0 JBC
↳1 JBC2FIG (⇒)
↳2 JBCTerminationGraph
↳3 FIGtoITRSProof (⇒)
↳4 IDP
↳5 IDPNonInfProof (⇒)
↳6 IDP
↳7 IDependencyGraphProof (⇔)
↳8 IDP
↳9 IDPNonInfProof (⇒)
↳10 IDP
↳11 IDependencyGraphProof (⇔)
↳12 TRUE
public class TerminatorRec01 {
static int z = 0;
public static void main(String[] args) {
z = args.length;
f(z);
}
public static void f(int x) {
int y = 0;
if (x > 0) {
y = 2;
while (y > 0) {
z = z - 1;
f(x - y);
y = y - 1;
}
}
}
}
Generated 33 rules for P and 4 rules for R.
Combined rules. Obtained 3 rules for P and 0 rules for R.
Filtered ground terms:
223_0_f_Store(x1, x2) → 223_0_f_Store(x2)
Cond_370_1_f_InvokeMethod1(x1, x2, x3, x4, x5) → Cond_370_1_f_InvokeMethod1(x1, x3, x4, x5)
341_0_f_Return(x1) → 341_0_f_Return
Cond_370_1_f_InvokeMethod(x1, x2, x3, x4, x5) → Cond_370_1_f_InvokeMethod(x1, x3, x4, x5)
233_0_f_Return(x1) → 233_0_f_Return
Cond_223_0_f_Store(x1, x2, x3) → Cond_223_0_f_Store(x1, x3)
Filtered unneeded arguments:
370_1_f_InvokeMethod(x1, x2, x3, x4) → 370_1_f_InvokeMethod(x1, x2, x3)
Cond_370_1_f_InvokeMethod(x1, x2, x3, x4) → Cond_370_1_f_InvokeMethod(x1, x2, x3)
Cond_370_1_f_InvokeMethod1(x1, x2, x3, x4) → Cond_370_1_f_InvokeMethod1(x1, x2, x3)
Combined rules. Obtained 3 rules for P and 0 rules for R.
Finished conversion. Obtained 3 rules for P and 0 rules for R. System has predefined symbols.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((x0[0] > 0 && 2 > 0 →* TRUE)∧(x0[0] →* x0[1]))
(0) -> (2), if ((x0[0] > 0 && 2 > 0 →* TRUE)∧(x0[0] →* x0[2]))
(1) -> (3), if ((223_0_f_Store(x0[1] - 2) →* 233_0_f_Return)∧(x0[1] →* x0[3])∧(2 →* x1[3]))
(1) -> (6), if ((223_0_f_Store(x0[1] - 2) →* 341_0_f_Return)∧(x0[1] →* x0[6])∧(2 →* x1[6]))
(2) -> (0), if ((x0[2] - 2 →* x0[0]))
(3) -> (4), if ((x1[3] > 0 && x0[3] > 0 && 0 < x1[3] - 1 →* TRUE)∧(x0[3] →* x0[4])∧(x1[3] →* x1[4]))
(3) -> (5), if ((x1[3] > 0 && x0[3] > 0 && 0 < x1[3] - 1 →* TRUE)∧(x0[3] →* x0[5])∧(x1[3] →* x1[5]))
(4) -> (3), if ((223_0_f_Store(x0[4] - x1[4] - 1) →* 233_0_f_Return)∧(x0[4] →* x0[3])∧(x1[4] - 1 →* x1[3]))
(4) -> (6), if ((223_0_f_Store(x0[4] - x1[4] - 1) →* 341_0_f_Return)∧(x0[4] →* x0[6])∧(x1[4] - 1 →* x1[6]))
(5) -> (0), if ((x0[5] - x1[5] - 1 →* x0[0]))
(6) -> (7), if ((x1[6] > 0 && x0[6] > 0 && 0 < x1[6] - 1 →* TRUE)∧(x0[6] →* x0[7])∧(x1[6] →* x1[7]))
(6) -> (8), if ((x1[6] > 0 && x0[6] > 0 && 0 < x1[6] - 1 →* TRUE)∧(x0[6] →* x0[8])∧(x1[6] →* x1[8]))
(7) -> (3), if ((223_0_f_Store(x0[7] - x1[7] - 1) →* 233_0_f_Return)∧(x0[7] →* x0[3])∧(x1[7] - 1 →* x1[3]))
(7) -> (6), if ((223_0_f_Store(x0[7] - x1[7] - 1) →* 341_0_f_Return)∧(x0[7] →* x0[6])∧(x1[7] - 1 →* x1[6]))
(8) -> (0), if ((x0[8] - x1[8] - 1 →* x0[0]))
(1) (&&(>(x0[0], 0), >(2, 0))=TRUE∧x0[0]=x0[1] ⇒ 223_0_F_STORE(x0[0])≥NonInfC∧223_0_F_STORE(x0[0])≥COND_223_0_F_STORE(&&(>(x0[0], 0), >(2, 0)), x0[0])∧(UIncreasing(COND_223_0_F_STORE(&&(>(x0[0], 0), >(2, 0)), x0[0])), ≥))
(2) (&&(>(x0[0], 0), TRUE)=TRUE ⇒ 223_0_F_STORE(x0[0])≥NonInfC∧223_0_F_STORE(x0[0])≥COND_223_0_F_STORE(&&(>(x0[0], 0), >(2, 0)), x0[0])∧(UIncreasing(COND_223_0_F_STORE(&&(>(x0[0], 0), >(2, 0)), x0[0])), ≥))
(3) (0 ≥ 0 ⇒ (UIncreasing(COND_223_0_F_STORE(&&(>(x0[0], 0), >(2, 0)), x0[0])), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x0[0] ≥ 0∧[(-1)bso_25] ≥ 0)
(4) (0 ≥ 0 ⇒ (UIncreasing(COND_223_0_F_STORE(&&(>(x0[0], 0), >(2, 0)), x0[0])), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x0[0] ≥ 0∧[(-1)bso_25] ≥ 0)
(5) (0 ≥ 0 ⇒ (UIncreasing(COND_223_0_F_STORE(&&(>(x0[0], 0), >(2, 0)), x0[0])), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x0[0] ≥ 0∧[(-1)bso_25] ≥ 0)
(6) (0 ≥ 0 ⇒ (UIncreasing(COND_223_0_F_STORE(&&(>(x0[0], 0), >(2, 0)), x0[0])), ≥)∧[bni_24] ≥ 0∧[(-1)bni_24 + (-1)Bound*bni_24] ≥ 0∧0 ≥ 0∧[(-1)bso_25] ≥ 0)
(7) (&&(>(x0[0], 0), >(2, 0))=TRUE∧x0[0]=x0[2] ⇒ 223_0_F_STORE(x0[0])≥NonInfC∧223_0_F_STORE(x0[0])≥COND_223_0_F_STORE(&&(>(x0[0], 0), >(2, 0)), x0[0])∧(UIncreasing(COND_223_0_F_STORE(&&(>(x0[0], 0), >(2, 0)), x0[0])), ≥))
(8) (&&(>(x0[0], 0), TRUE)=TRUE ⇒ 223_0_F_STORE(x0[0])≥NonInfC∧223_0_F_STORE(x0[0])≥COND_223_0_F_STORE(&&(>(x0[0], 0), >(2, 0)), x0[0])∧(UIncreasing(COND_223_0_F_STORE(&&(>(x0[0], 0), >(2, 0)), x0[0])), ≥))
(9) (0 ≥ 0 ⇒ (UIncreasing(COND_223_0_F_STORE(&&(>(x0[0], 0), >(2, 0)), x0[0])), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x0[0] ≥ 0∧[(-1)bso_25] ≥ 0)
(10) (0 ≥ 0 ⇒ (UIncreasing(COND_223_0_F_STORE(&&(>(x0[0], 0), >(2, 0)), x0[0])), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x0[0] ≥ 0∧[(-1)bso_25] ≥ 0)
(11) (0 ≥ 0 ⇒ (UIncreasing(COND_223_0_F_STORE(&&(>(x0[0], 0), >(2, 0)), x0[0])), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x0[0] ≥ 0∧[(-1)bso_25] ≥ 0)
(12) (0 ≥ 0 ⇒ (UIncreasing(COND_223_0_F_STORE(&&(>(x0[0], 0), >(2, 0)), x0[0])), ≥)∧[bni_24] ≥ 0∧[(-1)bni_24 + (-1)Bound*bni_24] ≥ 0∧0 ≥ 0∧[(-1)bso_25] ≥ 0)
(13) (&&(>(x0[0], 0), >(2, 0))=TRUE∧x0[0]=x0[1]∧223_0_f_Store(-(x0[1], 2))=233_0_f_Return∧x0[1]=x0[3]∧2=x1[3] ⇒ COND_223_0_F_STORE(TRUE, x0[1])≥NonInfC∧COND_223_0_F_STORE(TRUE, x0[1])≥370_1_F_INVOKEMETHOD(223_0_f_Store(-(x0[1], 2)), x0[1], 2)∧(UIncreasing(370_1_F_INVOKEMETHOD(223_0_f_Store(-(x0[1], 2)), x0[1], 2)), ≥))
(14) (&&(>(x0[0], 0), >(2, 0))=TRUE∧x0[0]=x0[1]∧223_0_f_Store(-(x0[1], 2))=341_0_f_Return∧x0[1]=x0[6]∧2=x1[6] ⇒ COND_223_0_F_STORE(TRUE, x0[1])≥NonInfC∧COND_223_0_F_STORE(TRUE, x0[1])≥370_1_F_INVOKEMETHOD(223_0_f_Store(-(x0[1], 2)), x0[1], 2)∧(UIncreasing(370_1_F_INVOKEMETHOD(223_0_f_Store(-(x0[1], 2)), x0[1], 2)), ≥))
(15) (&&(>(x0[0], 0), >(2, 0))=TRUE∧x0[0]=x0[2]∧-(x0[2], 2)=x0[0]1 ⇒ COND_223_0_F_STORE(TRUE, x0[2])≥NonInfC∧COND_223_0_F_STORE(TRUE, x0[2])≥223_0_F_STORE(-(x0[2], 2))∧(UIncreasing(223_0_F_STORE(-(x0[2], 2))), ≥))
(16) (&&(>(x0[0], 0), TRUE)=TRUE ⇒ COND_223_0_F_STORE(TRUE, x0[0])≥NonInfC∧COND_223_0_F_STORE(TRUE, x0[0])≥223_0_F_STORE(-(x0[0], 2))∧(UIncreasing(223_0_F_STORE(-(x0[2], 2))), ≥))
(17) (0 ≥ 0 ⇒ (UIncreasing(223_0_F_STORE(-(x0[2], 2))), ≥)∧[(-1)bni_26 + (-1)Bound*bni_26] + [bni_26]x0[0] ≥ 0∧[(-1)bso_27] + x0[0] ≥ 0)
(18) (0 ≥ 0 ⇒ (UIncreasing(223_0_F_STORE(-(x0[2], 2))), ≥)∧[(-1)bni_26 + (-1)Bound*bni_26] + [bni_26]x0[0] ≥ 0∧[(-1)bso_27] + x0[0] ≥ 0)
(19) (0 ≥ 0 ⇒ (UIncreasing(223_0_F_STORE(-(x0[2], 2))), ≥)∧[(-1)bni_26 + (-1)Bound*bni_26] + [bni_26]x0[0] ≥ 0∧[(-1)bso_27] + x0[0] ≥ 0)
(20) (0 ≥ 0 ⇒ (UIncreasing(223_0_F_STORE(-(x0[2], 2))), ≥)∧[bni_26] ≥ 0∧[(-1)bni_26 + (-1)Bound*bni_26] ≥ 0∧[1] ≥ 0∧[(-1)bso_27] ≥ 0)
(21) (&&(&&(>(x1[3], 0), >(x0[3], 0)), <(0, -(x1[3], 1)))=TRUE∧x0[3]=x0[4]∧x1[3]=x1[4] ⇒ 370_1_F_INVOKEMETHOD(233_0_f_Return, x0[3], x1[3])≥NonInfC∧370_1_F_INVOKEMETHOD(233_0_f_Return, x0[3], x1[3])≥COND_370_1_F_INVOKEMETHOD(&&(&&(>(x1[3], 0), >(x0[3], 0)), <(0, -(x1[3], 1))), 233_0_f_Return, x0[3], x1[3])∧(UIncreasing(COND_370_1_F_INVOKEMETHOD(&&(&&(>(x1[3], 0), >(x0[3], 0)), <(0, -(x1[3], 1))), 233_0_f_Return, x0[3], x1[3])), ≥))
(22) (&&(&&(>(x1[3], 0), >(x0[3], 0)), <(0, -(x1[3], 1)))=TRUE ⇒ 370_1_F_INVOKEMETHOD(233_0_f_Return, x0[3], x1[3])≥NonInfC∧370_1_F_INVOKEMETHOD(233_0_f_Return, x0[3], x1[3])≥COND_370_1_F_INVOKEMETHOD(&&(&&(>(x1[3], 0), >(x0[3], 0)), <(0, -(x1[3], 1))), 233_0_f_Return, x0[3], x1[3])∧(UIncreasing(COND_370_1_F_INVOKEMETHOD(&&(&&(>(x1[3], 0), >(x0[3], 0)), <(0, -(x1[3], 1))), 233_0_f_Return, x0[3], x1[3])), ≥))
(23) (0 ≥ 0 ⇒ (UIncreasing(COND_370_1_F_INVOKEMETHOD(&&(&&(>(x1[3], 0), >(x0[3], 0)), <(0, -(x1[3], 1))), 233_0_f_Return, x0[3], x1[3])), ≥)∧[(-1)Bound*bni_28] + [bni_28]x1[3] + [(2)bni_28]x0[3] ≥ 0∧[1 + (-1)bso_29] + x1[3] + x0[3] ≥ 0)
(24) (0 ≥ 0 ⇒ (UIncreasing(COND_370_1_F_INVOKEMETHOD(&&(&&(>(x1[3], 0), >(x0[3], 0)), <(0, -(x1[3], 1))), 233_0_f_Return, x0[3], x1[3])), ≥)∧[(-1)Bound*bni_28] + [bni_28]x1[3] + [(2)bni_28]x0[3] ≥ 0∧[1 + (-1)bso_29] + x1[3] + x0[3] ≥ 0)
(25) (0 ≥ 0 ⇒ (UIncreasing(COND_370_1_F_INVOKEMETHOD(&&(&&(>(x1[3], 0), >(x0[3], 0)), <(0, -(x1[3], 1))), 233_0_f_Return, x0[3], x1[3])), ≥)∧[(-1)Bound*bni_28] + [bni_28]x1[3] + [(2)bni_28]x0[3] ≥ 0∧[1 + (-1)bso_29] + x1[3] + x0[3] ≥ 0)
(26) (0 ≥ 0 ⇒ (UIncreasing(COND_370_1_F_INVOKEMETHOD(&&(&&(>(x1[3], 0), >(x0[3], 0)), <(0, -(x1[3], 1))), 233_0_f_Return, x0[3], x1[3])), ≥)∧[bni_28] ≥ 0∧[(2)bni_28] ≥ 0∧[(-1)Bound*bni_28] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1 + (-1)bso_29] ≥ 0)
(27) (&&(&&(>(x1[3], 0), >(x0[3], 0)), <(0, -(x1[3], 1)))=TRUE∧x0[3]=x0[5]∧x1[3]=x1[5] ⇒ 370_1_F_INVOKEMETHOD(233_0_f_Return, x0[3], x1[3])≥NonInfC∧370_1_F_INVOKEMETHOD(233_0_f_Return, x0[3], x1[3])≥COND_370_1_F_INVOKEMETHOD(&&(&&(>(x1[3], 0), >(x0[3], 0)), <(0, -(x1[3], 1))), 233_0_f_Return, x0[3], x1[3])∧(UIncreasing(COND_370_1_F_INVOKEMETHOD(&&(&&(>(x1[3], 0), >(x0[3], 0)), <(0, -(x1[3], 1))), 233_0_f_Return, x0[3], x1[3])), ≥))
(28) (&&(&&(>(x1[3], 0), >(x0[3], 0)), <(0, -(x1[3], 1)))=TRUE ⇒ 370_1_F_INVOKEMETHOD(233_0_f_Return, x0[3], x1[3])≥NonInfC∧370_1_F_INVOKEMETHOD(233_0_f_Return, x0[3], x1[3])≥COND_370_1_F_INVOKEMETHOD(&&(&&(>(x1[3], 0), >(x0[3], 0)), <(0, -(x1[3], 1))), 233_0_f_Return, x0[3], x1[3])∧(UIncreasing(COND_370_1_F_INVOKEMETHOD(&&(&&(>(x1[3], 0), >(x0[3], 0)), <(0, -(x1[3], 1))), 233_0_f_Return, x0[3], x1[3])), ≥))
(29) (0 ≥ 0 ⇒ (UIncreasing(COND_370_1_F_INVOKEMETHOD(&&(&&(>(x1[3], 0), >(x0[3], 0)), <(0, -(x1[3], 1))), 233_0_f_Return, x0[3], x1[3])), ≥)∧[(-1)Bound*bni_28] + [bni_28]x1[3] + [(2)bni_28]x0[3] ≥ 0∧[1 + (-1)bso_29] + x1[3] + x0[3] ≥ 0)
(30) (0 ≥ 0 ⇒ (UIncreasing(COND_370_1_F_INVOKEMETHOD(&&(&&(>(x1[3], 0), >(x0[3], 0)), <(0, -(x1[3], 1))), 233_0_f_Return, x0[3], x1[3])), ≥)∧[(-1)Bound*bni_28] + [bni_28]x1[3] + [(2)bni_28]x0[3] ≥ 0∧[1 + (-1)bso_29] + x1[3] + x0[3] ≥ 0)
(31) (0 ≥ 0 ⇒ (UIncreasing(COND_370_1_F_INVOKEMETHOD(&&(&&(>(x1[3], 0), >(x0[3], 0)), <(0, -(x1[3], 1))), 233_0_f_Return, x0[3], x1[3])), ≥)∧[(-1)Bound*bni_28] + [bni_28]x1[3] + [(2)bni_28]x0[3] ≥ 0∧[1 + (-1)bso_29] + x1[3] + x0[3] ≥ 0)
(32) (0 ≥ 0 ⇒ (UIncreasing(COND_370_1_F_INVOKEMETHOD(&&(&&(>(x1[3], 0), >(x0[3], 0)), <(0, -(x1[3], 1))), 233_0_f_Return, x0[3], x1[3])), ≥)∧[bni_28] ≥ 0∧[(2)bni_28] ≥ 0∧[(-1)Bound*bni_28] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1 + (-1)bso_29] ≥ 0)
(33) (&&(&&(>(x1[3], 0), >(x0[3], 0)), <(0, -(x1[3], 1)))=TRUE∧x0[3]=x0[4]∧x1[3]=x1[4]∧223_0_f_Store(-(x0[4], -(x1[4], 1)))=233_0_f_Return∧x0[4]=x0[3]1∧-(x1[4], 1)=x1[3]1 ⇒ COND_370_1_F_INVOKEMETHOD(TRUE, 233_0_f_Return, x0[4], x1[4])≥NonInfC∧COND_370_1_F_INVOKEMETHOD(TRUE, 233_0_f_Return, x0[4], x1[4])≥370_1_F_INVOKEMETHOD(223_0_f_Store(-(x0[4], -(x1[4], 1))), x0[4], -(x1[4], 1))∧(UIncreasing(370_1_F_INVOKEMETHOD(223_0_f_Store(-(x0[4], -(x1[4], 1))), x0[4], -(x1[4], 1))), ≥))
(34) (&&(&&(>(x1[3], 0), >(x0[3], 0)), <(0, -(x1[3], 1)))=TRUE∧x0[3]=x0[4]∧x1[3]=x1[4]∧223_0_f_Store(-(x0[4], -(x1[4], 1)))=341_0_f_Return∧x0[4]=x0[6]∧-(x1[4], 1)=x1[6] ⇒ COND_370_1_F_INVOKEMETHOD(TRUE, 233_0_f_Return, x0[4], x1[4])≥NonInfC∧COND_370_1_F_INVOKEMETHOD(TRUE, 233_0_f_Return, x0[4], x1[4])≥370_1_F_INVOKEMETHOD(223_0_f_Store(-(x0[4], -(x1[4], 1))), x0[4], -(x1[4], 1))∧(UIncreasing(370_1_F_INVOKEMETHOD(223_0_f_Store(-(x0[4], -(x1[4], 1))), x0[4], -(x1[4], 1))), ≥))
(35) (&&(&&(>(x1[3], 0), >(x0[3], 0)), <(0, -(x1[3], 1)))=TRUE∧x0[3]=x0[5]∧x1[3]=x1[5]∧-(x0[5], -(x1[5], 1))=x0[0] ⇒ COND_370_1_F_INVOKEMETHOD(TRUE, 233_0_f_Return, x0[5], x1[5])≥NonInfC∧COND_370_1_F_INVOKEMETHOD(TRUE, 233_0_f_Return, x0[5], x1[5])≥223_0_F_STORE(-(x0[5], -(x1[5], 1)))∧(UIncreasing(223_0_F_STORE(-(x0[5], -(x1[5], 1)))), ≥))
(36) (&&(&&(>(x1[3], 0), >(x0[3], 0)), <(0, -(x1[3], 1)))=TRUE ⇒ COND_370_1_F_INVOKEMETHOD(TRUE, 233_0_f_Return, x0[3], x1[3])≥NonInfC∧COND_370_1_F_INVOKEMETHOD(TRUE, 233_0_f_Return, x0[3], x1[3])≥223_0_F_STORE(-(x0[3], -(x1[3], 1)))∧(UIncreasing(223_0_F_STORE(-(x0[5], -(x1[5], 1)))), ≥))
(37) (0 ≥ 0 ⇒ (UIncreasing(223_0_F_STORE(-(x0[5], -(x1[5], 1)))), ≥)∧[(-1)bni_30 + (-1)Bound*bni_30] + [bni_30]x0[3] ≥ 0∧[(-1)bso_31] + x0[3] ≥ 0)
(38) (0 ≥ 0 ⇒ (UIncreasing(223_0_F_STORE(-(x0[5], -(x1[5], 1)))), ≥)∧[(-1)bni_30 + (-1)Bound*bni_30] + [bni_30]x0[3] ≥ 0∧[(-1)bso_31] + x0[3] ≥ 0)
(39) (0 ≥ 0 ⇒ (UIncreasing(223_0_F_STORE(-(x0[5], -(x1[5], 1)))), ≥)∧[(-1)bni_30 + (-1)Bound*bni_30] + [bni_30]x0[3] ≥ 0∧[(-1)bso_31] + x0[3] ≥ 0)
(40) (0 ≥ 0 ⇒ (UIncreasing(223_0_F_STORE(-(x0[5], -(x1[5], 1)))), ≥)∧0 ≥ 0∧[bni_30] ≥ 0∧[(-1)bni_30 + (-1)Bound*bni_30] ≥ 0∧0 ≥ 0∧[1] ≥ 0∧[(-1)bso_31] ≥ 0)
(41) (&&(&&(>(x1[6], 0), >(x0[6], 0)), <(0, -(x1[6], 1)))=TRUE∧x0[6]=x0[7]∧x1[6]=x1[7] ⇒ 370_1_F_INVOKEMETHOD(341_0_f_Return, x0[6], x1[6])≥NonInfC∧370_1_F_INVOKEMETHOD(341_0_f_Return, x0[6], x1[6])≥COND_370_1_F_INVOKEMETHOD1(&&(&&(>(x1[6], 0), >(x0[6], 0)), <(0, -(x1[6], 1))), 341_0_f_Return, x0[6], x1[6])∧(UIncreasing(COND_370_1_F_INVOKEMETHOD1(&&(&&(>(x1[6], 0), >(x0[6], 0)), <(0, -(x1[6], 1))), 341_0_f_Return, x0[6], x1[6])), ≥))
(42) (&&(&&(>(x1[6], 0), >(x0[6], 0)), <(0, -(x1[6], 1)))=TRUE ⇒ 370_1_F_INVOKEMETHOD(341_0_f_Return, x0[6], x1[6])≥NonInfC∧370_1_F_INVOKEMETHOD(341_0_f_Return, x0[6], x1[6])≥COND_370_1_F_INVOKEMETHOD1(&&(&&(>(x1[6], 0), >(x0[6], 0)), <(0, -(x1[6], 1))), 341_0_f_Return, x0[6], x1[6])∧(UIncreasing(COND_370_1_F_INVOKEMETHOD1(&&(&&(>(x1[6], 0), >(x0[6], 0)), <(0, -(x1[6], 1))), 341_0_f_Return, x0[6], x1[6])), ≥))
(43) (0 ≥ 0 ⇒ (UIncreasing(COND_370_1_F_INVOKEMETHOD1(&&(&&(>(x1[6], 0), >(x0[6], 0)), <(0, -(x1[6], 1))), 341_0_f_Return, x0[6], x1[6])), ≥)∧[(-1)Bound*bni_32] + [bni_32]x1[6] + [(2)bni_32]x0[6] ≥ 0∧[1 + (-1)bso_33] + x1[6] + [2]x0[6] ≥ 0)
(44) (0 ≥ 0 ⇒ (UIncreasing(COND_370_1_F_INVOKEMETHOD1(&&(&&(>(x1[6], 0), >(x0[6], 0)), <(0, -(x1[6], 1))), 341_0_f_Return, x0[6], x1[6])), ≥)∧[(-1)Bound*bni_32] + [bni_32]x1[6] + [(2)bni_32]x0[6] ≥ 0∧[1 + (-1)bso_33] + x1[6] + [2]x0[6] ≥ 0)
(45) (0 ≥ 0 ⇒ (UIncreasing(COND_370_1_F_INVOKEMETHOD1(&&(&&(>(x1[6], 0), >(x0[6], 0)), <(0, -(x1[6], 1))), 341_0_f_Return, x0[6], x1[6])), ≥)∧[(-1)Bound*bni_32] + [bni_32]x1[6] + [(2)bni_32]x0[6] ≥ 0∧[1 + (-1)bso_33] + x1[6] + [2]x0[6] ≥ 0)
(46) (0 ≥ 0 ⇒ (UIncreasing(COND_370_1_F_INVOKEMETHOD1(&&(&&(>(x1[6], 0), >(x0[6], 0)), <(0, -(x1[6], 1))), 341_0_f_Return, x0[6], x1[6])), ≥)∧[bni_32] ≥ 0∧[(2)bni_32] ≥ 0∧[(-1)Bound*bni_32] ≥ 0∧[1] ≥ 0∧[1 + (-1)bso_33] ≥ 0∧[1] ≥ 0)
(47) (&&(&&(>(x1[6], 0), >(x0[6], 0)), <(0, -(x1[6], 1)))=TRUE∧x0[6]=x0[8]∧x1[6]=x1[8] ⇒ 370_1_F_INVOKEMETHOD(341_0_f_Return, x0[6], x1[6])≥NonInfC∧370_1_F_INVOKEMETHOD(341_0_f_Return, x0[6], x1[6])≥COND_370_1_F_INVOKEMETHOD1(&&(&&(>(x1[6], 0), >(x0[6], 0)), <(0, -(x1[6], 1))), 341_0_f_Return, x0[6], x1[6])∧(UIncreasing(COND_370_1_F_INVOKEMETHOD1(&&(&&(>(x1[6], 0), >(x0[6], 0)), <(0, -(x1[6], 1))), 341_0_f_Return, x0[6], x1[6])), ≥))
(48) (&&(&&(>(x1[6], 0), >(x0[6], 0)), <(0, -(x1[6], 1)))=TRUE ⇒ 370_1_F_INVOKEMETHOD(341_0_f_Return, x0[6], x1[6])≥NonInfC∧370_1_F_INVOKEMETHOD(341_0_f_Return, x0[6], x1[6])≥COND_370_1_F_INVOKEMETHOD1(&&(&&(>(x1[6], 0), >(x0[6], 0)), <(0, -(x1[6], 1))), 341_0_f_Return, x0[6], x1[6])∧(UIncreasing(COND_370_1_F_INVOKEMETHOD1(&&(&&(>(x1[6], 0), >(x0[6], 0)), <(0, -(x1[6], 1))), 341_0_f_Return, x0[6], x1[6])), ≥))
(49) (0 ≥ 0 ⇒ (UIncreasing(COND_370_1_F_INVOKEMETHOD1(&&(&&(>(x1[6], 0), >(x0[6], 0)), <(0, -(x1[6], 1))), 341_0_f_Return, x0[6], x1[6])), ≥)∧[(-1)Bound*bni_32] + [bni_32]x1[6] + [(2)bni_32]x0[6] ≥ 0∧[1 + (-1)bso_33] + x1[6] + [2]x0[6] ≥ 0)
(50) (0 ≥ 0 ⇒ (UIncreasing(COND_370_1_F_INVOKEMETHOD1(&&(&&(>(x1[6], 0), >(x0[6], 0)), <(0, -(x1[6], 1))), 341_0_f_Return, x0[6], x1[6])), ≥)∧[(-1)Bound*bni_32] + [bni_32]x1[6] + [(2)bni_32]x0[6] ≥ 0∧[1 + (-1)bso_33] + x1[6] + [2]x0[6] ≥ 0)
(51) (0 ≥ 0 ⇒ (UIncreasing(COND_370_1_F_INVOKEMETHOD1(&&(&&(>(x1[6], 0), >(x0[6], 0)), <(0, -(x1[6], 1))), 341_0_f_Return, x0[6], x1[6])), ≥)∧[(-1)Bound*bni_32] + [bni_32]x1[6] + [(2)bni_32]x0[6] ≥ 0∧[1 + (-1)bso_33] + x1[6] + [2]x0[6] ≥ 0)
(52) (0 ≥ 0 ⇒ (UIncreasing(COND_370_1_F_INVOKEMETHOD1(&&(&&(>(x1[6], 0), >(x0[6], 0)), <(0, -(x1[6], 1))), 341_0_f_Return, x0[6], x1[6])), ≥)∧[bni_32] ≥ 0∧[(2)bni_32] ≥ 0∧[(-1)Bound*bni_32] ≥ 0∧[1] ≥ 0∧[1 + (-1)bso_33] ≥ 0∧[1] ≥ 0)
(53) (&&(&&(>(x1[6], 0), >(x0[6], 0)), <(0, -(x1[6], 1)))=TRUE∧x0[6]=x0[7]∧x1[6]=x1[7]∧223_0_f_Store(-(x0[7], -(x1[7], 1)))=233_0_f_Return∧x0[7]=x0[3]∧-(x1[7], 1)=x1[3] ⇒ COND_370_1_F_INVOKEMETHOD1(TRUE, 341_0_f_Return, x0[7], x1[7])≥NonInfC∧COND_370_1_F_INVOKEMETHOD1(TRUE, 341_0_f_Return, x0[7], x1[7])≥370_1_F_INVOKEMETHOD(223_0_f_Store(-(x0[7], -(x1[7], 1))), x0[7], -(x1[7], 1))∧(UIncreasing(370_1_F_INVOKEMETHOD(223_0_f_Store(-(x0[7], -(x1[7], 1))), x0[7], -(x1[7], 1))), ≥))
(54) (&&(&&(>(x1[6], 0), >(x0[6], 0)), <(0, -(x1[6], 1)))=TRUE∧x0[6]=x0[7]∧x1[6]=x1[7]∧223_0_f_Store(-(x0[7], -(x1[7], 1)))=341_0_f_Return∧x0[7]=x0[6]1∧-(x1[7], 1)=x1[6]1 ⇒ COND_370_1_F_INVOKEMETHOD1(TRUE, 341_0_f_Return, x0[7], x1[7])≥NonInfC∧COND_370_1_F_INVOKEMETHOD1(TRUE, 341_0_f_Return, x0[7], x1[7])≥370_1_F_INVOKEMETHOD(223_0_f_Store(-(x0[7], -(x1[7], 1))), x0[7], -(x1[7], 1))∧(UIncreasing(370_1_F_INVOKEMETHOD(223_0_f_Store(-(x0[7], -(x1[7], 1))), x0[7], -(x1[7], 1))), ≥))
(55) (&&(&&(>(x1[6], 0), >(x0[6], 0)), <(0, -(x1[6], 1)))=TRUE∧x0[6]=x0[8]∧x1[6]=x1[8]∧-(x0[8], -(x1[8], 1))=x0[0] ⇒ COND_370_1_F_INVOKEMETHOD1(TRUE, 341_0_f_Return, x0[8], x1[8])≥NonInfC∧COND_370_1_F_INVOKEMETHOD1(TRUE, 341_0_f_Return, x0[8], x1[8])≥223_0_F_STORE(-(x0[8], -(x1[8], 1)))∧(UIncreasing(223_0_F_STORE(-(x0[8], -(x1[8], 1)))), ≥))
(56) (&&(&&(>(x1[6], 0), >(x0[6], 0)), <(0, -(x1[6], 1)))=TRUE ⇒ COND_370_1_F_INVOKEMETHOD1(TRUE, 341_0_f_Return, x0[6], x1[6])≥NonInfC∧COND_370_1_F_INVOKEMETHOD1(TRUE, 341_0_f_Return, x0[6], x1[6])≥223_0_F_STORE(-(x0[6], -(x1[6], 1)))∧(UIncreasing(223_0_F_STORE(-(x0[8], -(x1[8], 1)))), ≥))
(57) (0 ≥ 0 ⇒ (UIncreasing(223_0_F_STORE(-(x0[8], -(x1[8], 1)))), ≥)∧[(-1)bni_34 + (-1)Bound*bni_34] ≥ 0∧[(-1)bso_35] ≥ 0)
(58) (0 ≥ 0 ⇒ (UIncreasing(223_0_F_STORE(-(x0[8], -(x1[8], 1)))), ≥)∧[(-1)bni_34 + (-1)Bound*bni_34] ≥ 0∧[(-1)bso_35] ≥ 0)
(59) (0 ≥ 0 ⇒ (UIncreasing(223_0_F_STORE(-(x0[8], -(x1[8], 1)))), ≥)∧[(-1)bni_34 + (-1)Bound*bni_34] ≥ 0∧[(-1)bso_35] ≥ 0)
(60) (0 ≥ 0 ⇒ (UIncreasing(223_0_F_STORE(-(x0[8], -(x1[8], 1)))), ≥)∧0 ≥ 0∧0 ≥ 0∧[(-1)bni_34 + (-1)Bound*bni_34] ≥ 0∧0 ≥ 0∧0 ≥ 0∧[(-1)bso_35] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(223_0_F_STORE(x1)) = [-1] + x1
POL(COND_223_0_F_STORE(x1, x2)) = [-1] + x2 + [-1]x1
POL(&&(x1, x2)) = 0
POL(>(x1, x2)) = 0
POL(0) = 0
POL(2) = 0
POL(370_1_F_INVOKEMETHOD(x1, x2, x3)) = x3 + [2]x2 + [-1]x1
POL(223_0_f_Store(x1)) = 0
POL(-(x1, x2)) = 0
POL(233_0_f_Return) = 0
POL(COND_370_1_F_INVOKEMETHOD(x1, x2, x3, x4)) = [-1] + x3 + [-1]x2 + [2]x1
POL(<(x1, x2)) = 0
POL(1) = 0
POL(341_0_f_Return) = 0
POL(COND_370_1_F_INVOKEMETHOD1(x1, x2, x3, x4)) = [-1] + [-1]x2 + [-1]x1
COND_223_0_F_STORE(TRUE, x0[1]) → 370_1_F_INVOKEMETHOD(223_0_f_Store(-(x0[1], 2)), x0[1], 2)
370_1_F_INVOKEMETHOD(233_0_f_Return, x0[3], x1[3]) → COND_370_1_F_INVOKEMETHOD(&&(&&(>(x1[3], 0), >(x0[3], 0)), <(0, -(x1[3], 1))), 233_0_f_Return, x0[3], x1[3])
COND_370_1_F_INVOKEMETHOD(TRUE, 233_0_f_Return, x0[4], x1[4]) → 370_1_F_INVOKEMETHOD(223_0_f_Store(-(x0[4], -(x1[4], 1))), x0[4], -(x1[4], 1))
370_1_F_INVOKEMETHOD(341_0_f_Return, x0[6], x1[6]) → COND_370_1_F_INVOKEMETHOD1(&&(&&(>(x1[6], 0), >(x0[6], 0)), <(0, -(x1[6], 1))), 341_0_f_Return, x0[6], x1[6])
COND_370_1_F_INVOKEMETHOD1(TRUE, 341_0_f_Return, x0[7], x1[7]) → 370_1_F_INVOKEMETHOD(223_0_f_Store(-(x0[7], -(x1[7], 1))), x0[7], -(x1[7], 1))
223_0_F_STORE(x0[0]) → COND_223_0_F_STORE(&&(>(x0[0], 0), >(2, 0)), x0[0])
COND_223_0_F_STORE(TRUE, x0[1]) → 370_1_F_INVOKEMETHOD(223_0_f_Store(-(x0[1], 2)), x0[1], 2)
COND_223_0_F_STORE(TRUE, x0[2]) → 223_0_F_STORE(-(x0[2], 2))
370_1_F_INVOKEMETHOD(233_0_f_Return, x0[3], x1[3]) → COND_370_1_F_INVOKEMETHOD(&&(&&(>(x1[3], 0), >(x0[3], 0)), <(0, -(x1[3], 1))), 233_0_f_Return, x0[3], x1[3])
COND_370_1_F_INVOKEMETHOD(TRUE, 233_0_f_Return, x0[4], x1[4]) → 370_1_F_INVOKEMETHOD(223_0_f_Store(-(x0[4], -(x1[4], 1))), x0[4], -(x1[4], 1))
COND_370_1_F_INVOKEMETHOD(TRUE, 233_0_f_Return, x0[5], x1[5]) → 223_0_F_STORE(-(x0[5], -(x1[5], 1)))
370_1_F_INVOKEMETHOD(341_0_f_Return, x0[6], x1[6]) → COND_370_1_F_INVOKEMETHOD1(&&(&&(>(x1[6], 0), >(x0[6], 0)), <(0, -(x1[6], 1))), 341_0_f_Return, x0[6], x1[6])
COND_370_1_F_INVOKEMETHOD1(TRUE, 341_0_f_Return, x0[7], x1[7]) → 370_1_F_INVOKEMETHOD(223_0_f_Store(-(x0[7], -(x1[7], 1))), x0[7], -(x1[7], 1))
COND_370_1_F_INVOKEMETHOD1(TRUE, 341_0_f_Return, x0[8], x1[8]) → 223_0_F_STORE(-(x0[8], -(x1[8], 1)))
223_0_F_STORE(x0[0]) → COND_223_0_F_STORE(&&(>(x0[0], 0), >(2, 0)), x0[0])
COND_223_0_F_STORE(TRUE, x0[2]) → 223_0_F_STORE(-(x0[2], 2))
COND_370_1_F_INVOKEMETHOD(TRUE, 233_0_f_Return, x0[5], x1[5]) → 223_0_F_STORE(-(x0[5], -(x1[5], 1)))
COND_370_1_F_INVOKEMETHOD1(TRUE, 341_0_f_Return, x0[8], x1[8]) → 223_0_F_STORE(-(x0[8], -(x1[8], 1)))
&&(TRUE, TRUE)1 ↔ TRUE1
&&(TRUE, FALSE)1 ↔ FALSE1
&&(FALSE, TRUE)1 ↔ FALSE1
&&(FALSE, FALSE)1 ↔ FALSE1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(2) -> (0), if ((x0[2] - 2 →* x0[0]))
(5) -> (0), if ((x0[5] - x1[5] - 1 →* x0[0]))
(8) -> (0), if ((x0[8] - x1[8] - 1 →* x0[0]))
(0) -> (2), if ((x0[0] > 0 && 2 > 0 →* TRUE)∧(x0[0] →* x0[2]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(2) -> (0), if ((x0[2] - 2 →* x0[0]))
(0) -> (2), if ((x0[0] > 0 && 2 > 0 →* TRUE)∧(x0[0] →* x0[2]))
(1) (&&(>(x0[0], 0), >(2, 0))=TRUE∧x0[0]=x0[2]∧-(x0[2], 2)=x0[0]1 ⇒ COND_223_0_F_STORE(TRUE, x0[2])≥NonInfC∧COND_223_0_F_STORE(TRUE, x0[2])≥223_0_F_STORE(-(x0[2], 2))∧(UIncreasing(223_0_F_STORE(-(x0[2], 2))), ≥))
(2) (>(x0[0], 0)=TRUE ⇒ COND_223_0_F_STORE(TRUE, x0[0])≥NonInfC∧COND_223_0_F_STORE(TRUE, x0[0])≥223_0_F_STORE(-(x0[0], 2))∧(UIncreasing(223_0_F_STORE(-(x0[2], 2))), ≥))
(3) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(223_0_F_STORE(-(x0[2], 2))), ≥)∧[(-1)bni_10 + (-1)Bound*bni_10] + [bni_10]x0[0] ≥ 0∧[2 + (-1)bso_11] ≥ 0)
(4) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(223_0_F_STORE(-(x0[2], 2))), ≥)∧[(-1)bni_10 + (-1)Bound*bni_10] + [bni_10]x0[0] ≥ 0∧[2 + (-1)bso_11] ≥ 0)
(5) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(223_0_F_STORE(-(x0[2], 2))), ≥)∧[(-1)bni_10 + (-1)Bound*bni_10] + [bni_10]x0[0] ≥ 0∧[2 + (-1)bso_11] ≥ 0)
(6) (x0[0] ≥ 0 ⇒ (UIncreasing(223_0_F_STORE(-(x0[2], 2))), ≥)∧[(-1)Bound*bni_10] + [bni_10]x0[0] ≥ 0∧[2 + (-1)bso_11] ≥ 0)
(7) (&&(>(x0[0], 0), >(2, 0))=TRUE∧x0[0]=x0[2] ⇒ 223_0_F_STORE(x0[0])≥NonInfC∧223_0_F_STORE(x0[0])≥COND_223_0_F_STORE(&&(>(x0[0], 0), >(2, 0)), x0[0])∧(UIncreasing(COND_223_0_F_STORE(&&(>(x0[0], 0), >(2, 0)), x0[0])), ≥))
(8) (>(x0[0], 0)=TRUE ⇒ 223_0_F_STORE(x0[0])≥NonInfC∧223_0_F_STORE(x0[0])≥COND_223_0_F_STORE(&&(>(x0[0], 0), >(2, 0)), x0[0])∧(UIncreasing(COND_223_0_F_STORE(&&(>(x0[0], 0), >(2, 0)), x0[0])), ≥))
(9) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_223_0_F_STORE(&&(>(x0[0], 0), >(2, 0)), x0[0])), ≥)∧[(-1)bni_12 + (-1)Bound*bni_12] + [bni_12]x0[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(10) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_223_0_F_STORE(&&(>(x0[0], 0), >(2, 0)), x0[0])), ≥)∧[(-1)bni_12 + (-1)Bound*bni_12] + [bni_12]x0[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(11) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_223_0_F_STORE(&&(>(x0[0], 0), >(2, 0)), x0[0])), ≥)∧[(-1)bni_12 + (-1)Bound*bni_12] + [bni_12]x0[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(12) (x0[0] ≥ 0 ⇒ (UIncreasing(COND_223_0_F_STORE(&&(>(x0[0], 0), >(2, 0)), x0[0])), ≥)∧[(-1)Bound*bni_12] + [bni_12]x0[0] ≥ 0∧[(-1)bso_13] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = [1]
POL(COND_223_0_F_STORE(x1, x2)) = [-1] + x2 + [-1]x1
POL(223_0_F_STORE(x1)) = [-1] + x1
POL(-(x1, x2)) = x1 + [-1]x2
POL(2) = [2]
POL(&&(x1, x2)) = 0
POL(>(x1, x2)) = [-1]
POL(0) = 0
COND_223_0_F_STORE(TRUE, x0[2]) → 223_0_F_STORE(-(x0[2], 2))
COND_223_0_F_STORE(TRUE, x0[2]) → 223_0_F_STORE(-(x0[2], 2))
223_0_F_STORE(x0[0]) → COND_223_0_F_STORE(&&(>(x0[0], 0), >(2, 0)), x0[0])
223_0_F_STORE(x0[0]) → COND_223_0_F_STORE(&&(>(x0[0], 0), >(2, 0)), x0[0])
&&(TRUE, TRUE)1 ↔ TRUE1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(FALSE, FALSE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer