PLUS_LE(x0[0], x1[0]) → COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])
The following pairs are in P
≥:
COND_1333_0_PLUS_LE(TRUE, x0[1], x1[1]) → 1333_0_PLUS_LE(-(x0[1], 1), x1[1])
There are no usable rules.
(14) Obligation:
IDP problem:
The following function symbols are pre-defined:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
| ~ | Bwxor: (Integer, Integer) -> Integer |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
The following domains are used:
Integer
R is empty.
The integer pair graph contains the following rules and edges:
(1):
COND_1333_0_PLUS_LE(
TRUE,
x0[1],
x1[1]) →
1333_0_PLUS_LE(
x0[1] - 1,
x1[1])
The set Q consists of the following terms:
1380_1_plus_InvokeMethod(
1351_0_plus_Return,
0)
1380_1_plus_InvokeMethod(
1397_0_plus_Return,
x0)
1380_1_plus_InvokeMethod(
1580_0_plus_Return,
x0)
1364_1_plus_InvokeMethod(
1351_0_plus_Return,
x0,
0)
1364_1_plus_InvokeMethod(
1379_0_plus_Return(
x0,
x1),
x0,
x1)
1364_1_plus_InvokeMethod(
1397_0_plus_Return,
x0,
0)
1364_1_plus_InvokeMethod(
1537_0_plus_Return(
x0,
x1),
x0,
x1)
1364_1_plus_InvokeMethod(
1580_0_plus_Return,
x0,
0)
(15) IDependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(16) TRUE
(17) Obligation:
IDP problem:
The following function symbols are pre-defined:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
| ~ | Bwxor: (Integer, Integer) -> Integer |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
The following domains are used:
Boolean, Integer
The ITRS R consists of the following rules:
1380_1_plus_InvokeMethod(
1351_0_plus_Return,
0) →
1397_0_plus_Return1380_1_plus_InvokeMethod(
1397_0_plus_Return,
x2) →
1580_0_plus_Return1380_1_plus_InvokeMethod(
1580_0_plus_Return,
x1) →
1580_0_plus_Return1364_1_plus_InvokeMethod(
1351_0_plus_Return,
x1,
0) →
1379_0_plus_Return(
x1,
x2)
1364_1_plus_InvokeMethod(
1379_0_plus_Return(
x0,
x1),
x0,
x1) →
1537_0_plus_Return(
x0,
x3)
1364_1_plus_InvokeMethod(
1397_0_plus_Return,
x1,
0) →
1537_0_plus_Return(
x1,
x2)
1364_1_plus_InvokeMethod(
1537_0_plus_Return(
x0,
x1),
x0,
x1) →
1537_0_plus_Return(
x0,
x2)
1364_1_plus_InvokeMethod(
1580_0_plus_Return,
x0,
0) →
1537_0_plus_Return(
x0,
x1)
The integer pair graph contains the following rules and edges:
(0):
1333_0_PLUS_LE(
x0[0],
x1[0]) →
COND_1333_0_PLUS_LE(
x1[0] <= 0 && x0[0] > 0,
x0[0],
x1[0])
(1):
COND_1333_0_PLUS_LE(
TRUE,
x0[1],
x1[1]) →
1333_0_PLUS_LE(
x0[1] - 1,
x1[1])
(3):
COND_1333_0_PLUS_LE1(
TRUE,
x0[3],
x1[3]) →
1333_0_PLUS_LE(
x0[3],
x1[3] - 1)
(1) -> (0), if ((x0[1] - 1 →* x0[0])∧(x1[1] →* x1[0]))
(3) -> (0), if ((x0[3] →* x0[0])∧(x1[3] - 1 →* x1[0]))
(0) -> (1), if ((x1[0] <= 0 && x0[0] > 0 →* TRUE)∧(x0[0] →* x0[1])∧(x1[0] →* x1[1]))
The set Q consists of the following terms:
1380_1_plus_InvokeMethod(
1351_0_plus_Return,
0)
1380_1_plus_InvokeMethod(
1397_0_plus_Return,
x0)
1380_1_plus_InvokeMethod(
1580_0_plus_Return,
x0)
1364_1_plus_InvokeMethod(
1351_0_plus_Return,
x0,
0)
1364_1_plus_InvokeMethod(
1379_0_plus_Return(
x0,
x1),
x0,
x1)
1364_1_plus_InvokeMethod(
1397_0_plus_Return,
x0,
0)
1364_1_plus_InvokeMethod(
1537_0_plus_Return(
x0,
x1),
x0,
x1)
1364_1_plus_InvokeMethod(
1580_0_plus_Return,
x0,
0)
(18) IDependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(19) Obligation:
IDP problem:
The following function symbols are pre-defined:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
| ~ | Bwxor: (Integer, Integer) -> Integer |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
The following domains are used:
Integer, Boolean
The ITRS R consists of the following rules:
1380_1_plus_InvokeMethod(
1351_0_plus_Return,
0) →
1397_0_plus_Return1380_1_plus_InvokeMethod(
1397_0_plus_Return,
x2) →
1580_0_plus_Return1380_1_plus_InvokeMethod(
1580_0_plus_Return,
x1) →
1580_0_plus_Return1364_1_plus_InvokeMethod(
1351_0_plus_Return,
x1,
0) →
1379_0_plus_Return(
x1,
x2)
1364_1_plus_InvokeMethod(
1379_0_plus_Return(
x0,
x1),
x0,
x1) →
1537_0_plus_Return(
x0,
x3)
1364_1_plus_InvokeMethod(
1397_0_plus_Return,
x1,
0) →
1537_0_plus_Return(
x1,
x2)
1364_1_plus_InvokeMethod(
1537_0_plus_Return(
x0,
x1),
x0,
x1) →
1537_0_plus_Return(
x0,
x2)
1364_1_plus_InvokeMethod(
1580_0_plus_Return,
x0,
0) →
1537_0_plus_Return(
x0,
x1)
The integer pair graph contains the following rules and edges:
(1):
COND_1333_0_PLUS_LE(
TRUE,
x0[1],
x1[1]) →
1333_0_PLUS_LE(
x0[1] - 1,
x1[1])
(0):
1333_0_PLUS_LE(
x0[0],
x1[0]) →
COND_1333_0_PLUS_LE(
x1[0] <= 0 && x0[0] > 0,
x0[0],
x1[0])
(1) -> (0), if ((x0[1] - 1 →* x0[0])∧(x1[1] →* x1[0]))
(0) -> (1), if ((x1[0] <= 0 && x0[0] > 0 →* TRUE)∧(x0[0] →* x0[1])∧(x1[0] →* x1[1]))
The set Q consists of the following terms:
1380_1_plus_InvokeMethod(
1351_0_plus_Return,
0)
1380_1_plus_InvokeMethod(
1397_0_plus_Return,
x0)
1380_1_plus_InvokeMethod(
1580_0_plus_Return,
x0)
1364_1_plus_InvokeMethod(
1351_0_plus_Return,
x0,
0)
1364_1_plus_InvokeMethod(
1379_0_plus_Return(
x0,
x1),
x0,
x1)
1364_1_plus_InvokeMethod(
1397_0_plus_Return,
x0,
0)
1364_1_plus_InvokeMethod(
1537_0_plus_Return(
x0,
x1),
x0,
x1)
1364_1_plus_InvokeMethod(
1580_0_plus_Return,
x0,
0)
(20) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(21) Obligation:
IDP problem:
The following function symbols are pre-defined:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
| ~ | Bwxor: (Integer, Integer) -> Integer |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
The following domains are used:
Integer, Boolean
R is empty.
The integer pair graph contains the following rules and edges:
(1):
COND_1333_0_PLUS_LE(
TRUE,
x0[1],
x1[1]) →
1333_0_PLUS_LE(
x0[1] - 1,
x1[1])
(0):
1333_0_PLUS_LE(
x0[0],
x1[0]) →
COND_1333_0_PLUS_LE(
x1[0] <= 0 && x0[0] > 0,
x0[0],
x1[0])
(1) -> (0), if ((x0[1] - 1 →* x0[0])∧(x1[1] →* x1[0]))
(0) -> (1), if ((x1[0] <= 0 && x0[0] > 0 →* TRUE)∧(x0[0] →* x0[1])∧(x1[0] →* x1[1]))
The set Q consists of the following terms:
1380_1_plus_InvokeMethod(
1351_0_plus_Return,
0)
1380_1_plus_InvokeMethod(
1397_0_plus_Return,
x0)
1380_1_plus_InvokeMethod(
1580_0_plus_Return,
x0)
1364_1_plus_InvokeMethod(
1351_0_plus_Return,
x0,
0)
1364_1_plus_InvokeMethod(
1379_0_plus_Return(
x0,
x1),
x0,
x1)
1364_1_plus_InvokeMethod(
1397_0_plus_Return,
x0,
0)
1364_1_plus_InvokeMethod(
1537_0_plus_Return(
x0,
x1),
x0,
x1)
1364_1_plus_InvokeMethod(
1580_0_plus_Return,
x0,
0)
(22) IDPNonInfProof (SOUND transformation)
The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that
final constraints are written in
bold face.
For Pair
COND_1333_0_PLUS_LE(
TRUE,
x0[1],
x1[1]) →
1333_0_PLUS_LE(
-(
x0[1],
1),
x1[1]) the following chains were created:
- We consider the chain COND_1333_0_PLUS_LE(TRUE, x0[1], x1[1]) → 1333_0_PLUS_LE(-(x0[1], 1), x1[1]) which results in the following constraint:
(1) (COND_1333_0_PLUS_LE(TRUE, x0[1], x1[1])≥NonInfC∧COND_1333_0_PLUS_LE(TRUE, x0[1], x1[1])≥1333_0_PLUS_LE(-(x0[1], 1), x1[1])∧(UIncreasing(1333_0_PLUS_LE(-(x0[1], 1), x1[1])), ≥))
We simplified constraint (1) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(2) ((UIncreasing(1333_0_PLUS_LE(-(x0[1], 1), x1[1])), ≥)∧[1 + (-1)bso_9] ≥ 0)
We simplified constraint (2) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(3) ((UIncreasing(1333_0_PLUS_LE(-(x0[1], 1), x1[1])), ≥)∧[1 + (-1)bso_9] ≥ 0)
We simplified constraint (3) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(4) ((UIncreasing(1333_0_PLUS_LE(-(x0[1], 1), x1[1])), ≥)∧[1 + (-1)bso_9] ≥ 0)
We simplified constraint (4) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:
(5) ((UIncreasing(1333_0_PLUS_LE(-(x0[1], 1), x1[1])), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_9] ≥ 0)
For Pair
1333_0_PLUS_LE(
x0[0],
x1[0]) →
COND_1333_0_PLUS_LE(
&&(
<=(
x1[0],
0),
>(
x0[0],
0)),
x0[0],
x1[0]) the following chains were created:
- We consider the chain 1333_0_PLUS_LE(x0[0], x1[0]) → COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0]), COND_1333_0_PLUS_LE(TRUE, x0[1], x1[1]) → 1333_0_PLUS_LE(-(x0[1], 1), x1[1]) which results in the following constraint:
(6) (&&(<=(x1[0], 0), >(x0[0], 0))=TRUE∧x0[0]=x0[1]∧x1[0]=x1[1] ⇒ 1333_0_PLUS_LE(x0[0], x1[0])≥NonInfC∧1333_0_PLUS_LE(x0[0], x1[0])≥COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])∧(UIncreasing(COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥))
We simplified constraint (6) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:
(7) (<=(x1[0], 0)=TRUE∧>(x0[0], 0)=TRUE ⇒ 1333_0_PLUS_LE(x0[0], x1[0])≥NonInfC∧1333_0_PLUS_LE(x0[0], x1[0])≥COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])∧(UIncreasing(COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥))
We simplified constraint (7) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(8) ([-1]x1[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[(-1)bni_10 + (-1)Bound*bni_10] + [bni_10]x0[0] + [(-1)bni_10]x1[0] ≥ 0∧[(-1)bso_11] ≥ 0)
We simplified constraint (8) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(9) ([-1]x1[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[(-1)bni_10 + (-1)Bound*bni_10] + [bni_10]x0[0] + [(-1)bni_10]x1[0] ≥ 0∧[(-1)bso_11] ≥ 0)
We simplified constraint (9) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(10) ([-1]x1[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[(-1)bni_10 + (-1)Bound*bni_10] + [bni_10]x0[0] + [(-1)bni_10]x1[0] ≥ 0∧[(-1)bso_11] ≥ 0)
We simplified constraint (10) using rule (IDP_SMT_SPLIT) which results in the following new constraint:
(11) (x1[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[(-1)bni_10 + (-1)Bound*bni_10] + [bni_10]x0[0] + [bni_10]x1[0] ≥ 0∧[(-1)bso_11] ≥ 0)
We simplified constraint (11) using rule (IDP_SMT_SPLIT) which results in the following new constraint:
(12) (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_10] + [bni_10]x0[0] + [bni_10]x1[0] ≥ 0∧[(-1)bso_11] ≥ 0)
To summarize, we get the following constraints P
≥ for the following pairs.
- COND_1333_0_PLUS_LE(TRUE, x0[1], x1[1]) → 1333_0_PLUS_LE(-(x0[1], 1), x1[1])
- ((UIncreasing(1333_0_PLUS_LE(-(x0[1], 1), x1[1])), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_9] ≥ 0)
- 1333_0_PLUS_LE(x0[0], x1[0]) → COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])
- (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_10] + [bni_10]x0[0] + [bni_10]x1[0] ≥ 0∧[(-1)bso_11] ≥ 0)
The constraints for P
> respective P
bound are constructed from P
≥ where we just replace every occurence of "t ≥ s" in P
≥ by "t > s" respective "t ≥
c". Here
c stands for the fresh constant used for P
bound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_1333_0_PLUS_LE(x1, x2, x3)) = [-1] + [-1]x3 + x2
POL(1333_0_PLUS_LE(x1, x2)) = [-1] + x1 + [-1]x2
POL(-(x1, x2)) = x1 + [-1]x2
POL(1) = [1]
POL(&&(x1, x2)) = [1]
POL(<=(x1, x2)) = [-1]
POL(0) = 0
POL(>(x1, x2)) = [-1]
The following pairs are in P
>:
COND_1333_0_PLUS_LE(TRUE, x0[1], x1[1]) → 1333_0_PLUS_LE(-(x0[1], 1), x1[1])
The following pairs are in P
bound:
1333_0_PLUS_LE(x0[0], x1[0]) → COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])
The following pairs are in P
≥:
1333_0_PLUS_LE(x0[0], x1[0]) → COND_1333_0_PLUS_LE(&&(<=(x1[0], 0), >(x0[0], 0)), x0[0], x1[0])
There are no usable rules.
(23) Complex Obligation (AND)
(24) Obligation:
IDP problem:
The following function symbols are pre-defined:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
| ~ | Bwxor: (Integer, Integer) -> Integer |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
The following domains are used:
Boolean, Integer
R is empty.
The integer pair graph contains the following rules and edges:
(0):
1333_0_PLUS_LE(
x0[0],
x1[0]) →
COND_1333_0_PLUS_LE(
x1[0] <= 0 && x0[0] > 0,
x0[0],
x1[0])
The set Q consists of the following terms:
1380_1_plus_InvokeMethod(
1351_0_plus_Return,
0)
1380_1_plus_InvokeMethod(
1397_0_plus_Return,
x0)
1380_1_plus_InvokeMethod(
1580_0_plus_Return,
x0)
1364_1_plus_InvokeMethod(
1351_0_plus_Return,
x0,
0)
1364_1_plus_InvokeMethod(
1379_0_plus_Return(
x0,
x1),
x0,
x1)
1364_1_plus_InvokeMethod(
1397_0_plus_Return,
x0,
0)
1364_1_plus_InvokeMethod(
1537_0_plus_Return(
x0,
x1),
x0,
x1)
1364_1_plus_InvokeMethod(
1580_0_plus_Return,
x0,
0)
(25) IDependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(26) TRUE
(27) Obligation:
IDP problem:
The following function symbols are pre-defined:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
| ~ | Bwxor: (Integer, Integer) -> Integer |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
The following domains are used:
Integer
R is empty.
The integer pair graph contains the following rules and edges:
(1):
COND_1333_0_PLUS_LE(
TRUE,
x0[1],
x1[1]) →
1333_0_PLUS_LE(
x0[1] - 1,
x1[1])
The set Q consists of the following terms:
1380_1_plus_InvokeMethod(
1351_0_plus_Return,
0)
1380_1_plus_InvokeMethod(
1397_0_plus_Return,
x0)
1380_1_plus_InvokeMethod(
1580_0_plus_Return,
x0)
1364_1_plus_InvokeMethod(
1351_0_plus_Return,
x0,
0)
1364_1_plus_InvokeMethod(
1379_0_plus_Return(
x0,
x1),
x0,
x1)
1364_1_plus_InvokeMethod(
1397_0_plus_Return,
x0,
0)
1364_1_plus_InvokeMethod(
1537_0_plus_Return(
x0,
x1),
x0,
x1)
1364_1_plus_InvokeMethod(
1580_0_plus_Return,
x0,
0)
(28) IDependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(29) TRUE
(30) Obligation:
IDP problem:
The following function symbols are pre-defined:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
| ~ | Bwxor: (Integer, Integer) -> Integer |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
The following domains are used:
Integer, Boolean
The ITRS R consists of the following rules:
457_0_times_NE(
x0,
0) →
596_0_times_Return(
x0)
754_1_times_InvokeMethod(
596_0_times_Return(
x0),
x0,
0) →
1328_1_times_InvokeMethod(
1333_0_plus_LE(
0,
x0),
0,
x0)
754_1_times_InvokeMethod(
1361_0_times_Return,
0,
x3) →
1328_1_times_InvokeMethod(
1333_0_plus_LE(
0,
0),
0,
0)
754_1_times_InvokeMethod(
1522_0_times_Return(
x0),
x1,
x2) →
1328_1_times_InvokeMethod(
1333_0_plus_LE(
x0,
x1),
x0,
x1)
754_1_times_InvokeMethod(
1566_0_times_Return(
x0),
0,
x3) →
1328_1_times_InvokeMethod(
1333_0_plus_LE(
x0,
0),
x0,
0)
1328_1_times_InvokeMethod(
1351_0_plus_Return,
x1,
x2) →
1361_0_times_Return1328_1_times_InvokeMethod(
1537_0_plus_Return(
x0,
x1,
x2),
x0,
x1) →
1522_0_times_Return(
x2)
1328_1_times_InvokeMethod(
1580_0_plus_Return(
x0),
x1,
x2) →
1566_0_times_Return(
x0)
1328_1_times_InvokeMethod(
1397_0_plus_Return,
x1,
x2) →
1566_0_times_Return(
1)
1328_1_times_InvokeMethod(
1379_0_plus_Return(
x0,
x1),
x0,
x1) →
1522_0_times_Return(
1)
1333_0_plus_LE(
x0,
x1) →
Cond_1333_0_plus_LE(
x1 > 0,
x0,
x1)
Cond_1333_0_plus_LE(
TRUE,
x0,
x1) →
1364_1_plus_InvokeMethod(
1333_0_plus_LE(
x0,
x1 - 1),
x1,
x0,
x1 - 1)
1364_1_plus_InvokeMethod(
1351_0_plus_Return,
x2,
x1,
0) →
1379_0_plus_Return(
x1,
x2)
1364_1_plus_InvokeMethod(
1537_0_plus_Return(
x0,
x1,
x2),
x3,
x0,
x1) →
Cond_1364_1_plus_InvokeMethod(
x2 > 0,
1537_0_plus_Return(
x0,
x1,
x2),
x3,
x0,
x1)
Cond_1364_1_plus_InvokeMethod(
TRUE,
1537_0_plus_Return(
x0,
x1,
x2),
x3,
x0,
x1) →
1537_0_plus_Return(
x0,
x3,
1 + x2)
1364_1_plus_InvokeMethod(
1580_0_plus_Return(
x0),
x2,
x1,
0) →
Cond_1364_1_plus_InvokeMethod1(
x0 > 0,
1580_0_plus_Return(
x0),
x2,
x1,
0)
Cond_1364_1_plus_InvokeMethod1(
TRUE,
1580_0_plus_Return(
x0),
x2,
x1,
0) →
1537_0_plus_Return(
x1,
x2,
1 + x0)
1364_1_plus_InvokeMethod(
1397_0_plus_Return,
x2,
x1,
0) →
Cond_1364_1_plus_InvokeMethod2(
1 > 0,
1397_0_plus_Return,
x2,
x1,
0)
Cond_1364_1_plus_InvokeMethod2(
TRUE,
1397_0_plus_Return,
x2,
x1,
0) →
1537_0_plus_Return(
x1,
x2,
1 + 1)
1364_1_plus_InvokeMethod(
1379_0_plus_Return(
x0,
x1),
x3,
x0,
x1) →
Cond_1364_1_plus_InvokeMethod3(
1 > 0,
1379_0_plus_Return(
x0,
x1),
x3,
x0,
x1)
Cond_1364_1_plus_InvokeMethod3(
TRUE,
1379_0_plus_Return(
x0,
x1),
x3,
x0,
x1) →
1537_0_plus_Return(
x0,
x3,
1 + 1)
1333_0_plus_LE(
x0,
x1) →
Cond_1333_0_plus_LE1(
x1 <= 0 && x0 <= 0,
x0,
x1)
Cond_1333_0_plus_LE1(
TRUE,
x0,
x1) →
1351_0_plus_Return1333_0_plus_LE(
x0,
x1) →
Cond_1333_0_plus_LE2(
x1 <= 0 && x0 > 0,
x0,
x1)
Cond_1333_0_plus_LE2(
TRUE,
x0,
x1) →
1380_1_plus_InvokeMethod(
1387_0_plus_Return(
x0 - 1,
x1),
x0 - 1)
1333_0_plus_LE(
x0,
x1) →
Cond_1333_0_plus_LE3(
x1 <= 0 && x0 > 0,
x0,
x1)
Cond_1333_0_plus_LE3(
TRUE,
x0,
x1) →
1380_1_plus_InvokeMethod(
1417_0_plus_Return(
x0 - 1,
x1),
x0 - 1)
1333_0_plus_LE(
x0,
x1) →
Cond_1333_0_plus_LE4(
x1 <= 0 && x0 > 0,
x0,
x1)
Cond_1333_0_plus_LE4(
TRUE,
x0,
x1) →
1380_1_plus_InvokeMethod(
1459_0_plus_Return(
x0 - 1,
x1),
x0 - 1)
1333_0_plus_LE(
x0,
x1) →
Cond_1333_0_plus_LE5(
x1 <= 0 && x0 > 0,
x0,
x1)
Cond_1333_0_plus_LE5(
TRUE,
x0,
x1) →
1380_1_plus_InvokeMethod(
1507_0_plus_Return(
x0 - 1,
x1),
x0 - 1)
1333_0_plus_LE(
x0,
x1) →
Cond_1333_0_plus_LE6(
x1 <= 0 && x0 > 0,
x0,
x1)
Cond_1333_0_plus_LE6(
TRUE,
x0,
x1) →
1380_1_plus_InvokeMethod(
1550_0_plus_Return(
x0 - 1,
x1),
x0 - 1)
1333_0_plus_LE(
x0,
x1) →
Cond_1333_0_plus_LE7(
x1 <= 0 && x0 > 0,
x0,
x1)
Cond_1333_0_plus_LE7(
TRUE,
x0,
x1) →
1380_1_plus_InvokeMethod(
1333_0_plus_LE(
x0 - 1,
x1),
x0 - 1)
1380_1_plus_InvokeMethod(
1351_0_plus_Return,
0) →
1397_0_plus_Return1380_1_plus_InvokeMethod(
1580_0_plus_Return(
x0),
x2) →
Cond_1380_1_plus_InvokeMethod(
x0 > 0,
1580_0_plus_Return(
x0),
x2)
Cond_1380_1_plus_InvokeMethod(
TRUE,
1580_0_plus_Return(
x0),
x2) →
1580_0_plus_Return(
1 + x0)
1380_1_plus_InvokeMethod(
1397_0_plus_Return,
x2) →
Cond_1380_1_plus_InvokeMethod1(
1 > 0,
1397_0_plus_Return,
x2)
Cond_1380_1_plus_InvokeMethod1(
TRUE,
1397_0_plus_Return,
x2) →
1580_0_plus_Return(
1 + 1)
The integer pair graph contains the following rules and edges:
(0):
457_0_TIMES_NE(
x0[0],
x1[0]) →
COND_457_0_TIMES_NE(
x1[0] > 0,
x0[0],
x1[0])
(1):
COND_457_0_TIMES_NE(
TRUE,
x0[1],
x1[1]) →
457_0_TIMES_NE(
x0[1],
x1[1] - 1)
(0) -> (1), if ((x1[0] > 0 →* TRUE)∧(x0[0] →* x0[1])∧(x1[0] →* x1[1]))
(1) -> (0), if ((x0[1] →* x0[0])∧(x1[1] - 1 →* x1[0]))
The set Q consists of the following terms:
457_0_times_NE(
x0,
0)
754_1_times_InvokeMethod(
596_0_times_Return(
x0),
x0,
0)
754_1_times_InvokeMethod(
1361_0_times_Return,
0,
x0)
754_1_times_InvokeMethod(
1522_0_times_Return(
x0),
x1,
x2)
754_1_times_InvokeMethod(
1566_0_times_Return(
x0),
0,
x1)
1328_1_times_InvokeMethod(
1351_0_plus_Return,
x0,
x1)
1328_1_times_InvokeMethod(
1537_0_plus_Return(
x0,
x1,
x2),
x0,
x1)
1328_1_times_InvokeMethod(
1580_0_plus_Return(
x0),
x1,
x2)
1328_1_times_InvokeMethod(
1397_0_plus_Return,
x0,
x1)
1328_1_times_InvokeMethod(
1379_0_plus_Return(
x0,
x1),
x0,
x1)
1333_0_plus_LE(
x0,
x1)
Cond_1333_0_plus_LE(
TRUE,
x0,
x1)
1364_1_plus_InvokeMethod(
1351_0_plus_Return,
x0,
x1,
0)
1364_1_plus_InvokeMethod(
1537_0_plus_Return(
x0,
x1,
x2),
x3,
x0,
x1)
Cond_1364_1_plus_InvokeMethod(
TRUE,
1537_0_plus_Return(
x0,
x1,
x2),
x3,
x0,
x1)
1364_1_plus_InvokeMethod(
1580_0_plus_Return(
x0),
x1,
x2,
0)
Cond_1364_1_plus_InvokeMethod1(
TRUE,
1580_0_plus_Return(
x0),
x1,
x2,
0)
1364_1_plus_InvokeMethod(
1397_0_plus_Return,
x0,
x1,
0)
Cond_1364_1_plus_InvokeMethod2(
TRUE,
1397_0_plus_Return,
x0,
x1,
0)
1364_1_plus_InvokeMethod(
1379_0_plus_Return(
x0,
x1),
x2,
x0,
x1)
Cond_1364_1_plus_InvokeMethod3(
TRUE,
1379_0_plus_Return(
x0,
x1),
x2,
x0,
x1)
Cond_1333_0_plus_LE1(
TRUE,
x0,
x1)
Cond_1333_0_plus_LE2(
TRUE,
x0,
x1)
Cond_1333_0_plus_LE3(
TRUE,
x0,
x1)
Cond_1333_0_plus_LE4(
TRUE,
x0,
x1)
Cond_1333_0_plus_LE5(
TRUE,
x0,
x1)
Cond_1333_0_plus_LE6(
TRUE,
x0,
x1)
Cond_1333_0_plus_LE7(
TRUE,
x0,
x1)
1380_1_plus_InvokeMethod(
1351_0_plus_Return,
0)
1380_1_plus_InvokeMethod(
1580_0_plus_Return(
x0),
x1)
Cond_1380_1_plus_InvokeMethod(
TRUE,
1580_0_plus_Return(
x0),
x1)
1380_1_plus_InvokeMethod(
1397_0_plus_Return,
x0)
Cond_1380_1_plus_InvokeMethod1(
TRUE,
1397_0_plus_Return,
x0)
(31) IDPNonInfProof (SOUND transformation)
The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that
final constraints are written in
bold face.
For Pair
457_0_TIMES_NE(
x0,
x1) →
COND_457_0_TIMES_NE(
>(
x1,
0),
x0,
x1) the following chains were created:
- We consider the chain 457_0_TIMES_NE(x0[0], x1[0]) → COND_457_0_TIMES_NE(>(x1[0], 0), x0[0], x1[0]), COND_457_0_TIMES_NE(TRUE, x0[1], x1[1]) → 457_0_TIMES_NE(x0[1], -(x1[1], 1)) which results in the following constraint:
(1) (>(x1[0], 0)=TRUE∧x0[0]=x0[1]∧x1[0]=x1[1] ⇒ 457_0_TIMES_NE(x0[0], x1[0])≥NonInfC∧457_0_TIMES_NE(x0[0], x1[0])≥COND_457_0_TIMES_NE(>(x1[0], 0), x0[0], x1[0])∧(UIncreasing(COND_457_0_TIMES_NE(>(x1[0], 0), x0[0], x1[0])), ≥))
We simplified constraint (1) using rule (IV) which results in the following new constraint:
(2) (>(x1[0], 0)=TRUE ⇒ 457_0_TIMES_NE(x0[0], x1[0])≥NonInfC∧457_0_TIMES_NE(x0[0], x1[0])≥COND_457_0_TIMES_NE(>(x1[0], 0), x0[0], x1[0])∧(UIncreasing(COND_457_0_TIMES_NE(>(x1[0], 0), x0[0], x1[0])), ≥))
We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(3) (x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_457_0_TIMES_NE(>(x1[0], 0), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_63] + [(2)bni_63]x1[0] ≥ 0∧[(-1)bso_64] ≥ 0)
We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(4) (x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_457_0_TIMES_NE(>(x1[0], 0), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_63] + [(2)bni_63]x1[0] ≥ 0∧[(-1)bso_64] ≥ 0)
We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(5) (x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_457_0_TIMES_NE(>(x1[0], 0), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_63] + [(2)bni_63]x1[0] ≥ 0∧[(-1)bso_64] ≥ 0)
We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:
(6) (x1[0] ≥ 0 ⇒ (UIncreasing(COND_457_0_TIMES_NE(>(x1[0], 0), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_63 + (2)bni_63] + [(2)bni_63]x1[0] ≥ 0∧[(-1)bso_64] ≥ 0)
For Pair
COND_457_0_TIMES_NE(
TRUE,
x0,
x1) →
457_0_TIMES_NE(
x0,
-(
x1,
1)) the following chains were created:
- We consider the chain COND_457_0_TIMES_NE(TRUE, x0[1], x1[1]) → 457_0_TIMES_NE(x0[1], -(x1[1], 1)) which results in the following constraint:
(7) (COND_457_0_TIMES_NE(TRUE, x0[1], x1[1])≥NonInfC∧COND_457_0_TIMES_NE(TRUE, x0[1], x1[1])≥457_0_TIMES_NE(x0[1], -(x1[1], 1))∧(UIncreasing(457_0_TIMES_NE(x0[1], -(x1[1], 1))), ≥))
We simplified constraint (7) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(8) ((UIncreasing(457_0_TIMES_NE(x0[1], -(x1[1], 1))), ≥)∧[2 + (-1)bso_66] ≥ 0)
We simplified constraint (8) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(9) ((UIncreasing(457_0_TIMES_NE(x0[1], -(x1[1], 1))), ≥)∧[2 + (-1)bso_66] ≥ 0)
We simplified constraint (9) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(10) ((UIncreasing(457_0_TIMES_NE(x0[1], -(x1[1], 1))), ≥)∧[2 + (-1)bso_66] ≥ 0)
We simplified constraint (10) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:
(11) ((UIncreasing(457_0_TIMES_NE(x0[1], -(x1[1], 1))), ≥)∧0 = 0∧[2 + (-1)bso_66] ≥ 0)
To summarize, we get the following constraints P
≥ for the following pairs.
- 457_0_TIMES_NE(x0, x1) → COND_457_0_TIMES_NE(>(x1, 0), x0, x1)
- (x1[0] ≥ 0 ⇒ (UIncreasing(COND_457_0_TIMES_NE(>(x1[0], 0), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_63 + (2)bni_63] + [(2)bni_63]x1[0] ≥ 0∧[(-1)bso_64] ≥ 0)
- COND_457_0_TIMES_NE(TRUE, x0, x1) → 457_0_TIMES_NE(x0, -(x1, 1))
- ((UIncreasing(457_0_TIMES_NE(x0[1], -(x1[1], 1))), ≥)∧0 = 0∧[2 + (-1)bso_66] ≥ 0)
The constraints for P
> respective P
bound are constructed from P
≥ where we just replace every occurence of "t ≥ s" in P
≥ by "t > s" respective "t ≥
c". Here
c stands for the fresh constant used for P
bound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:
POL(TRUE) = 0
POL(FALSE) = 0
POL(457_0_times_NE(x1, x2)) = [-1]
POL(0) = 0
POL(596_0_times_Return(x1)) = [-1]
POL(754_1_times_InvokeMethod(x1, x2, x3)) = [-1]
POL(1328_1_times_InvokeMethod(x1, x2, x3)) = [-1]
POL(1333_0_plus_LE(x1, x2)) = [-1] + [-1]x2 + [-1]x1
POL(1361_0_times_Return) = [-1]
POL(1522_0_times_Return(x1)) = [-1]
POL(1566_0_times_Return(x1)) = [-1]
POL(1351_0_plus_Return) = [-1]
POL(1537_0_plus_Return(x1, x2, x3)) = [-1] + [-1]x3 + [-1]x1 + [-1]x2
POL(1580_0_plus_Return(x1)) = x1
POL(1397_0_plus_Return) = [-1]
POL(1) = [1]
POL(1379_0_plus_Return(x1, x2)) = [-1] + [-1]x1 + [-1]x2
POL(Cond_1333_0_plus_LE(x1, x2, x3)) = [-1] + [-1]x3 + [-1]x2
POL(>(x1, x2)) = [-1]
POL(1364_1_plus_InvokeMethod(x1, x2, x3, x4)) = [-1] + [-1]x4 + [-1]x1 + [-1]x2 + [-1]x3
POL(-(x1, x2)) = x1 + [-1]x2
POL(Cond_1364_1_plus_InvokeMethod(x1, x2, x3, x4, x5)) = [-1] + [-1]x5 + [-1]x4 + [-1]x3 + [-1]x2
POL(+(x1, x2)) = x1 + x2
POL(Cond_1364_1_plus_InvokeMethod1(x1, x2, x3, x4, x5)) = [-1] + [-1]x4 + [-1]x3 + [-1]x2
POL(Cond_1364_1_plus_InvokeMethod2(x1, x2, x3, x4, x5)) = [-1] + [-1]x4 + [-1]x3
POL(Cond_1364_1_plus_InvokeMethod3(x1, x2, x3, x4, x5)) = [-1] + [-1]x5 + [-1]x4 + [-1]x3 + [-1]x2
POL(Cond_1333_0_plus_LE1(x1, x2, x3)) = [-1] + [-1]x3 + [-1]x2
POL(&&(x1, x2)) = [-1]
POL(<=(x1, x2)) = [-1]
POL(Cond_1333_0_plus_LE2(x1, x2, x3)) = [-1] + [-1]x3 + [-1]x2
POL(1380_1_plus_InvokeMethod(x1, x2)) = [-1] + [-1]x2 + [-1]x1
POL(1387_0_plus_Return(x1, x2)) = [-1] + [-1]x2 + [-1]x1
POL(Cond_1333_0_plus_LE3(x1, x2, x3)) = [-1] + [-1]x3 + [-1]x2
POL(1417_0_plus_Return(x1, x2)) = [-1] + [-1]x2 + [-1]x1
POL(Cond_1333_0_plus_LE4(x1, x2, x3)) = [-1] + [-1]x3 + [-1]x2
POL(1459_0_plus_Return(x1, x2)) = [-1] + [-1]x2 + [-1]x1
POL(Cond_1333_0_plus_LE5(x1, x2, x3)) = [-1] + [-1]x3 + [-1]x2
POL(1507_0_plus_Return(x1, x2)) = [-1] + [-1]x2 + [-1]x1
POL(Cond_1333_0_plus_LE6(x1, x2, x3)) = [-1] + [-1]x3 + [-1]x2
POL(1550_0_plus_Return(x1, x2)) = [-1] + [-1]x2 + [-1]x1
POL(Cond_1333_0_plus_LE7(x1, x2, x3)) = [-1] + [-1]x3 + [-1]x2
POL(Cond_1380_1_plus_InvokeMethod(x1, x2, x3)) = [-1] + [-1]x3 + [-1]x2
POL(Cond_1380_1_plus_InvokeMethod1(x1, x2, x3)) = [-1] + [-1]x3
POL(457_0_TIMES_NE(x1, x2)) = [2]x2
POL(COND_457_0_TIMES_NE(x1, x2, x3)) = [2]x3
The following pairs are in P
>:
COND_457_0_TIMES_NE(TRUE, x0[1], x1[1]) → 457_0_TIMES_NE(x0[1], -(x1[1], 1))
The following pairs are in P
bound:
457_0_TIMES_NE(x0[0], x1[0]) → COND_457_0_TIMES_NE(>(x1[0], 0), x0[0], x1[0])
The following pairs are in P
≥:
457_0_TIMES_NE(x0[0], x1[0]) → COND_457_0_TIMES_NE(>(x1[0], 0), x0[0], x1[0])
There are no usable rules.
(32) Complex Obligation (AND)
(33) Obligation:
IDP problem:
The following function symbols are pre-defined:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
| ~ | Bwxor: (Integer, Integer) -> Integer |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
The following domains are used:
Integer, Boolean
The ITRS R consists of the following rules:
457_0_times_NE(
x0,
0) →
596_0_times_Return(
x0)
754_1_times_InvokeMethod(
596_0_times_Return(
x0),
x0,
0) →
1328_1_times_InvokeMethod(
1333_0_plus_LE(
0,
x0),
0,
x0)
754_1_times_InvokeMethod(
1361_0_times_Return,
0,
x3) →
1328_1_times_InvokeMethod(
1333_0_plus_LE(
0,
0),
0,
0)
754_1_times_InvokeMethod(
1522_0_times_Return(
x0),
x1,
x2) →
1328_1_times_InvokeMethod(
1333_0_plus_LE(
x0,
x1),
x0,
x1)
754_1_times_InvokeMethod(
1566_0_times_Return(
x0),
0,
x3) →
1328_1_times_InvokeMethod(
1333_0_plus_LE(
x0,
0),
x0,
0)
1328_1_times_InvokeMethod(
1351_0_plus_Return,
x1,
x2) →
1361_0_times_Return1328_1_times_InvokeMethod(
1537_0_plus_Return(
x0,
x1,
x2),
x0,
x1) →
1522_0_times_Return(
x2)
1328_1_times_InvokeMethod(
1580_0_plus_Return(
x0),
x1,
x2) →
1566_0_times_Return(
x0)
1328_1_times_InvokeMethod(
1397_0_plus_Return,
x1,
x2) →
1566_0_times_Return(
1)
1328_1_times_InvokeMethod(
1379_0_plus_Return(
x0,
x1),
x0,
x1) →
1522_0_times_Return(
1)
1333_0_plus_LE(
x0,
x1) →
Cond_1333_0_plus_LE(
x1 > 0,
x0,
x1)
Cond_1333_0_plus_LE(
TRUE,
x0,
x1) →
1364_1_plus_InvokeMethod(
1333_0_plus_LE(
x0,
x1 - 1),
x1,
x0,
x1 - 1)
1364_1_plus_InvokeMethod(
1351_0_plus_Return,
x2,
x1,
0) →
1379_0_plus_Return(
x1,
x2)
1364_1_plus_InvokeMethod(
1537_0_plus_Return(
x0,
x1,
x2),
x3,
x0,
x1) →
Cond_1364_1_plus_InvokeMethod(
x2 > 0,
1537_0_plus_Return(
x0,
x1,
x2),
x3,
x0,
x1)
Cond_1364_1_plus_InvokeMethod(
TRUE,
1537_0_plus_Return(
x0,
x1,
x2),
x3,
x0,
x1) →
1537_0_plus_Return(
x0,
x3,
1 + x2)
1364_1_plus_InvokeMethod(
1580_0_plus_Return(
x0),
x2,
x1,
0) →
Cond_1364_1_plus_InvokeMethod1(
x0 > 0,
1580_0_plus_Return(
x0),
x2,
x1,
0)
Cond_1364_1_plus_InvokeMethod1(
TRUE,
1580_0_plus_Return(
x0),
x2,
x1,
0) →
1537_0_plus_Return(
x1,
x2,
1 + x0)
1364_1_plus_InvokeMethod(
1397_0_plus_Return,
x2,
x1,
0) →
Cond_1364_1_plus_InvokeMethod2(
1 > 0,
1397_0_plus_Return,
x2,
x1,
0)
Cond_1364_1_plus_InvokeMethod2(
TRUE,
1397_0_plus_Return,
x2,
x1,
0) →
1537_0_plus_Return(
x1,
x2,
1 + 1)
1364_1_plus_InvokeMethod(
1379_0_plus_Return(
x0,
x1),
x3,
x0,
x1) →
Cond_1364_1_plus_InvokeMethod3(
1 > 0,
1379_0_plus_Return(
x0,
x1),
x3,
x0,
x1)
Cond_1364_1_plus_InvokeMethod3(
TRUE,
1379_0_plus_Return(
x0,
x1),
x3,
x0,
x1) →
1537_0_plus_Return(
x0,
x3,
1 + 1)
1333_0_plus_LE(
x0,
x1) →
Cond_1333_0_plus_LE1(
x1 <= 0 && x0 <= 0,
x0,
x1)
Cond_1333_0_plus_LE1(
TRUE,
x0,
x1) →
1351_0_plus_Return1333_0_plus_LE(
x0,
x1) →
Cond_1333_0_plus_LE2(
x1 <= 0 && x0 > 0,
x0,
x1)
Cond_1333_0_plus_LE2(
TRUE,
x0,
x1) →
1380_1_plus_InvokeMethod(
1387_0_plus_Return(
x0 - 1,
x1),
x0 - 1)
1333_0_plus_LE(
x0,
x1) →
Cond_1333_0_plus_LE3(
x1 <= 0 && x0 > 0,
x0,
x1)
Cond_1333_0_plus_LE3(
TRUE,
x0,
x1) →
1380_1_plus_InvokeMethod(
1417_0_plus_Return(
x0 - 1,
x1),
x0 - 1)
1333_0_plus_LE(
x0,
x1) →
Cond_1333_0_plus_LE4(
x1 <= 0 && x0 > 0,
x0,
x1)
Cond_1333_0_plus_LE4(
TRUE,
x0,
x1) →
1380_1_plus_InvokeMethod(
1459_0_plus_Return(
x0 - 1,
x1),
x0 - 1)
1333_0_plus_LE(
x0,
x1) →
Cond_1333_0_plus_LE5(
x1 <= 0 && x0 > 0,
x0,
x1)
Cond_1333_0_plus_LE5(
TRUE,
x0,
x1) →
1380_1_plus_InvokeMethod(
1507_0_plus_Return(
x0 - 1,
x1),
x0 - 1)
1333_0_plus_LE(
x0,
x1) →
Cond_1333_0_plus_LE6(
x1 <= 0 && x0 > 0,
x0,
x1)
Cond_1333_0_plus_LE6(
TRUE,
x0,
x1) →
1380_1_plus_InvokeMethod(
1550_0_plus_Return(
x0 - 1,
x1),
x0 - 1)
1333_0_plus_LE(
x0,
x1) →
Cond_1333_0_plus_LE7(
x1 <= 0 && x0 > 0,
x0,
x1)
Cond_1333_0_plus_LE7(
TRUE,
x0,
x1) →
1380_1_plus_InvokeMethod(
1333_0_plus_LE(
x0 - 1,
x1),
x0 - 1)
1380_1_plus_InvokeMethod(
1351_0_plus_Return,
0) →
1397_0_plus_Return1380_1_plus_InvokeMethod(
1580_0_plus_Return(
x0),
x2) →
Cond_1380_1_plus_InvokeMethod(
x0 > 0,
1580_0_plus_Return(
x0),
x2)
Cond_1380_1_plus_InvokeMethod(
TRUE,
1580_0_plus_Return(
x0),
x2) →
1580_0_plus_Return(
1 + x0)
1380_1_plus_InvokeMethod(
1397_0_plus_Return,
x2) →
Cond_1380_1_plus_InvokeMethod1(
1 > 0,
1397_0_plus_Return,
x2)
Cond_1380_1_plus_InvokeMethod1(
TRUE,
1397_0_plus_Return,
x2) →
1580_0_plus_Return(
1 + 1)
The integer pair graph contains the following rules and edges:
(0):
457_0_TIMES_NE(
x0[0],
x1[0]) →
COND_457_0_TIMES_NE(
x1[0] > 0,
x0[0],
x1[0])
The set Q consists of the following terms:
457_0_times_NE(
x0,
0)
754_1_times_InvokeMethod(
596_0_times_Return(
x0),
x0,
0)
754_1_times_InvokeMethod(
1361_0_times_Return,
0,
x0)
754_1_times_InvokeMethod(
1522_0_times_Return(
x0),
x1,
x2)
754_1_times_InvokeMethod(
1566_0_times_Return(
x0),
0,
x1)
1328_1_times_InvokeMethod(
1351_0_plus_Return,
x0,
x1)
1328_1_times_InvokeMethod(
1537_0_plus_Return(
x0,
x1,
x2),
x0,
x1)
1328_1_times_InvokeMethod(
1580_0_plus_Return(
x0),
x1,
x2)
1328_1_times_InvokeMethod(
1397_0_plus_Return,
x0,
x1)
1328_1_times_InvokeMethod(
1379_0_plus_Return(
x0,
x1),
x0,
x1)
1333_0_plus_LE(
x0,
x1)
Cond_1333_0_plus_LE(
TRUE,
x0,
x1)
1364_1_plus_InvokeMethod(
1351_0_plus_Return,
x0,
x1,
0)
1364_1_plus_InvokeMethod(
1537_0_plus_Return(
x0,
x1,
x2),
x3,
x0,
x1)
Cond_1364_1_plus_InvokeMethod(
TRUE,
1537_0_plus_Return(
x0,
x1,
x2),
x3,
x0,
x1)
1364_1_plus_InvokeMethod(
1580_0_plus_Return(
x0),
x1,
x2,
0)
Cond_1364_1_plus_InvokeMethod1(
TRUE,
1580_0_plus_Return(
x0),
x1,
x2,
0)
1364_1_plus_InvokeMethod(
1397_0_plus_Return,
x0,
x1,
0)
Cond_1364_1_plus_InvokeMethod2(
TRUE,
1397_0_plus_Return,
x0,
x1,
0)
1364_1_plus_InvokeMethod(
1379_0_plus_Return(
x0,
x1),
x2,
x0,
x1)
Cond_1364_1_plus_InvokeMethod3(
TRUE,
1379_0_plus_Return(
x0,
x1),
x2,
x0,
x1)
Cond_1333_0_plus_LE1(
TRUE,
x0,
x1)
Cond_1333_0_plus_LE2(
TRUE,
x0,
x1)
Cond_1333_0_plus_LE3(
TRUE,
x0,
x1)
Cond_1333_0_plus_LE4(
TRUE,
x0,
x1)
Cond_1333_0_plus_LE5(
TRUE,
x0,
x1)
Cond_1333_0_plus_LE6(
TRUE,
x0,
x1)
Cond_1333_0_plus_LE7(
TRUE,
x0,
x1)
1380_1_plus_InvokeMethod(
1351_0_plus_Return,
0)
1380_1_plus_InvokeMethod(
1580_0_plus_Return(
x0),
x1)
Cond_1380_1_plus_InvokeMethod(
TRUE,
1580_0_plus_Return(
x0),
x1)
1380_1_plus_InvokeMethod(
1397_0_plus_Return,
x0)
Cond_1380_1_plus_InvokeMethod1(
TRUE,
1397_0_plus_Return,
x0)
(34) IDependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(35) TRUE
(36) Obligation:
IDP problem:
The following function symbols are pre-defined:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
| ~ | Bwxor: (Integer, Integer) -> Integer |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
The following domains are used:
Integer, Boolean
The ITRS R consists of the following rules:
457_0_times_NE(
x0,
0) →
596_0_times_Return(
x0)
754_1_times_InvokeMethod(
596_0_times_Return(
x0),
x0,
0) →
1328_1_times_InvokeMethod(
1333_0_plus_LE(
0,
x0),
0,
x0)
754_1_times_InvokeMethod(
1361_0_times_Return,
0,
x3) →
1328_1_times_InvokeMethod(
1333_0_plus_LE(
0,
0),
0,
0)
754_1_times_InvokeMethod(
1522_0_times_Return(
x0),
x1,
x2) →
1328_1_times_InvokeMethod(
1333_0_plus_LE(
x0,
x1),
x0,
x1)
754_1_times_InvokeMethod(
1566_0_times_Return(
x0),
0,
x3) →
1328_1_times_InvokeMethod(
1333_0_plus_LE(
x0,
0),
x0,
0)
1328_1_times_InvokeMethod(
1351_0_plus_Return,
x1,
x2) →
1361_0_times_Return1328_1_times_InvokeMethod(
1537_0_plus_Return(
x0,
x1,
x2),
x0,
x1) →
1522_0_times_Return(
x2)
1328_1_times_InvokeMethod(
1580_0_plus_Return(
x0),
x1,
x2) →
1566_0_times_Return(
x0)
1328_1_times_InvokeMethod(
1397_0_plus_Return,
x1,
x2) →
1566_0_times_Return(
1)
1328_1_times_InvokeMethod(
1379_0_plus_Return(
x0,
x1),
x0,
x1) →
1522_0_times_Return(
1)
1333_0_plus_LE(
x0,
x1) →
Cond_1333_0_plus_LE(
x1 > 0,
x0,
x1)
Cond_1333_0_plus_LE(
TRUE,
x0,
x1) →
1364_1_plus_InvokeMethod(
1333_0_plus_LE(
x0,
x1 - 1),
x1,
x0,
x1 - 1)
1364_1_plus_InvokeMethod(
1351_0_plus_Return,
x2,
x1,
0) →
1379_0_plus_Return(
x1,
x2)
1364_1_plus_InvokeMethod(
1537_0_plus_Return(
x0,
x1,
x2),
x3,
x0,
x1) →
Cond_1364_1_plus_InvokeMethod(
x2 > 0,
1537_0_plus_Return(
x0,
x1,
x2),
x3,
x0,
x1)
Cond_1364_1_plus_InvokeMethod(
TRUE,
1537_0_plus_Return(
x0,
x1,
x2),
x3,
x0,
x1) →
1537_0_plus_Return(
x0,
x3,
1 + x2)
1364_1_plus_InvokeMethod(
1580_0_plus_Return(
x0),
x2,
x1,
0) →
Cond_1364_1_plus_InvokeMethod1(
x0 > 0,
1580_0_plus_Return(
x0),
x2,
x1,
0)
Cond_1364_1_plus_InvokeMethod1(
TRUE,
1580_0_plus_Return(
x0),
x2,
x1,
0) →
1537_0_plus_Return(
x1,
x2,
1 + x0)
1364_1_plus_InvokeMethod(
1397_0_plus_Return,
x2,
x1,
0) →
Cond_1364_1_plus_InvokeMethod2(
1 > 0,
1397_0_plus_Return,
x2,
x1,
0)
Cond_1364_1_plus_InvokeMethod2(
TRUE,
1397_0_plus_Return,
x2,
x1,
0) →
1537_0_plus_Return(
x1,
x2,
1 + 1)
1364_1_plus_InvokeMethod(
1379_0_plus_Return(
x0,
x1),
x3,
x0,
x1) →
Cond_1364_1_plus_InvokeMethod3(
1 > 0,
1379_0_plus_Return(
x0,
x1),
x3,
x0,
x1)
Cond_1364_1_plus_InvokeMethod3(
TRUE,
1379_0_plus_Return(
x0,
x1),
x3,
x0,
x1) →
1537_0_plus_Return(
x0,
x3,
1 + 1)
1333_0_plus_LE(
x0,
x1) →
Cond_1333_0_plus_LE1(
x1 <= 0 && x0 <= 0,
x0,
x1)
Cond_1333_0_plus_LE1(
TRUE,
x0,
x1) →
1351_0_plus_Return1333_0_plus_LE(
x0,
x1) →
Cond_1333_0_plus_LE2(
x1 <= 0 && x0 > 0,
x0,
x1)
Cond_1333_0_plus_LE2(
TRUE,
x0,
x1) →
1380_1_plus_InvokeMethod(
1387_0_plus_Return(
x0 - 1,
x1),
x0 - 1)
1333_0_plus_LE(
x0,
x1) →
Cond_1333_0_plus_LE3(
x1 <= 0 && x0 > 0,
x0,
x1)
Cond_1333_0_plus_LE3(
TRUE,
x0,
x1) →
1380_1_plus_InvokeMethod(
1417_0_plus_Return(
x0 - 1,
x1),
x0 - 1)
1333_0_plus_LE(
x0,
x1) →
Cond_1333_0_plus_LE4(
x1 <= 0 && x0 > 0,
x0,
x1)
Cond_1333_0_plus_LE4(
TRUE,
x0,
x1) →
1380_1_plus_InvokeMethod(
1459_0_plus_Return(
x0 - 1,
x1),
x0 - 1)
1333_0_plus_LE(
x0,
x1) →
Cond_1333_0_plus_LE5(
x1 <= 0 && x0 > 0,
x0,
x1)
Cond_1333_0_plus_LE5(
TRUE,
x0,
x1) →
1380_1_plus_InvokeMethod(
1507_0_plus_Return(
x0 - 1,
x1),
x0 - 1)
1333_0_plus_LE(
x0,
x1) →
Cond_1333_0_plus_LE6(
x1 <= 0 && x0 > 0,
x0,
x1)
Cond_1333_0_plus_LE6(
TRUE,
x0,
x1) →
1380_1_plus_InvokeMethod(
1550_0_plus_Return(
x0 - 1,
x1),
x0 - 1)
1333_0_plus_LE(
x0,
x1) →
Cond_1333_0_plus_LE7(
x1 <= 0 && x0 > 0,
x0,
x1)
Cond_1333_0_plus_LE7(
TRUE,
x0,
x1) →
1380_1_plus_InvokeMethod(
1333_0_plus_LE(
x0 - 1,
x1),
x0 - 1)
1380_1_plus_InvokeMethod(
1351_0_plus_Return,
0) →
1397_0_plus_Return1380_1_plus_InvokeMethod(
1580_0_plus_Return(
x0),
x2) →
Cond_1380_1_plus_InvokeMethod(
x0 > 0,
1580_0_plus_Return(
x0),
x2)
Cond_1380_1_plus_InvokeMethod(
TRUE,
1580_0_plus_Return(
x0),
x2) →
1580_0_plus_Return(
1 + x0)
1380_1_plus_InvokeMethod(
1397_0_plus_Return,
x2) →
Cond_1380_1_plus_InvokeMethod1(
1 > 0,
1397_0_plus_Return,
x2)
Cond_1380_1_plus_InvokeMethod1(
TRUE,
1397_0_plus_Return,
x2) →
1580_0_plus_Return(
1 + 1)
The integer pair graph contains the following rules and edges:
(1):
COND_457_0_TIMES_NE(
TRUE,
x0[1],
x1[1]) →
457_0_TIMES_NE(
x0[1],
x1[1] - 1)
The set Q consists of the following terms:
457_0_times_NE(
x0,
0)
754_1_times_InvokeMethod(
596_0_times_Return(
x0),
x0,
0)
754_1_times_InvokeMethod(
1361_0_times_Return,
0,
x0)
754_1_times_InvokeMethod(
1522_0_times_Return(
x0),
x1,
x2)
754_1_times_InvokeMethod(
1566_0_times_Return(
x0),
0,
x1)
1328_1_times_InvokeMethod(
1351_0_plus_Return,
x0,
x1)
1328_1_times_InvokeMethod(
1537_0_plus_Return(
x0,
x1,
x2),
x0,
x1)
1328_1_times_InvokeMethod(
1580_0_plus_Return(
x0),
x1,
x2)
1328_1_times_InvokeMethod(
1397_0_plus_Return,
x0,
x1)
1328_1_times_InvokeMethod(
1379_0_plus_Return(
x0,
x1),
x0,
x1)
1333_0_plus_LE(
x0,
x1)
Cond_1333_0_plus_LE(
TRUE,
x0,
x1)
1364_1_plus_InvokeMethod(
1351_0_plus_Return,
x0,
x1,
0)
1364_1_plus_InvokeMethod(
1537_0_plus_Return(
x0,
x1,
x2),
x3,
x0,
x1)
Cond_1364_1_plus_InvokeMethod(
TRUE,
1537_0_plus_Return(
x0,
x1,
x2),
x3,
x0,
x1)
1364_1_plus_InvokeMethod(
1580_0_plus_Return(
x0),
x1,
x2,
0)
Cond_1364_1_plus_InvokeMethod1(
TRUE,
1580_0_plus_Return(
x0),
x1,
x2,
0)
1364_1_plus_InvokeMethod(
1397_0_plus_Return,
x0,
x1,
0)
Cond_1364_1_plus_InvokeMethod2(
TRUE,
1397_0_plus_Return,
x0,
x1,
0)
1364_1_plus_InvokeMethod(
1379_0_plus_Return(
x0,
x1),
x2,
x0,
x1)
Cond_1364_1_plus_InvokeMethod3(
TRUE,
1379_0_plus_Return(
x0,
x1),
x2,
x0,
x1)
Cond_1333_0_plus_LE1(
TRUE,
x0,
x1)
Cond_1333_0_plus_LE2(
TRUE,
x0,
x1)
Cond_1333_0_plus_LE3(
TRUE,
x0,
x1)
Cond_1333_0_plus_LE4(
TRUE,
x0,
x1)
Cond_1333_0_plus_LE5(
TRUE,
x0,
x1)
Cond_1333_0_plus_LE6(
TRUE,
x0,
x1)
Cond_1333_0_plus_LE7(
TRUE,
x0,
x1)
1380_1_plus_InvokeMethod(
1351_0_plus_Return,
0)
1380_1_plus_InvokeMethod(
1580_0_plus_Return(
x0),
x1)
Cond_1380_1_plus_InvokeMethod(
TRUE,
1580_0_plus_Return(
x0),
x1)
1380_1_plus_InvokeMethod(
1397_0_plus_Return,
x0)
Cond_1380_1_plus_InvokeMethod1(
TRUE,
1397_0_plus_Return,
x0)
(37) IDependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(38) TRUE