(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_22 (Sun Microsystems Inc.) Main-Class: MirrorBinTreeRec/MirrorBinTreeRec
package MirrorBinTreeRec;

/**
* Mirror a binary tree
* @author cotto
*/
public class MirrorBinTreeRec {
public static void main(final String[] args) {
Random.args = args;
final Tree tree = Tree.createTree();
mirror(tree);
}

public static void mirror(final Tree tree) {
if (tree == null) {
return;
}
final Tree temp = tree.right;
tree.right = tree.left;
tree.left = temp;
mirror(tree.left);
mirror(tree.right);
}
}


package MirrorBinTreeRec;
public class Random {
static String[] args;
static int index = 0;

public static int random() {
if (args.length <= index) {
return 0;
}
final String string = args[index];
index++;
if (string == null) {
return 0;
}
return string.length();
}
}


package MirrorBinTreeRec;

public class Tree {
Tree left;
Tree right;
int value;

public Tree(final Tree l, final Tree r) {
this.left = l;
this.right = r;
}

public Tree() {
}

public static Tree createNode() {
final Tree result = new Tree();
result.value = Random.random();
return result;
}

public static Tree createTree() {
int counter = Random.random();
if (counter == 0) {
return null;
}
final Tree result = createNode();
Tree t = result;

while (counter > 0) {
final int branch = Random.random();
if (branch > 0) {
if (t.left == null) {
t.left = createNode();
t = result;
} else {
t = t.left;
}
} else {
if (t.right == null) {
t.right = createNode();
t = result;
} else {
t = t.right;
}
}
counter--;
}

return result;
}

public static void main(final String[] args) {
Random.args = args;
createTree();
}
}


(1) JBC2FIG (SOUND transformation)

Constructed FIGraph.

(2) Obligation:

FIGraph based on JBC Program:
MirrorBinTreeRec.MirrorBinTreeRec.main([Ljava/lang/String;)V: Graph of 81 nodes with 0 SCCs.

MirrorBinTreeRec.Tree.createTree()LMirrorBinTreeRec/Tree;: Graph of 346 nodes with 1 SCC.

MirrorBinTreeRec.MirrorBinTreeRec.mirror(LMirrorBinTreeRec/Tree;)V: Graph of 61 nodes with 0 SCCs.

MirrorBinTreeRec.Tree.createNode()LMirrorBinTreeRec/Tree;: Graph of 99 nodes with 0 SCCs.


(3) FIGtoITRSProof (SOUND transformation)

Transformed FIGraph SCCs to IDPs. Logs:


Log for SCC 0:

Generated 44 rules for P and 26 rules for R.


Combined rules. Obtained 6 rules for P and 11 rules for R.


Filtered ground terms:


1935_0_mirror_NONNULL(x1, x2, x3) → 1935_0_mirror_NONNULL(x2, x3)
MirrorBinTreeRec.Tree(x1, x2, x3) → MirrorBinTreeRec.Tree(x2, x3)
2333_0_mirror_Return(x1) → 2333_0_mirror_Return
3416_0_mirror_Return(x1) → 3416_0_mirror_Return
3128_0_mirror_Return(x1) → 3128_0_mirror_Return
2821_0_mirror_Return(x1) → 2821_0_mirror_Return
1978_0_mirror_Return(x1, x2) → 1978_0_mirror_Return

Filtered duplicate args:


1935_0_mirror_NONNULL(x1, x2) → 1935_0_mirror_NONNULL(x2)

Finished conversion. Obtained 6 rules for P and 11 rules for R. System has no predefined symbols.




Log for SCC 1:

Generated 204 rules for P and 195 rules for R.


Combined rules. Obtained 37 rules for P and 34 rules for R.


Filtered ground terms:


9511_0_createTree_FieldAccess(x1, x2, x3, x4, x5) → 9511_0_createTree_FieldAccess(x2, x3, x4, x5)
MirrorBinTreeRec.Tree(x1, x2, x3) → MirrorBinTreeRec.Tree(x2, x3)
9284_0_random_GT(x1, x2, x3) → 9284_0_random_GT(x2, x3)
9574_0_random_IntArithmetic(x1, x2, x3, x4) → 9574_0_random_IntArithmetic(x2, x3)
9177_0_createTree_LE(x1, x2, x3, x4, x5) → 9177_0_createTree_LE(x2, x3, x4, x5)
Cond_11896_1_createTree_InvokeMethod1(x1, x2, x3, x4, x5) → Cond_11896_1_createTree_InvokeMethod1(x1, x3, x4, x5)
1925_0_createNode_Return(x1, x2) → 1925_0_createNode_Return
Cond_11896_1_createTree_InvokeMethod(x1, x2, x3, x4, x5) → Cond_11896_1_createTree_InvokeMethod(x1, x3, x4, x5)
1621_0_createNode_Return(x1, x2) → 1621_0_createNode_Return
11896_0_createNode_New(x1) → 11896_0_createNode_New
Cond_11999_1_createTree_InvokeMethod1(x1, x2, x3, x4, x5) → Cond_11999_1_createTree_InvokeMethod1(x1, x3, x4, x5)
Cond_11999_1_createTree_InvokeMethod(x1, x2, x3, x4, x5) → Cond_11999_1_createTree_InvokeMethod(x1, x3, x4, x5)
11999_0_createNode_New(x1) → 11999_0_createNode_New
Cond_11868_1_createTree_InvokeMethod1(x1, x2, x3, x4, x5) → Cond_11868_1_createTree_InvokeMethod1(x1, x3)
11868_1_createTree_InvokeMethod(x1, x2, x3, x4) → 11868_1_createTree_InvokeMethod(x1, x2)
Cond_11868_1_createTree_InvokeMethod(x1, x2, x3, x4, x5) → Cond_11868_1_createTree_InvokeMethod(x1, x3)
11868_0_createNode_New(x1) → 11868_0_createNode_New
Cond_9574_1_createTree_InvokeMethod3(x1, x2, x3, x4, x5) → Cond_9574_1_createTree_InvokeMethod3(x1, x2, x3)
Cond_12092_1_createTree_InvokeMethod1(x1, x2, x3, x4, x5) → Cond_12092_1_createTree_InvokeMethod1(x1, x3, x4, x5)
Cond_12092_1_createTree_InvokeMethod(x1, x2, x3, x4, x5) → Cond_12092_1_createTree_InvokeMethod(x1, x3, x4, x5)
12092_0_createNode_New(x1) → 12092_0_createNode_New
Cond_10100_1_createTree_InvokeMethod1(x1, x2, x3, x4, x5) → Cond_10100_1_createTree_InvokeMethod1(x1, x3, x4, x5)
Cond_10100_1_createTree_InvokeMethod(x1, x2, x3, x4, x5) → Cond_10100_1_createTree_InvokeMethod(x1, x3, x4, x5)
10100_0_createNode_New(x1) → 10100_0_createNode_New
Cond_9511_0_createTree_FieldAccess2(x1, x2, x3, x4, x5, x6) → Cond_9511_0_createTree_FieldAccess2(x1, x3, x4, x5, x6)
Cond_10307_1_createTree_InvokeMethod1(x1, x2, x3, x4, x5) → Cond_10307_1_createTree_InvokeMethod1(x1, x3, x4, x5)
Cond_10307_1_createTree_InvokeMethod(x1, x2, x3, x4, x5) → Cond_10307_1_createTree_InvokeMethod(x1, x3, x4, x5)
10307_0_createNode_New(x1) → 10307_0_createNode_New
Cond_9511_0_createTree_FieldAccess1(x1, x2, x3, x4, x5, x6) → Cond_9511_0_createTree_FieldAccess1(x1, x3, x4, x5, x6)
Cond_10057_1_createTree_InvokeMethod1(x1, x2, x3, x4, x5) → Cond_10057_1_createTree_InvokeMethod1(x1, x3)
10057_1_createTree_InvokeMethod(x1, x2, x3, x4) → 10057_1_createTree_InvokeMethod(x1, x2)
Cond_10057_1_createTree_InvokeMethod(x1, x2, x3, x4, x5) → Cond_10057_1_createTree_InvokeMethod(x1, x3)
10057_0_createNode_New(x1) → 10057_0_createNode_New
Cond_10501_1_createTree_InvokeMethod1(x1, x2, x3, x4, x5) → Cond_10501_1_createTree_InvokeMethod1(x1, x3, x4, x5)
Cond_10501_1_createTree_InvokeMethod(x1, x2, x3, x4, x5) → Cond_10501_1_createTree_InvokeMethod(x1, x3, x4, x5)
10501_0_createNode_New(x1) → 10501_0_createNode_New
Cond_9511_0_createTree_FieldAccess(x1, x2, x3, x4, x5, x6) → Cond_9511_0_createTree_FieldAccess(x1, x3, x4, x5, x6)
9414_0_random_ArrayAccess(x1, x2, x3) → 9414_0_random_ArrayAccess(x2, x3)
9278_0_random_GT(x1, x2, x3) → 9278_0_random_GT(x2, x3)
Cond_9177_0_createTree_LE1(x1, x2, x3, x4, x5, x6) → Cond_9177_0_createTree_LE1(x1, x3, x4, x5, x6)
Cond_9177_0_createTree_LE(x1, x2, x3, x4, x5, x6) → Cond_9177_0_createTree_LE(x1, x3, x4, x5, x6)
2014_0_createNode_InvokeMethod(x1, x2, x3, x4) → 2014_0_createNode_InvokeMethod
java.lang.ArrayIndexOutOfBoundsException(x1) → java.lang.ArrayIndexOutOfBoundsException
java.lang.IndexOutOfBoundsException(x1) → java.lang.IndexOutOfBoundsException
java.lang.RuntimeException(x1) → java.lang.RuntimeException
java.lang.Exception(x1) → java.lang.Exception
java.lang.Throwable(x1) → java.lang.Throwable
Cond_1587_1_createNode_InvokeMethod(x1, x2, x3, x4) → Cond_1587_1_createNode_InvokeMethod(x1, x2)
1587_0_random_ArrayAccess(x1, x2, x3) → 1587_0_random_ArrayAccess(x2, x3)
1587_1_createNode_InvokeMethod(x1, x2, x3) → 1587_1_createNode_InvokeMethod(x1)
Cond_1678_1_createNode_InvokeMethod1(x1, x2, x3, x4) → Cond_1678_1_createNode_InvokeMethod1(x1, x2)
1678_0_random_IntArithmetic(x1, x2, x3, x4) → 1678_0_random_IntArithmetic(x2, x3)
1678_1_createNode_InvokeMethod(x1, x2, x3) → 1678_1_createNode_InvokeMethod(x1)
Cond_1678_1_createNode_InvokeMethod(x1, x2, x3, x4) → Cond_1678_1_createNode_InvokeMethod(x1, x2)
Cond_1618_1_createNode_InvokeMethod(x1, x2, x3, x4) → Cond_1618_1_createNode_InvokeMethod(x1, x2)
1618_0_random_ArrayAccess(x1, x2, x3) → 1618_0_random_ArrayAccess(x2, x3)
1618_1_createNode_InvokeMethod(x1, x2, x3) → 1618_1_createNode_InvokeMethod(x1)
2043_0_createNode_InvokeMethod(x1, x2, x3, x4) → 2043_0_createNode_InvokeMethod
Cond_1619_1_createNode_InvokeMethod(x1, x2, x3, x4) → Cond_1619_1_createNode_InvokeMethod(x1, x2)
1619_0_random_ArrayAccess(x1, x2, x3) → 1619_0_random_ArrayAccess(x2, x3)
1619_1_createNode_InvokeMethod(x1, x2, x3) → 1619_1_createNode_InvokeMethod(x1)
Cond_1502_1_createNode_InvokeMethod3(x1, x2, x3, x4) → Cond_1502_1_createNode_InvokeMethod3(x1, x2)
1502_0_random_GT(x1, x2, x3) → 1502_0_random_GT(x2, x3)
1502_1_createNode_InvokeMethod(x1, x2, x3) → 1502_1_createNode_InvokeMethod(x1)
Cond_1502_1_createNode_InvokeMethod2(x1, x2, x3, x4) → Cond_1502_1_createNode_InvokeMethod2(x1, x2)
Cond_1502_1_createNode_InvokeMethod1(x1, x2, x3, x4) → Cond_1502_1_createNode_InvokeMethod1(x1, x2)
Cond_1502_1_createNode_InvokeMethod(x1, x2, x3, x4) → Cond_1502_1_createNode_InvokeMethod(x1, x2)
12050_0_createTree_InvokeMethod(x1, x2, x3, x4, x5) → 12050_0_createTree_InvokeMethod(x3, x4, x5)
12189_0_createTree_InvokeMethod(x1, x2, x3, x4, x5) → 12189_0_createTree_InvokeMethod(x3, x4, x5)
11992_0_createTree_InvokeMethod(x1, x2, x3, x4, x5) → 11992_0_createTree_InvokeMethod(x3)
12277_0_createTree_InvokeMethod(x1, x2, x3, x4, x5) → 12277_0_createTree_InvokeMethod(x3, x4, x5)
10396_0_createTree_InvokeMethod(x1, x2, x3, x4, x5) → 10396_0_createTree_InvokeMethod(x3, x4, x5)
10647_0_createTree_InvokeMethod(x1, x2, x3, x4, x5) → 10647_0_createTree_InvokeMethod(x3, x4, x5)
10301_0_createTree_InvokeMethod(x1, x2, x3, x4, x5) → 10301_0_createTree_InvokeMethod(x3)
10799_0_createTree_InvokeMethod(x1, x2, x3, x4, x5) → 10799_0_createTree_InvokeMethod(x3, x4, x5)
9203_0_createTree_Return(x1, x2) → 9203_0_createTree_Return(x2)
11910_0_createNode_InvokeMethod(x1, x2, x3, x4) → 11910_0_createNode_InvokeMethod
12023_0_createNode_InvokeMethod(x1, x2, x3, x4) → 12023_0_createNode_InvokeMethod
11882_0_createNode_InvokeMethod(x1, x2, x3, x4) → 11882_0_createNode_InvokeMethod
12141_0_createNode_InvokeMethod(x1, x2, x3, x4) → 12141_0_createNode_InvokeMethod

Filtered duplicate args:


9511_0_createTree_FieldAccess(x1, x2, x3, x4) → 9511_0_createTree_FieldAccess(x1, x2, x4)
9177_0_createTree_LE(x1, x2, x3, x4) → 9177_0_createTree_LE(x2, x3, x4)
Cond_9511_0_createTree_FieldAccess2(x1, x2, x3, x4, x5) → Cond_9511_0_createTree_FieldAccess2(x1, x2, x3, x5)
Cond_9511_0_createTree_FieldAccess1(x1, x2, x3, x4, x5) → Cond_9511_0_createTree_FieldAccess1(x1, x2, x3, x5)
Cond_9511_0_createTree_FieldAccess(x1, x2, x3, x4, x5) → Cond_9511_0_createTree_FieldAccess(x1, x2, x3, x5)
Cond_9177_0_createTree_LE1(x1, x2, x3, x4, x5) → Cond_9177_0_createTree_LE1(x1, x3, x4, x5)
Cond_9177_0_createTree_LE(x1, x2, x3, x4, x5) → Cond_9177_0_createTree_LE(x1, x3, x4, x5)

Filtered all non-integer terms:


9177_0_createTree_LE(x1, x2, x3) → 9177_0_createTree_LE(x3)
Cond_9177_0_createTree_LE(x1, x2, x3, x4) → Cond_9177_0_createTree_LE(x1, x4)
9278_1_createTree_InvokeMethod(x1, x2, x3, x4) → 9278_1_createTree_InvokeMethod(x1, x2)
Cond_9177_0_createTree_LE1(x1, x2, x3, x4) → Cond_9177_0_createTree_LE1(x1, x4)
9284_1_createTree_InvokeMethod(x1, x2, x3, x4) → 9284_1_createTree_InvokeMethod(x1, x2)
Cond_9278_1_createTree_InvokeMethod(x1, x2, x3, x4, x5) → Cond_9278_1_createTree_InvokeMethod(x1, x2, x3)
9414_1_createTree_InvokeMethod(x1, x2, x3, x4) → 9414_1_createTree_InvokeMethod(x1, x2)
Cond_9414_1_createTree_InvokeMethod(x1, x2, x3, x4, x5) → Cond_9414_1_createTree_InvokeMethod(x1, x2, x3)
9574_1_createTree_InvokeMethod(x1, x2, x3, x4) → 9574_1_createTree_InvokeMethod(x1, x2)
9574_0_random_IntArithmetic(x1, x2) → 9574_0_random_IntArithmetic(x2)
Cond_9574_1_createTree_InvokeMethod(x1, x2, x3, x4, x5) → Cond_9574_1_createTree_InvokeMethod(x1, x2, x3)
9511_0_createTree_FieldAccess(x1, x2, x3) → 9511_0_createTree_FieldAccess(x1)
MirrorBinTreeRec.Tree(x1, x2) → MirrorBinTreeRec.Tree
Cond_9511_0_createTree_FieldAccess(x1, x2, x3, x4) → Cond_9511_0_createTree_FieldAccess(x1, x2)
10501_1_createTree_InvokeMethod(x1, x2, x3, x4) → 10501_1_createTree_InvokeMethod(x1, x2)
Cond_10501_1_createTree_InvokeMethod(x1, x2, x3, x4) → Cond_10501_1_createTree_InvokeMethod(x1, x2)
Cond_10501_1_createTree_InvokeMethod1(x1, x2, x3, x4) → Cond_10501_1_createTree_InvokeMethod1(x1, x2)
Cond_9511_0_createTree_FieldAccess1(x1, x2, x3, x4) → Cond_9511_0_createTree_FieldAccess1(x1, x2)
10307_1_createTree_InvokeMethod(x1, x2, x3, x4) → 10307_1_createTree_InvokeMethod(x1, x2)
Cond_10307_1_createTree_InvokeMethod(x1, x2, x3, x4) → Cond_10307_1_createTree_InvokeMethod(x1, x2)
Cond_10307_1_createTree_InvokeMethod1(x1, x2, x3, x4) → Cond_10307_1_createTree_InvokeMethod1(x1, x2)
Cond_9511_0_createTree_FieldAccess2(x1, x2, x3, x4) → Cond_9511_0_createTree_FieldAccess2(x1, x2)
10100_1_createTree_InvokeMethod(x1, x2, x3, x4) → 10100_1_createTree_InvokeMethod(x1, x2)
Cond_10100_1_createTree_InvokeMethod(x1, x2, x3, x4) → Cond_10100_1_createTree_InvokeMethod(x1, x2)
Cond_10100_1_createTree_InvokeMethod1(x1, x2, x3, x4) → Cond_10100_1_createTree_InvokeMethod1(x1, x2)
Cond_9574_1_createTree_InvokeMethod1(x1, x2, x3, x4, x5) → Cond_9574_1_createTree_InvokeMethod1(x1, x2, x3)
Cond_9574_1_createTree_InvokeMethod2(x1, x2, x3, x4, x5) → Cond_9574_1_createTree_InvokeMethod2(x1, x2, x3)
12092_1_createTree_InvokeMethod(x1, x2, x3, x4) → 12092_1_createTree_InvokeMethod(x1, x2)
Cond_12092_1_createTree_InvokeMethod(x1, x2, x3, x4) → Cond_12092_1_createTree_InvokeMethod(x1, x2)
Cond_12092_1_createTree_InvokeMethod1(x1, x2, x3, x4) → Cond_12092_1_createTree_InvokeMethod1(x1, x2)
Cond_9574_1_createTree_InvokeMethod4(x1, x2, x3, x4, x5) → Cond_9574_1_createTree_InvokeMethod4(x1, x2, x3)
Cond_9574_1_createTree_InvokeMethod5(x1, x2, x3, x4, x5) → Cond_9574_1_createTree_InvokeMethod5(x1, x2, x3)
11999_1_createTree_InvokeMethod(x1, x2, x3, x4) → 11999_1_createTree_InvokeMethod(x1, x2)
Cond_11999_1_createTree_InvokeMethod(x1, x2, x3, x4) → Cond_11999_1_createTree_InvokeMethod(x1, x2)
Cond_11999_1_createTree_InvokeMethod1(x1, x2, x3, x4) → Cond_11999_1_createTree_InvokeMethod1(x1, x2)
Cond_9574_1_createTree_InvokeMethod6(x1, x2, x3, x4, x5) → Cond_9574_1_createTree_InvokeMethod6(x1, x2, x3)
Cond_9574_1_createTree_InvokeMethod7(x1, x2, x3, x4, x5) → Cond_9574_1_createTree_InvokeMethod7(x1, x2, x3)
11896_1_createTree_InvokeMethod(x1, x2, x3, x4) → 11896_1_createTree_InvokeMethod(x1, x2)
Cond_11896_1_createTree_InvokeMethod(x1, x2, x3, x4) → Cond_11896_1_createTree_InvokeMethod(x1, x2)
Cond_11896_1_createTree_InvokeMethod1(x1, x2, x3, x4) → Cond_11896_1_createTree_InvokeMethod1(x1, x2)
Cond_9574_1_createTree_InvokeMethod8(x1, x2, x3, x4, x5) → Cond_9574_1_createTree_InvokeMethod8(x1, x2, x3)
Cond_9284_1_createTree_InvokeMethod(x1, x2, x3, x4, x5) → Cond_9284_1_createTree_InvokeMethod(x1, x2, x3)
9203_0_createTree_Return(x1) → 9203_0_createTree_Return
10799_0_createTree_InvokeMethod(x1, x2, x3) → 10799_0_createTree_InvokeMethod(x1)
10647_0_createTree_InvokeMethod(x1, x2, x3) → 10647_0_createTree_InvokeMethod(x1)
10396_0_createTree_InvokeMethod(x1, x2, x3) → 10396_0_createTree_InvokeMethod(x1)
12277_0_createTree_InvokeMethod(x1, x2, x3) → 12277_0_createTree_InvokeMethod(x1)
12189_0_createTree_InvokeMethod(x1, x2, x3) → 12189_0_createTree_InvokeMethod(x1)
12050_0_createTree_InvokeMethod(x1, x2, x3) → 12050_0_createTree_InvokeMethod(x1)
1678_0_random_IntArithmetic(x1, x2) → 1678_0_random_IntArithmetic(x2)

Filtered all free variables:


9278_1_createTree_InvokeMethod(x1, x2) → 9278_1_createTree_InvokeMethod(x2)
9284_1_createTree_InvokeMethod(x1, x2) → 9284_1_createTree_InvokeMethod(x2)
Cond_9278_1_createTree_InvokeMethod(x1, x2, x3) → Cond_9278_1_createTree_InvokeMethod(x1, x3)
9414_1_createTree_InvokeMethod(x1, x2) → 9414_1_createTree_InvokeMethod(x2)
Cond_9414_1_createTree_InvokeMethod(x1, x2, x3) → Cond_9414_1_createTree_InvokeMethod(x1, x3)
9574_1_createTree_InvokeMethod(x1, x2) → 9574_1_createTree_InvokeMethod(x2)
Cond_9574_1_createTree_InvokeMethod(x1, x2, x3) → Cond_9574_1_createTree_InvokeMethod(x1, x3)
Cond_9574_1_createTree_InvokeMethod1(x1, x2, x3) → Cond_9574_1_createTree_InvokeMethod1(x1, x3)
Cond_9574_1_createTree_InvokeMethod2(x1, x2, x3) → Cond_9574_1_createTree_InvokeMethod2(x1, x3)
Cond_9574_1_createTree_InvokeMethod3(x1, x2, x3) → Cond_9574_1_createTree_InvokeMethod3(x1, x3)
Cond_9574_1_createTree_InvokeMethod4(x1, x2, x3) → Cond_9574_1_createTree_InvokeMethod4(x1, x3)
Cond_9574_1_createTree_InvokeMethod5(x1, x2, x3) → Cond_9574_1_createTree_InvokeMethod5(x1, x3)
Cond_9574_1_createTree_InvokeMethod6(x1, x2, x3) → Cond_9574_1_createTree_InvokeMethod6(x1, x3)
Cond_9574_1_createTree_InvokeMethod7(x1, x2, x3) → Cond_9574_1_createTree_InvokeMethod7(x1, x3)
Cond_9574_1_createTree_InvokeMethod8(x1, x2, x3) → Cond_9574_1_createTree_InvokeMethod8(x1, x3)
Cond_9284_1_createTree_InvokeMethod(x1, x2, x3) → Cond_9284_1_createTree_InvokeMethod(x1, x3)
1502_0_random_GT(x1, x2) → 1502_0_random_GT
1587_0_random_ArrayAccess(x1, x2) → 1587_0_random_ArrayAccess(x1)
ARRAY(x1, x2) → ARRAY(x1)
1618_0_random_ArrayAccess(x1, x2) → 1618_0_random_ArrayAccess(x1)
1619_0_random_ArrayAccess(x1, x2) → 1619_0_random_ArrayAccess(x1)
1678_0_random_IntArithmetic(x1) → 1678_0_random_IntArithmetic

Filtered ground terms:


Cond_1678_1_createNode_InvokeMethod1(x1, x2) → Cond_1678_1_createNode_InvokeMethod1(x1)
1678_1_createNode_InvokeMethod(x1) → 1678_1_createNode_InvokeMethod
Cond_1678_1_createNode_InvokeMethod(x1, x2) → Cond_1678_1_createNode_InvokeMethod(x1)
Cond_1502_1_createNode_InvokeMethod3(x1, x2) → Cond_1502_1_createNode_InvokeMethod3(x1)
1502_1_createNode_InvokeMethod(x1) → 1502_1_createNode_InvokeMethod
Cond_1502_1_createNode_InvokeMethod2(x1, x2) → Cond_1502_1_createNode_InvokeMethod2(x1)
Cond_1502_1_createNode_InvokeMethod1(x1, x2) → Cond_1502_1_createNode_InvokeMethod1(x1)
Cond_1502_1_createNode_InvokeMethod(x1, x2) → Cond_1502_1_createNode_InvokeMethod(x1)

Combined rules. Obtained 25 rules for P and 29 rules for R.


Finished conversion. Obtained 25 rules for P and 29 rules for R. System has predefined symbols.


(4) Complex Obligation (AND)

(5) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:
none


The ITRS R consists of the following rules:
1935_0_mirror_NONNULL(NULL) → 1978_0_mirror_Return
2315_1_mirror_InvokeMethod(1978_0_mirror_Return, NULL) → 2333_0_mirror_Return
2315_1_mirror_InvokeMethod(2333_0_mirror_Return, x0) → 2821_0_mirror_Return
2315_1_mirror_InvokeMethod(2821_0_mirror_Return, x0) → 2821_0_mirror_Return
2315_1_mirror_InvokeMethod(3128_0_mirror_Return, x0) → 2821_0_mirror_Return
2315_1_mirror_InvokeMethod(3416_0_mirror_Return, x0) → 2821_0_mirror_Return
3018_1_mirror_InvokeMethod(1978_0_mirror_Return, NULL) → 3128_0_mirror_Return
3018_1_mirror_InvokeMethod(2333_0_mirror_Return, x0) → 3416_0_mirror_Return
3018_1_mirror_InvokeMethod(2821_0_mirror_Return, x0) → 3416_0_mirror_Return
3018_1_mirror_InvokeMethod(3128_0_mirror_Return, x0) → 3416_0_mirror_Return
3018_1_mirror_InvokeMethod(3416_0_mirror_Return, x0) → 3416_0_mirror_Return

The integer pair graph contains the following rules and edges:
(0): 1935_0_MIRROR_NONNULL(java.lang.Object(MirrorBinTreeRec.Tree(x0[0], x1[0]))) → 2258_1_MIRROR_INVOKEMETHOD(1935_0_mirror_NONNULL(x0[0]), java.lang.Object(MirrorBinTreeRec.Tree(x1[0], x0[0])), x0[0])
(1): 1935_0_MIRROR_NONNULL(java.lang.Object(MirrorBinTreeRec.Tree(x0[1], x1[1]))) → 1935_0_MIRROR_NONNULL(x0[1])
(2): 2258_1_MIRROR_INVOKEMETHOD(1978_0_mirror_Return, java.lang.Object(MirrorBinTreeRec.Tree(x0[2], NULL)), NULL) → 1935_0_MIRROR_NONNULL(x0[2])
(3): 2258_1_MIRROR_INVOKEMETHOD(2821_0_mirror_Return, java.lang.Object(MirrorBinTreeRec.Tree(x0[3], x1[3])), x1[3]) → 1935_0_MIRROR_NONNULL(x0[3])
(4): 2258_1_MIRROR_INVOKEMETHOD(3128_0_mirror_Return, java.lang.Object(MirrorBinTreeRec.Tree(x0[4], x1[4])), x1[4]) → 1935_0_MIRROR_NONNULL(x0[4])
(5): 2258_1_MIRROR_INVOKEMETHOD(3416_0_mirror_Return, java.lang.Object(MirrorBinTreeRec.Tree(x0[5], x1[5])), x1[5]) → 1935_0_MIRROR_NONNULL(x0[5])
(6): 2258_1_MIRROR_INVOKEMETHOD(2333_0_mirror_Return, java.lang.Object(MirrorBinTreeRec.Tree(x0[6], x1[6])), x1[6]) → 1935_0_MIRROR_NONNULL(x0[6])

(0) -> (2), if ((1935_0_mirror_NONNULL(x0[0]) →* 1978_0_mirror_Return)∧(java.lang.Object(MirrorBinTreeRec.Tree(x1[0], x0[0])) →* java.lang.Object(MirrorBinTreeRec.Tree(x0[2], NULL)))∧(x0[0]* NULL))


(0) -> (3), if ((1935_0_mirror_NONNULL(x0[0]) →* 2821_0_mirror_Return)∧(java.lang.Object(MirrorBinTreeRec.Tree(x1[0], x0[0])) →* java.lang.Object(MirrorBinTreeRec.Tree(x0[3], x1[3])))∧(x0[0]* x1[3]))


(0) -> (4), if ((1935_0_mirror_NONNULL(x0[0]) →* 3128_0_mirror_Return)∧(java.lang.Object(MirrorBinTreeRec.Tree(x1[0], x0[0])) →* java.lang.Object(MirrorBinTreeRec.Tree(x0[4], x1[4])))∧(x0[0]* x1[4]))


(0) -> (5), if ((1935_0_mirror_NONNULL(x0[0]) →* 3416_0_mirror_Return)∧(java.lang.Object(MirrorBinTreeRec.Tree(x1[0], x0[0])) →* java.lang.Object(MirrorBinTreeRec.Tree(x0[5], x1[5])))∧(x0[0]* x1[5]))


(0) -> (6), if ((1935_0_mirror_NONNULL(x0[0]) →* 2333_0_mirror_Return)∧(java.lang.Object(MirrorBinTreeRec.Tree(x1[0], x0[0])) →* java.lang.Object(MirrorBinTreeRec.Tree(x0[6], x1[6])))∧(x0[0]* x1[6]))


(1) -> (0), if ((x0[1]* java.lang.Object(MirrorBinTreeRec.Tree(x0[0], x1[0]))))


(1) -> (1), if ((x0[1]* java.lang.Object(MirrorBinTreeRec.Tree(x0[1]', x1[1]'))))


(2) -> (0), if ((x0[2]* java.lang.Object(MirrorBinTreeRec.Tree(x0[0], x1[0]))))


(2) -> (1), if ((x0[2]* java.lang.Object(MirrorBinTreeRec.Tree(x0[1], x1[1]))))


(3) -> (0), if ((x0[3]* java.lang.Object(MirrorBinTreeRec.Tree(x0[0], x1[0]))))


(3) -> (1), if ((x0[3]* java.lang.Object(MirrorBinTreeRec.Tree(x0[1], x1[1]))))


(4) -> (0), if ((x0[4]* java.lang.Object(MirrorBinTreeRec.Tree(x0[0], x1[0]))))


(4) -> (1), if ((x0[4]* java.lang.Object(MirrorBinTreeRec.Tree(x0[1], x1[1]))))


(5) -> (0), if ((x0[5]* java.lang.Object(MirrorBinTreeRec.Tree(x0[0], x1[0]))))


(5) -> (1), if ((x0[5]* java.lang.Object(MirrorBinTreeRec.Tree(x0[1], x1[1]))))


(6) -> (0), if ((x0[6]* java.lang.Object(MirrorBinTreeRec.Tree(x0[0], x1[0]))))


(6) -> (1), if ((x0[6]* java.lang.Object(MirrorBinTreeRec.Tree(x0[1], x1[1]))))



The set Q consists of the following terms:
1935_0_mirror_NONNULL(NULL)
2315_1_mirror_InvokeMethod(1978_0_mirror_Return, NULL)
2315_1_mirror_InvokeMethod(2333_0_mirror_Return, x0)
2315_1_mirror_InvokeMethod(2821_0_mirror_Return, x0)
2315_1_mirror_InvokeMethod(3128_0_mirror_Return, x0)
2315_1_mirror_InvokeMethod(3416_0_mirror_Return, x0)
3018_1_mirror_InvokeMethod(1978_0_mirror_Return, NULL)
3018_1_mirror_InvokeMethod(2333_0_mirror_Return, x0)
3018_1_mirror_InvokeMethod(2821_0_mirror_Return, x0)
3018_1_mirror_InvokeMethod(3128_0_mirror_Return, x0)
3018_1_mirror_InvokeMethod(3416_0_mirror_Return, x0)

(6) IDPtoQDPProof (SOUND transformation)

Represented integers and predefined function symbols by Terms

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

1935_0_MIRROR_NONNULL(java.lang.Object(MirrorBinTreeRec.Tree(x0[0], x1[0]))) → 2258_1_MIRROR_INVOKEMETHOD(1935_0_mirror_NONNULL(x0[0]), java.lang.Object(MirrorBinTreeRec.Tree(x1[0], x0[0])), x0[0])
1935_0_MIRROR_NONNULL(java.lang.Object(MirrorBinTreeRec.Tree(x0[1], x1[1]))) → 1935_0_MIRROR_NONNULL(x0[1])
2258_1_MIRROR_INVOKEMETHOD(1978_0_mirror_Return, java.lang.Object(MirrorBinTreeRec.Tree(x0[2], NULL)), NULL) → 1935_0_MIRROR_NONNULL(x0[2])
2258_1_MIRROR_INVOKEMETHOD(2821_0_mirror_Return, java.lang.Object(MirrorBinTreeRec.Tree(x0[3], x1[3])), x1[3]) → 1935_0_MIRROR_NONNULL(x0[3])
2258_1_MIRROR_INVOKEMETHOD(3128_0_mirror_Return, java.lang.Object(MirrorBinTreeRec.Tree(x0[4], x1[4])), x1[4]) → 1935_0_MIRROR_NONNULL(x0[4])
2258_1_MIRROR_INVOKEMETHOD(3416_0_mirror_Return, java.lang.Object(MirrorBinTreeRec.Tree(x0[5], x1[5])), x1[5]) → 1935_0_MIRROR_NONNULL(x0[5])
2258_1_MIRROR_INVOKEMETHOD(2333_0_mirror_Return, java.lang.Object(MirrorBinTreeRec.Tree(x0[6], x1[6])), x1[6]) → 1935_0_MIRROR_NONNULL(x0[6])

The TRS R consists of the following rules:

1935_0_mirror_NONNULL(NULL) → 1978_0_mirror_Return
2315_1_mirror_InvokeMethod(1978_0_mirror_Return, NULL) → 2333_0_mirror_Return
2315_1_mirror_InvokeMethod(2333_0_mirror_Return, x0) → 2821_0_mirror_Return
2315_1_mirror_InvokeMethod(2821_0_mirror_Return, x0) → 2821_0_mirror_Return
2315_1_mirror_InvokeMethod(3128_0_mirror_Return, x0) → 2821_0_mirror_Return
2315_1_mirror_InvokeMethod(3416_0_mirror_Return, x0) → 2821_0_mirror_Return
3018_1_mirror_InvokeMethod(1978_0_mirror_Return, NULL) → 3128_0_mirror_Return
3018_1_mirror_InvokeMethod(2333_0_mirror_Return, x0) → 3416_0_mirror_Return
3018_1_mirror_InvokeMethod(2821_0_mirror_Return, x0) → 3416_0_mirror_Return
3018_1_mirror_InvokeMethod(3128_0_mirror_Return, x0) → 3416_0_mirror_Return
3018_1_mirror_InvokeMethod(3416_0_mirror_Return, x0) → 3416_0_mirror_Return

The set Q consists of the following terms:

1935_0_mirror_NONNULL(NULL)
2315_1_mirror_InvokeMethod(1978_0_mirror_Return, NULL)
2315_1_mirror_InvokeMethod(2333_0_mirror_Return, x0)
2315_1_mirror_InvokeMethod(2821_0_mirror_Return, x0)
2315_1_mirror_InvokeMethod(3128_0_mirror_Return, x0)
2315_1_mirror_InvokeMethod(3416_0_mirror_Return, x0)
3018_1_mirror_InvokeMethod(1978_0_mirror_Return, NULL)
3018_1_mirror_InvokeMethod(2333_0_mirror_Return, x0)
3018_1_mirror_InvokeMethod(2821_0_mirror_Return, x0)
3018_1_mirror_InvokeMethod(3128_0_mirror_Return, x0)
3018_1_mirror_InvokeMethod(3416_0_mirror_Return, x0)

We have to consider all minimal (P,Q,R)-chains.

(8) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 4 less nodes.

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

2258_1_MIRROR_INVOKEMETHOD(1978_0_mirror_Return, java.lang.Object(MirrorBinTreeRec.Tree(x0[2], NULL)), NULL) → 1935_0_MIRROR_NONNULL(x0[2])
1935_0_MIRROR_NONNULL(java.lang.Object(MirrorBinTreeRec.Tree(x0[0], x1[0]))) → 2258_1_MIRROR_INVOKEMETHOD(1935_0_mirror_NONNULL(x0[0]), java.lang.Object(MirrorBinTreeRec.Tree(x1[0], x0[0])), x0[0])
1935_0_MIRROR_NONNULL(java.lang.Object(MirrorBinTreeRec.Tree(x0[1], x1[1]))) → 1935_0_MIRROR_NONNULL(x0[1])

The TRS R consists of the following rules:

1935_0_mirror_NONNULL(NULL) → 1978_0_mirror_Return
2315_1_mirror_InvokeMethod(1978_0_mirror_Return, NULL) → 2333_0_mirror_Return
2315_1_mirror_InvokeMethod(2333_0_mirror_Return, x0) → 2821_0_mirror_Return
2315_1_mirror_InvokeMethod(2821_0_mirror_Return, x0) → 2821_0_mirror_Return
2315_1_mirror_InvokeMethod(3128_0_mirror_Return, x0) → 2821_0_mirror_Return
2315_1_mirror_InvokeMethod(3416_0_mirror_Return, x0) → 2821_0_mirror_Return
3018_1_mirror_InvokeMethod(1978_0_mirror_Return, NULL) → 3128_0_mirror_Return
3018_1_mirror_InvokeMethod(2333_0_mirror_Return, x0) → 3416_0_mirror_Return
3018_1_mirror_InvokeMethod(2821_0_mirror_Return, x0) → 3416_0_mirror_Return
3018_1_mirror_InvokeMethod(3128_0_mirror_Return, x0) → 3416_0_mirror_Return
3018_1_mirror_InvokeMethod(3416_0_mirror_Return, x0) → 3416_0_mirror_Return

The set Q consists of the following terms:

1935_0_mirror_NONNULL(NULL)
2315_1_mirror_InvokeMethod(1978_0_mirror_Return, NULL)
2315_1_mirror_InvokeMethod(2333_0_mirror_Return, x0)
2315_1_mirror_InvokeMethod(2821_0_mirror_Return, x0)
2315_1_mirror_InvokeMethod(3128_0_mirror_Return, x0)
2315_1_mirror_InvokeMethod(3416_0_mirror_Return, x0)
3018_1_mirror_InvokeMethod(1978_0_mirror_Return, NULL)
3018_1_mirror_InvokeMethod(2333_0_mirror_Return, x0)
3018_1_mirror_InvokeMethod(2821_0_mirror_Return, x0)
3018_1_mirror_InvokeMethod(3128_0_mirror_Return, x0)
3018_1_mirror_InvokeMethod(3416_0_mirror_Return, x0)

We have to consider all minimal (P,Q,R)-chains.

(10) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

2258_1_MIRROR_INVOKEMETHOD(1978_0_mirror_Return, java.lang.Object(MirrorBinTreeRec.Tree(x0[2], NULL)), NULL) → 1935_0_MIRROR_NONNULL(x0[2])
1935_0_MIRROR_NONNULL(java.lang.Object(MirrorBinTreeRec.Tree(x0[0], x1[0]))) → 2258_1_MIRROR_INVOKEMETHOD(1935_0_mirror_NONNULL(x0[0]), java.lang.Object(MirrorBinTreeRec.Tree(x1[0], x0[0])), x0[0])
1935_0_MIRROR_NONNULL(java.lang.Object(MirrorBinTreeRec.Tree(x0[1], x1[1]))) → 1935_0_MIRROR_NONNULL(x0[1])

The TRS R consists of the following rules:

1935_0_mirror_NONNULL(NULL) → 1978_0_mirror_Return

The set Q consists of the following terms:

1935_0_mirror_NONNULL(NULL)
2315_1_mirror_InvokeMethod(1978_0_mirror_Return, NULL)
2315_1_mirror_InvokeMethod(2333_0_mirror_Return, x0)
2315_1_mirror_InvokeMethod(2821_0_mirror_Return, x0)
2315_1_mirror_InvokeMethod(3128_0_mirror_Return, x0)
2315_1_mirror_InvokeMethod(3416_0_mirror_Return, x0)
3018_1_mirror_InvokeMethod(1978_0_mirror_Return, NULL)
3018_1_mirror_InvokeMethod(2333_0_mirror_Return, x0)
3018_1_mirror_InvokeMethod(2821_0_mirror_Return, x0)
3018_1_mirror_InvokeMethod(3128_0_mirror_Return, x0)
3018_1_mirror_InvokeMethod(3416_0_mirror_Return, x0)

We have to consider all minimal (P,Q,R)-chains.

(12) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

2315_1_mirror_InvokeMethod(1978_0_mirror_Return, NULL)
2315_1_mirror_InvokeMethod(2333_0_mirror_Return, x0)
2315_1_mirror_InvokeMethod(2821_0_mirror_Return, x0)
2315_1_mirror_InvokeMethod(3128_0_mirror_Return, x0)
2315_1_mirror_InvokeMethod(3416_0_mirror_Return, x0)
3018_1_mirror_InvokeMethod(1978_0_mirror_Return, NULL)
3018_1_mirror_InvokeMethod(2333_0_mirror_Return, x0)
3018_1_mirror_InvokeMethod(2821_0_mirror_Return, x0)
3018_1_mirror_InvokeMethod(3128_0_mirror_Return, x0)
3018_1_mirror_InvokeMethod(3416_0_mirror_Return, x0)

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

2258_1_MIRROR_INVOKEMETHOD(1978_0_mirror_Return, java.lang.Object(MirrorBinTreeRec.Tree(x0[2], NULL)), NULL) → 1935_0_MIRROR_NONNULL(x0[2])
1935_0_MIRROR_NONNULL(java.lang.Object(MirrorBinTreeRec.Tree(x0[0], x1[0]))) → 2258_1_MIRROR_INVOKEMETHOD(1935_0_mirror_NONNULL(x0[0]), java.lang.Object(MirrorBinTreeRec.Tree(x1[0], x0[0])), x0[0])
1935_0_MIRROR_NONNULL(java.lang.Object(MirrorBinTreeRec.Tree(x0[1], x1[1]))) → 1935_0_MIRROR_NONNULL(x0[1])

The TRS R consists of the following rules:

1935_0_mirror_NONNULL(NULL) → 1978_0_mirror_Return

The set Q consists of the following terms:

1935_0_mirror_NONNULL(NULL)

We have to consider all minimal (P,Q,R)-chains.

(14) UsableRulesReductionPairsProof (EQUIVALENT transformation)

By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

The following dependency pairs can be deleted:

2258_1_MIRROR_INVOKEMETHOD(1978_0_mirror_Return, java.lang.Object(MirrorBinTreeRec.Tree(x0[2], NULL)), NULL) → 1935_0_MIRROR_NONNULL(x0[2])
The following rules are removed from R:

1935_0_mirror_NONNULL(NULL) → 1978_0_mirror_Return
Used ordering: POLO with Polynomial interpretation [POLO]:

POL(1935_0_MIRROR_NONNULL(x1)) = 2·x1   
POL(1935_0_mirror_NONNULL(x1)) = x1   
POL(1978_0_mirror_Return) = 0   
POL(2258_1_MIRROR_INVOKEMETHOD(x1, x2, x3)) = x1 + x2 + x3   
POL(MirrorBinTreeRec.Tree(x1, x2)) = 2·x1 + 2·x2   
POL(NULL) = 0   
POL(java.lang.Object(x1)) = 2·x1   

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

1935_0_MIRROR_NONNULL(java.lang.Object(MirrorBinTreeRec.Tree(x0[0], x1[0]))) → 2258_1_MIRROR_INVOKEMETHOD(1935_0_mirror_NONNULL(x0[0]), java.lang.Object(MirrorBinTreeRec.Tree(x1[0], x0[0])), x0[0])
1935_0_MIRROR_NONNULL(java.lang.Object(MirrorBinTreeRec.Tree(x0[1], x1[1]))) → 1935_0_MIRROR_NONNULL(x0[1])

R is empty.
The set Q consists of the following terms:

1935_0_mirror_NONNULL(NULL)

We have to consider all minimal (P,Q,R)-chains.

(16) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

1935_0_MIRROR_NONNULL(java.lang.Object(MirrorBinTreeRec.Tree(x0[1], x1[1]))) → 1935_0_MIRROR_NONNULL(x0[1])

R is empty.
The set Q consists of the following terms:

1935_0_mirror_NONNULL(NULL)

We have to consider all minimal (P,Q,R)-chains.

(18) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

1935_0_mirror_NONNULL(NULL)

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

1935_0_MIRROR_NONNULL(java.lang.Object(MirrorBinTreeRec.Tree(x0[1], x1[1]))) → 1935_0_MIRROR_NONNULL(x0[1])

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • 1935_0_MIRROR_NONNULL(java.lang.Object(MirrorBinTreeRec.Tree(x0[1], x1[1]))) → 1935_0_MIRROR_NONNULL(x0[1])
    The graph contains the following edges 1 > 1

(21) YES

(22) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


The ITRS R consists of the following rules:
10501_0_createNode_New12141_0_createNode_InvokeMethod
10501_0_createNode_New11882_0_createNode_InvokeMethod
10501_0_createNode_New12023_0_createNode_InvokeMethod
10501_0_createNode_New11910_0_createNode_InvokeMethod
9177_0_createTree_LE(0) → 9203_0_createTree_Return
10501_0_createNode_New1502_1_createNode_InvokeMethod
10501_1_createTree_InvokeMethod(2014_0_createNode_InvokeMethod, x0) → 10799_0_createTree_InvokeMethod(x0)
10501_1_createTree_InvokeMethod(2043_0_createNode_InvokeMethod, x0) → 10799_0_createTree_InvokeMethod(x0)
10501_1_createTree_InvokeMethod(2014_0_createNode_InvokeMethod, x0) → 10301_0_createTree_InvokeMethod(x0)
10501_1_createTree_InvokeMethod(2043_0_createNode_InvokeMethod, x0) → 10301_0_createTree_InvokeMethod(x0)
10501_1_createTree_InvokeMethod(2014_0_createNode_InvokeMethod, x0) → 10647_0_createTree_InvokeMethod(x0)
10501_1_createTree_InvokeMethod(2043_0_createNode_InvokeMethod, x0) → 10647_0_createTree_InvokeMethod(x0)
10501_1_createTree_InvokeMethod(2014_0_createNode_InvokeMethod, x0) → 10396_0_createTree_InvokeMethod(x0)
10501_1_createTree_InvokeMethod(2043_0_createNode_InvokeMethod, x0) → 10396_0_createTree_InvokeMethod(x0)
10501_1_createTree_InvokeMethod(2043_0_createNode_InvokeMethod, x0) → 12277_0_createTree_InvokeMethod(x0)
10501_1_createTree_InvokeMethod(2043_0_createNode_InvokeMethod, x0) → 11992_0_createTree_InvokeMethod(x0)
10501_1_createTree_InvokeMethod(2043_0_createNode_InvokeMethod, x0) → 12189_0_createTree_InvokeMethod(x0)
10501_1_createTree_InvokeMethod(2043_0_createNode_InvokeMethod, x0) → 12050_0_createTree_InvokeMethod(x0)
1502_1_createNode_InvokeMethod1621_0_createNode_Return
1502_1_createNode_InvokeMethod2014_0_createNode_InvokeMethod
1502_1_createNode_InvokeMethod2043_0_createNode_InvokeMethod
1502_1_createNode_InvokeMethod1925_0_createNode_Return

The integer pair graph contains the following rules and edges:
(0): 10501_1_CREATETREE_INVOKEMETHOD(1621_0_createNode_Return, x0[0]) → COND_10501_1_CREATETREE_INVOKEMETHOD(x0[0] > 0, 1621_0_createNode_Return, x0[0])
(1): COND_10501_1_CREATETREE_INVOKEMETHOD(TRUE, 1621_0_createNode_Return, x0[1]) → 9177_0_CREATETREE_LE(x0[1] + -1)
(2): 10501_1_CREATETREE_INVOKEMETHOD(1925_0_createNode_Return, x0[2]) → COND_10501_1_CREATETREE_INVOKEMETHOD1(x0[2] > 0, 1925_0_createNode_Return, x0[2])
(3): COND_10501_1_CREATETREE_INVOKEMETHOD1(TRUE, 1925_0_createNode_Return, x0[3]) → 9177_0_CREATETREE_LE(x0[3] + -1)
(4): 9177_0_CREATETREE_LE(x0[4]) → COND_9177_0_CREATETREE_LE(x0[4] > 0, x0[4])
(5): COND_9177_0_CREATETREE_LE(TRUE, x0[5]) → 9177_0_CREATETREE_LE(x0[5] + -1)
(6): 9177_0_CREATETREE_LE(x0[6]) → COND_9177_0_CREATETREE_LE1(x0[6] > 0, x0[6])
(7): COND_9177_0_CREATETREE_LE1(TRUE, x0[7]) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[7])
(8): 9177_0_CREATETREE_LE(x0[8]) → COND_9177_0_CREATETREE_LE2(x0[8] > 0, x0[8])
(9): COND_9177_0_CREATETREE_LE2(TRUE, x0[9]) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[9])
(10): 9177_0_CREATETREE_LE(x0[10]) → COND_9177_0_CREATETREE_LE3(x0[10] > 0, x0[10])
(11): COND_9177_0_CREATETREE_LE3(TRUE, x0[11]) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[11])
(12): 9177_0_CREATETREE_LE(x0[12]) → COND_9177_0_CREATETREE_LE4(x0[12] > 0, x0[12])
(13): COND_9177_0_CREATETREE_LE4(TRUE, x0[13]) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[13])
(14): 9177_0_CREATETREE_LE(x0[14]) → COND_9177_0_CREATETREE_LE5(x0[14] > 0, x0[14])
(15): COND_9177_0_CREATETREE_LE5(TRUE, x0[15]) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[15])
(16): 9177_0_CREATETREE_LE(x0[16]) → COND_9177_0_CREATETREE_LE6(x0[16] > 0, x0[16])
(17): COND_9177_0_CREATETREE_LE6(TRUE, x0[17]) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[17])
(18): 9177_0_CREATETREE_LE(x0[18]) → COND_9177_0_CREATETREE_LE7(x0[18] > 0, x0[18])
(19): COND_9177_0_CREATETREE_LE7(TRUE, x0[19]) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[19])
(20): 9177_0_CREATETREE_LE(x0[20]) → COND_9177_0_CREATETREE_LE8(x0[20] > 0, x0[20])
(21): COND_9177_0_CREATETREE_LE8(TRUE, x0[21]) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[21])

(0) -> (1), if ((x0[0] > 0* TRUE)∧(x0[0]* x0[1]))


(1) -> (4), if ((x0[1] + -1* x0[4]))


(1) -> (6), if ((x0[1] + -1* x0[6]))


(1) -> (8), if ((x0[1] + -1* x0[8]))


(1) -> (10), if ((x0[1] + -1* x0[10]))


(1) -> (12), if ((x0[1] + -1* x0[12]))


(1) -> (14), if ((x0[1] + -1* x0[14]))


(1) -> (16), if ((x0[1] + -1* x0[16]))


(1) -> (18), if ((x0[1] + -1* x0[18]))


(1) -> (20), if ((x0[1] + -1* x0[20]))


(2) -> (3), if ((x0[2] > 0* TRUE)∧(x0[2]* x0[3]))


(3) -> (4), if ((x0[3] + -1* x0[4]))


(3) -> (6), if ((x0[3] + -1* x0[6]))


(3) -> (8), if ((x0[3] + -1* x0[8]))


(3) -> (10), if ((x0[3] + -1* x0[10]))


(3) -> (12), if ((x0[3] + -1* x0[12]))


(3) -> (14), if ((x0[3] + -1* x0[14]))


(3) -> (16), if ((x0[3] + -1* x0[16]))


(3) -> (18), if ((x0[3] + -1* x0[18]))


(3) -> (20), if ((x0[3] + -1* x0[20]))


(4) -> (5), if ((x0[4] > 0* TRUE)∧(x0[4]* x0[5]))


(5) -> (4), if ((x0[5] + -1* x0[4]))


(5) -> (6), if ((x0[5] + -1* x0[6]))


(5) -> (8), if ((x0[5] + -1* x0[8]))


(5) -> (10), if ((x0[5] + -1* x0[10]))


(5) -> (12), if ((x0[5] + -1* x0[12]))


(5) -> (14), if ((x0[5] + -1* x0[14]))


(5) -> (16), if ((x0[5] + -1* x0[16]))


(5) -> (18), if ((x0[5] + -1* x0[18]))


(5) -> (20), if ((x0[5] + -1* x0[20]))


(6) -> (7), if ((x0[6] > 0* TRUE)∧(x0[6]* x0[7]))


(7) -> (0), if ((10501_0_createNode_New* 1621_0_createNode_Return)∧(x0[7]* x0[0]))


(7) -> (2), if ((10501_0_createNode_New* 1925_0_createNode_Return)∧(x0[7]* x0[2]))


(8) -> (9), if ((x0[8] > 0* TRUE)∧(x0[8]* x0[9]))


(9) -> (0), if ((10501_0_createNode_New* 1621_0_createNode_Return)∧(x0[9]* x0[0]))


(9) -> (2), if ((10501_0_createNode_New* 1925_0_createNode_Return)∧(x0[9]* x0[2]))


(10) -> (11), if ((x0[10] > 0* TRUE)∧(x0[10]* x0[11]))


(11) -> (0), if ((10501_0_createNode_New* 1621_0_createNode_Return)∧(x0[11]* x0[0]))


(11) -> (2), if ((10501_0_createNode_New* 1925_0_createNode_Return)∧(x0[11]* x0[2]))


(12) -> (13), if ((x0[12] > 0* TRUE)∧(x0[12]* x0[13]))


(13) -> (0), if ((10501_0_createNode_New* 1621_0_createNode_Return)∧(x0[13]* x0[0]))


(13) -> (2), if ((10501_0_createNode_New* 1925_0_createNode_Return)∧(x0[13]* x0[2]))


(14) -> (15), if ((x0[14] > 0* TRUE)∧(x0[14]* x0[15]))


(15) -> (0), if ((10501_0_createNode_New* 1621_0_createNode_Return)∧(x0[15]* x0[0]))


(15) -> (2), if ((10501_0_createNode_New* 1925_0_createNode_Return)∧(x0[15]* x0[2]))


(16) -> (17), if ((x0[16] > 0* TRUE)∧(x0[16]* x0[17]))


(17) -> (0), if ((10501_0_createNode_New* 1621_0_createNode_Return)∧(x0[17]* x0[0]))


(17) -> (2), if ((10501_0_createNode_New* 1925_0_createNode_Return)∧(x0[17]* x0[2]))


(18) -> (19), if ((x0[18] > 0* TRUE)∧(x0[18]* x0[19]))


(19) -> (0), if ((10501_0_createNode_New* 1621_0_createNode_Return)∧(x0[19]* x0[0]))


(19) -> (2), if ((10501_0_createNode_New* 1925_0_createNode_Return)∧(x0[19]* x0[2]))


(20) -> (21), if ((x0[20] > 0* TRUE)∧(x0[20]* x0[21]))


(21) -> (0), if ((10501_0_createNode_New* 1621_0_createNode_Return)∧(x0[21]* x0[0]))


(21) -> (2), if ((10501_0_createNode_New* 1925_0_createNode_Return)∧(x0[21]* x0[2]))



The set Q consists of the following terms:
10501_0_createNode_New
9177_0_createTree_LE(0)
10501_1_createTree_InvokeMethod(2014_0_createNode_InvokeMethod, x0)
10501_1_createTree_InvokeMethod(2043_0_createNode_InvokeMethod, x0)
1502_1_createNode_InvokeMethod

(23) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 10501_1_CREATETREE_INVOKEMETHOD(1621_0_createNode_Return, x0) → COND_10501_1_CREATETREE_INVOKEMETHOD(>(x0, 0), 1621_0_createNode_Return, x0) the following chains were created:
  • We consider the chain 10501_1_CREATETREE_INVOKEMETHOD(1621_0_createNode_Return, x0[0]) → COND_10501_1_CREATETREE_INVOKEMETHOD(>(x0[0], 0), 1621_0_createNode_Return, x0[0]), COND_10501_1_CREATETREE_INVOKEMETHOD(TRUE, 1621_0_createNode_Return, x0[1]) → 9177_0_CREATETREE_LE(+(x0[1], -1)) which results in the following constraint:

    (1)    (>(x0[0], 0)=TRUEx0[0]=x0[1]10501_1_CREATETREE_INVOKEMETHOD(1621_0_createNode_Return, x0[0])≥NonInfC∧10501_1_CREATETREE_INVOKEMETHOD(1621_0_createNode_Return, x0[0])≥COND_10501_1_CREATETREE_INVOKEMETHOD(>(x0[0], 0), 1621_0_createNode_Return, x0[0])∧(UIncreasing(COND_10501_1_CREATETREE_INVOKEMETHOD(>(x0[0], 0), 1621_0_createNode_Return, x0[0])), ≥))



    We simplified constraint (1) using rule (IV) which results in the following new constraint:

    (2)    (>(x0[0], 0)=TRUE10501_1_CREATETREE_INVOKEMETHOD(1621_0_createNode_Return, x0[0])≥NonInfC∧10501_1_CREATETREE_INVOKEMETHOD(1621_0_createNode_Return, x0[0])≥COND_10501_1_CREATETREE_INVOKEMETHOD(>(x0[0], 0), 1621_0_createNode_Return, x0[0])∧(UIncreasing(COND_10501_1_CREATETREE_INVOKEMETHOD(>(x0[0], 0), 1621_0_createNode_Return, x0[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_10501_1_CREATETREE_INVOKEMETHOD(>(x0[0], 0), 1621_0_createNode_Return, x0[0])), ≥)∧[(-1)bni_51 + (-1)Bound*bni_51] + [(2)bni_51]x0[0] ≥ 0∧[(-1)bso_52] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_10501_1_CREATETREE_INVOKEMETHOD(>(x0[0], 0), 1621_0_createNode_Return, x0[0])), ≥)∧[(-1)bni_51 + (-1)Bound*bni_51] + [(2)bni_51]x0[0] ≥ 0∧[(-1)bso_52] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_10501_1_CREATETREE_INVOKEMETHOD(>(x0[0], 0), 1621_0_createNode_Return, x0[0])), ≥)∧[(-1)bni_51 + (-1)Bound*bni_51] + [(2)bni_51]x0[0] ≥ 0∧[(-1)bso_52] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (x0[0] ≥ 0 ⇒ (UIncreasing(COND_10501_1_CREATETREE_INVOKEMETHOD(>(x0[0], 0), 1621_0_createNode_Return, x0[0])), ≥)∧[bni_51 + (-1)Bound*bni_51] + [(2)bni_51]x0[0] ≥ 0∧[(-1)bso_52] ≥ 0)







For Pair COND_10501_1_CREATETREE_INVOKEMETHOD(TRUE, 1621_0_createNode_Return, x0) → 9177_0_CREATETREE_LE(+(x0, -1)) the following chains were created:
  • We consider the chain COND_10501_1_CREATETREE_INVOKEMETHOD(TRUE, 1621_0_createNode_Return, x0[1]) → 9177_0_CREATETREE_LE(+(x0[1], -1)) which results in the following constraint:

    (7)    (COND_10501_1_CREATETREE_INVOKEMETHOD(TRUE, 1621_0_createNode_Return, x0[1])≥NonInfC∧COND_10501_1_CREATETREE_INVOKEMETHOD(TRUE, 1621_0_createNode_Return, x0[1])≥9177_0_CREATETREE_LE(+(x0[1], -1))∧(UIncreasing(9177_0_CREATETREE_LE(+(x0[1], -1))), ≥))



    We simplified constraint (7) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (8)    ((UIncreasing(9177_0_CREATETREE_LE(+(x0[1], -1))), ≥)∧[1 + (-1)bso_54] ≥ 0)



    We simplified constraint (8) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (9)    ((UIncreasing(9177_0_CREATETREE_LE(+(x0[1], -1))), ≥)∧[1 + (-1)bso_54] ≥ 0)



    We simplified constraint (9) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (10)    ((UIncreasing(9177_0_CREATETREE_LE(+(x0[1], -1))), ≥)∧[1 + (-1)bso_54] ≥ 0)



    We simplified constraint (10) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (11)    ((UIncreasing(9177_0_CREATETREE_LE(+(x0[1], -1))), ≥)∧0 = 0∧[1 + (-1)bso_54] ≥ 0)







For Pair 10501_1_CREATETREE_INVOKEMETHOD(1925_0_createNode_Return, x0) → COND_10501_1_CREATETREE_INVOKEMETHOD1(>(x0, 0), 1925_0_createNode_Return, x0) the following chains were created:
  • We consider the chain 10501_1_CREATETREE_INVOKEMETHOD(1925_0_createNode_Return, x0[2]) → COND_10501_1_CREATETREE_INVOKEMETHOD1(>(x0[2], 0), 1925_0_createNode_Return, x0[2]), COND_10501_1_CREATETREE_INVOKEMETHOD1(TRUE, 1925_0_createNode_Return, x0[3]) → 9177_0_CREATETREE_LE(+(x0[3], -1)) which results in the following constraint:

    (12)    (>(x0[2], 0)=TRUEx0[2]=x0[3]10501_1_CREATETREE_INVOKEMETHOD(1925_0_createNode_Return, x0[2])≥NonInfC∧10501_1_CREATETREE_INVOKEMETHOD(1925_0_createNode_Return, x0[2])≥COND_10501_1_CREATETREE_INVOKEMETHOD1(>(x0[2], 0), 1925_0_createNode_Return, x0[2])∧(UIncreasing(COND_10501_1_CREATETREE_INVOKEMETHOD1(>(x0[2], 0), 1925_0_createNode_Return, x0[2])), ≥))



    We simplified constraint (12) using rule (IV) which results in the following new constraint:

    (13)    (>(x0[2], 0)=TRUE10501_1_CREATETREE_INVOKEMETHOD(1925_0_createNode_Return, x0[2])≥NonInfC∧10501_1_CREATETREE_INVOKEMETHOD(1925_0_createNode_Return, x0[2])≥COND_10501_1_CREATETREE_INVOKEMETHOD1(>(x0[2], 0), 1925_0_createNode_Return, x0[2])∧(UIncreasing(COND_10501_1_CREATETREE_INVOKEMETHOD1(>(x0[2], 0), 1925_0_createNode_Return, x0[2])), ≥))



    We simplified constraint (13) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (14)    (x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_10501_1_CREATETREE_INVOKEMETHOD1(>(x0[2], 0), 1925_0_createNode_Return, x0[2])), ≥)∧[(-1)bni_55 + (-1)Bound*bni_55] + [(2)bni_55]x0[2] ≥ 0∧[(-1)bso_56] ≥ 0)



    We simplified constraint (14) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (15)    (x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_10501_1_CREATETREE_INVOKEMETHOD1(>(x0[2], 0), 1925_0_createNode_Return, x0[2])), ≥)∧[(-1)bni_55 + (-1)Bound*bni_55] + [(2)bni_55]x0[2] ≥ 0∧[(-1)bso_56] ≥ 0)



    We simplified constraint (15) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (16)    (x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_10501_1_CREATETREE_INVOKEMETHOD1(>(x0[2], 0), 1925_0_createNode_Return, x0[2])), ≥)∧[(-1)bni_55 + (-1)Bound*bni_55] + [(2)bni_55]x0[2] ≥ 0∧[(-1)bso_56] ≥ 0)



    We simplified constraint (16) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (17)    (x0[2] ≥ 0 ⇒ (UIncreasing(COND_10501_1_CREATETREE_INVOKEMETHOD1(>(x0[2], 0), 1925_0_createNode_Return, x0[2])), ≥)∧[bni_55 + (-1)Bound*bni_55] + [(2)bni_55]x0[2] ≥ 0∧[(-1)bso_56] ≥ 0)







For Pair COND_10501_1_CREATETREE_INVOKEMETHOD1(TRUE, 1925_0_createNode_Return, x0) → 9177_0_CREATETREE_LE(+(x0, -1)) the following chains were created:
  • We consider the chain COND_10501_1_CREATETREE_INVOKEMETHOD1(TRUE, 1925_0_createNode_Return, x0[3]) → 9177_0_CREATETREE_LE(+(x0[3], -1)) which results in the following constraint:

    (18)    (COND_10501_1_CREATETREE_INVOKEMETHOD1(TRUE, 1925_0_createNode_Return, x0[3])≥NonInfC∧COND_10501_1_CREATETREE_INVOKEMETHOD1(TRUE, 1925_0_createNode_Return, x0[3])≥9177_0_CREATETREE_LE(+(x0[3], -1))∧(UIncreasing(9177_0_CREATETREE_LE(+(x0[3], -1))), ≥))



    We simplified constraint (18) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (19)    ((UIncreasing(9177_0_CREATETREE_LE(+(x0[3], -1))), ≥)∧[1 + (-1)bso_58] ≥ 0)



    We simplified constraint (19) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (20)    ((UIncreasing(9177_0_CREATETREE_LE(+(x0[3], -1))), ≥)∧[1 + (-1)bso_58] ≥ 0)



    We simplified constraint (20) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (21)    ((UIncreasing(9177_0_CREATETREE_LE(+(x0[3], -1))), ≥)∧[1 + (-1)bso_58] ≥ 0)



    We simplified constraint (21) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (22)    ((UIncreasing(9177_0_CREATETREE_LE(+(x0[3], -1))), ≥)∧0 = 0∧[1 + (-1)bso_58] ≥ 0)







For Pair 9177_0_CREATETREE_LE(x0) → COND_9177_0_CREATETREE_LE(>(x0, 0), x0) the following chains were created:
  • We consider the chain 9177_0_CREATETREE_LE(x0[4]) → COND_9177_0_CREATETREE_LE(>(x0[4], 0), x0[4]), COND_9177_0_CREATETREE_LE(TRUE, x0[5]) → 9177_0_CREATETREE_LE(+(x0[5], -1)) which results in the following constraint:

    (23)    (>(x0[4], 0)=TRUEx0[4]=x0[5]9177_0_CREATETREE_LE(x0[4])≥NonInfC∧9177_0_CREATETREE_LE(x0[4])≥COND_9177_0_CREATETREE_LE(>(x0[4], 0), x0[4])∧(UIncreasing(COND_9177_0_CREATETREE_LE(>(x0[4], 0), x0[4])), ≥))



    We simplified constraint (23) using rule (IV) which results in the following new constraint:

    (24)    (>(x0[4], 0)=TRUE9177_0_CREATETREE_LE(x0[4])≥NonInfC∧9177_0_CREATETREE_LE(x0[4])≥COND_9177_0_CREATETREE_LE(>(x0[4], 0), x0[4])∧(UIncreasing(COND_9177_0_CREATETREE_LE(>(x0[4], 0), x0[4])), ≥))



    We simplified constraint (24) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (25)    (x0[4] + [-1] ≥ 0 ⇒ (UIncreasing(COND_9177_0_CREATETREE_LE(>(x0[4], 0), x0[4])), ≥)∧[(-1)Bound*bni_59] + [(2)bni_59]x0[4] ≥ 0∧[1 + (-1)bso_60] ≥ 0)



    We simplified constraint (25) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (26)    (x0[4] + [-1] ≥ 0 ⇒ (UIncreasing(COND_9177_0_CREATETREE_LE(>(x0[4], 0), x0[4])), ≥)∧[(-1)Bound*bni_59] + [(2)bni_59]x0[4] ≥ 0∧[1 + (-1)bso_60] ≥ 0)



    We simplified constraint (26) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (27)    (x0[4] + [-1] ≥ 0 ⇒ (UIncreasing(COND_9177_0_CREATETREE_LE(>(x0[4], 0), x0[4])), ≥)∧[(-1)Bound*bni_59] + [(2)bni_59]x0[4] ≥ 0∧[1 + (-1)bso_60] ≥ 0)



    We simplified constraint (27) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (28)    (x0[4] ≥ 0 ⇒ (UIncreasing(COND_9177_0_CREATETREE_LE(>(x0[4], 0), x0[4])), ≥)∧[(-1)Bound*bni_59 + (2)bni_59] + [(2)bni_59]x0[4] ≥ 0∧[1 + (-1)bso_60] ≥ 0)







For Pair COND_9177_0_CREATETREE_LE(TRUE, x0) → 9177_0_CREATETREE_LE(+(x0, -1)) the following chains were created:
  • We consider the chain COND_9177_0_CREATETREE_LE(TRUE, x0[5]) → 9177_0_CREATETREE_LE(+(x0[5], -1)) which results in the following constraint:

    (29)    (COND_9177_0_CREATETREE_LE(TRUE, x0[5])≥NonInfC∧COND_9177_0_CREATETREE_LE(TRUE, x0[5])≥9177_0_CREATETREE_LE(+(x0[5], -1))∧(UIncreasing(9177_0_CREATETREE_LE(+(x0[5], -1))), ≥))



    We simplified constraint (29) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (30)    ((UIncreasing(9177_0_CREATETREE_LE(+(x0[5], -1))), ≥)∧[1 + (-1)bso_62] ≥ 0)



    We simplified constraint (30) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (31)    ((UIncreasing(9177_0_CREATETREE_LE(+(x0[5], -1))), ≥)∧[1 + (-1)bso_62] ≥ 0)



    We simplified constraint (31) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (32)    ((UIncreasing(9177_0_CREATETREE_LE(+(x0[5], -1))), ≥)∧[1 + (-1)bso_62] ≥ 0)



    We simplified constraint (32) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (33)    ((UIncreasing(9177_0_CREATETREE_LE(+(x0[5], -1))), ≥)∧0 = 0∧[1 + (-1)bso_62] ≥ 0)







For Pair 9177_0_CREATETREE_LE(x0) → COND_9177_0_CREATETREE_LE1(>(x0, 0), x0) the following chains were created:
  • We consider the chain 9177_0_CREATETREE_LE(x0[6]) → COND_9177_0_CREATETREE_LE1(>(x0[6], 0), x0[6]), COND_9177_0_CREATETREE_LE1(TRUE, x0[7]) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[7]) which results in the following constraint:

    (34)    (>(x0[6], 0)=TRUEx0[6]=x0[7]9177_0_CREATETREE_LE(x0[6])≥NonInfC∧9177_0_CREATETREE_LE(x0[6])≥COND_9177_0_CREATETREE_LE1(>(x0[6], 0), x0[6])∧(UIncreasing(COND_9177_0_CREATETREE_LE1(>(x0[6], 0), x0[6])), ≥))



    We simplified constraint (34) using rule (IV) which results in the following new constraint:

    (35)    (>(x0[6], 0)=TRUE9177_0_CREATETREE_LE(x0[6])≥NonInfC∧9177_0_CREATETREE_LE(x0[6])≥COND_9177_0_CREATETREE_LE1(>(x0[6], 0), x0[6])∧(UIncreasing(COND_9177_0_CREATETREE_LE1(>(x0[6], 0), x0[6])), ≥))



    We simplified constraint (35) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (36)    (x0[6] + [-1] ≥ 0 ⇒ (UIncreasing(COND_9177_0_CREATETREE_LE1(>(x0[6], 0), x0[6])), ≥)∧[(-1)Bound*bni_63] + [(2)bni_63]x0[6] ≥ 0∧[1 + (-1)bso_64] ≥ 0)



    We simplified constraint (36) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (37)    (x0[6] + [-1] ≥ 0 ⇒ (UIncreasing(COND_9177_0_CREATETREE_LE1(>(x0[6], 0), x0[6])), ≥)∧[(-1)Bound*bni_63] + [(2)bni_63]x0[6] ≥ 0∧[1 + (-1)bso_64] ≥ 0)



    We simplified constraint (37) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (38)    (x0[6] + [-1] ≥ 0 ⇒ (UIncreasing(COND_9177_0_CREATETREE_LE1(>(x0[6], 0), x0[6])), ≥)∧[(-1)Bound*bni_63] + [(2)bni_63]x0[6] ≥ 0∧[1 + (-1)bso_64] ≥ 0)



    We simplified constraint (38) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (39)    (x0[6] ≥ 0 ⇒ (UIncreasing(COND_9177_0_CREATETREE_LE1(>(x0[6], 0), x0[6])), ≥)∧[(-1)Bound*bni_63 + (2)bni_63] + [(2)bni_63]x0[6] ≥ 0∧[1 + (-1)bso_64] ≥ 0)







For Pair COND_9177_0_CREATETREE_LE1(TRUE, x0) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0) the following chains were created:
  • We consider the chain COND_9177_0_CREATETREE_LE1(TRUE, x0[7]) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[7]) which results in the following constraint:

    (40)    (COND_9177_0_CREATETREE_LE1(TRUE, x0[7])≥NonInfC∧COND_9177_0_CREATETREE_LE1(TRUE, x0[7])≥10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[7])∧(UIncreasing(10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[7])), ≥))



    We simplified constraint (40) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (41)    ((UIncreasing(10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[7])), ≥)∧[(-1)bso_66] ≥ 0)



    We simplified constraint (41) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (42)    ((UIncreasing(10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[7])), ≥)∧[(-1)bso_66] ≥ 0)



    We simplified constraint (42) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (43)    ((UIncreasing(10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[7])), ≥)∧[(-1)bso_66] ≥ 0)



    We simplified constraint (43) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (44)    ((UIncreasing(10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[7])), ≥)∧0 = 0∧[(-1)bso_66] ≥ 0)







For Pair 9177_0_CREATETREE_LE(x0) → COND_9177_0_CREATETREE_LE2(>(x0, 0), x0) the following chains were created:
  • We consider the chain 9177_0_CREATETREE_LE(x0[8]) → COND_9177_0_CREATETREE_LE2(>(x0[8], 0), x0[8]), COND_9177_0_CREATETREE_LE2(TRUE, x0[9]) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[9]) which results in the following constraint:

    (45)    (>(x0[8], 0)=TRUEx0[8]=x0[9]9177_0_CREATETREE_LE(x0[8])≥NonInfC∧9177_0_CREATETREE_LE(x0[8])≥COND_9177_0_CREATETREE_LE2(>(x0[8], 0), x0[8])∧(UIncreasing(COND_9177_0_CREATETREE_LE2(>(x0[8], 0), x0[8])), ≥))



    We simplified constraint (45) using rule (IV) which results in the following new constraint:

    (46)    (>(x0[8], 0)=TRUE9177_0_CREATETREE_LE(x0[8])≥NonInfC∧9177_0_CREATETREE_LE(x0[8])≥COND_9177_0_CREATETREE_LE2(>(x0[8], 0), x0[8])∧(UIncreasing(COND_9177_0_CREATETREE_LE2(>(x0[8], 0), x0[8])), ≥))



    We simplified constraint (46) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (47)    (x0[8] + [-1] ≥ 0 ⇒ (UIncreasing(COND_9177_0_CREATETREE_LE2(>(x0[8], 0), x0[8])), ≥)∧[(-1)Bound*bni_67] + [(2)bni_67]x0[8] ≥ 0∧[(-1)bso_68] ≥ 0)



    We simplified constraint (47) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (48)    (x0[8] + [-1] ≥ 0 ⇒ (UIncreasing(COND_9177_0_CREATETREE_LE2(>(x0[8], 0), x0[8])), ≥)∧[(-1)Bound*bni_67] + [(2)bni_67]x0[8] ≥ 0∧[(-1)bso_68] ≥ 0)



    We simplified constraint (48) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (49)    (x0[8] + [-1] ≥ 0 ⇒ (UIncreasing(COND_9177_0_CREATETREE_LE2(>(x0[8], 0), x0[8])), ≥)∧[(-1)Bound*bni_67] + [(2)bni_67]x0[8] ≥ 0∧[(-1)bso_68] ≥ 0)



    We simplified constraint (49) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (50)    (x0[8] ≥ 0 ⇒ (UIncreasing(COND_9177_0_CREATETREE_LE2(>(x0[8], 0), x0[8])), ≥)∧[(-1)Bound*bni_67 + (2)bni_67] + [(2)bni_67]x0[8] ≥ 0∧[(-1)bso_68] ≥ 0)







For Pair COND_9177_0_CREATETREE_LE2(TRUE, x0) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0) the following chains were created:
  • We consider the chain COND_9177_0_CREATETREE_LE2(TRUE, x0[9]) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[9]) which results in the following constraint:

    (51)    (COND_9177_0_CREATETREE_LE2(TRUE, x0[9])≥NonInfC∧COND_9177_0_CREATETREE_LE2(TRUE, x0[9])≥10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[9])∧(UIncreasing(10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[9])), ≥))



    We simplified constraint (51) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (52)    ((UIncreasing(10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[9])), ≥)∧[1 + (-1)bso_70] ≥ 0)



    We simplified constraint (52) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (53)    ((UIncreasing(10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[9])), ≥)∧[1 + (-1)bso_70] ≥ 0)



    We simplified constraint (53) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (54)    ((UIncreasing(10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[9])), ≥)∧[1 + (-1)bso_70] ≥ 0)



    We simplified constraint (54) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (55)    ((UIncreasing(10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[9])), ≥)∧0 = 0∧[1 + (-1)bso_70] ≥ 0)







For Pair 9177_0_CREATETREE_LE(x0) → COND_9177_0_CREATETREE_LE3(>(x0, 0), x0) the following chains were created:
  • We consider the chain 9177_0_CREATETREE_LE(x0[10]) → COND_9177_0_CREATETREE_LE3(>(x0[10], 0), x0[10]), COND_9177_0_CREATETREE_LE3(TRUE, x0[11]) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[11]) which results in the following constraint:

    (56)    (>(x0[10], 0)=TRUEx0[10]=x0[11]9177_0_CREATETREE_LE(x0[10])≥NonInfC∧9177_0_CREATETREE_LE(x0[10])≥COND_9177_0_CREATETREE_LE3(>(x0[10], 0), x0[10])∧(UIncreasing(COND_9177_0_CREATETREE_LE3(>(x0[10], 0), x0[10])), ≥))



    We simplified constraint (56) using rule (IV) which results in the following new constraint:

    (57)    (>(x0[10], 0)=TRUE9177_0_CREATETREE_LE(x0[10])≥NonInfC∧9177_0_CREATETREE_LE(x0[10])≥COND_9177_0_CREATETREE_LE3(>(x0[10], 0), x0[10])∧(UIncreasing(COND_9177_0_CREATETREE_LE3(>(x0[10], 0), x0[10])), ≥))



    We simplified constraint (57) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (58)    (x0[10] + [-1] ≥ 0 ⇒ (UIncreasing(COND_9177_0_CREATETREE_LE3(>(x0[10], 0), x0[10])), ≥)∧[(-1)Bound*bni_71] + [(2)bni_71]x0[10] ≥ 0∧[1 + (-1)bso_72] ≥ 0)



    We simplified constraint (58) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (59)    (x0[10] + [-1] ≥ 0 ⇒ (UIncreasing(COND_9177_0_CREATETREE_LE3(>(x0[10], 0), x0[10])), ≥)∧[(-1)Bound*bni_71] + [(2)bni_71]x0[10] ≥ 0∧[1 + (-1)bso_72] ≥ 0)



    We simplified constraint (59) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (60)    (x0[10] + [-1] ≥ 0 ⇒ (UIncreasing(COND_9177_0_CREATETREE_LE3(>(x0[10], 0), x0[10])), ≥)∧[(-1)Bound*bni_71] + [(2)bni_71]x0[10] ≥ 0∧[1 + (-1)bso_72] ≥ 0)



    We simplified constraint (60) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (61)    (x0[10] ≥ 0 ⇒ (UIncreasing(COND_9177_0_CREATETREE_LE3(>(x0[10], 0), x0[10])), ≥)∧[(-1)Bound*bni_71 + (2)bni_71] + [(2)bni_71]x0[10] ≥ 0∧[1 + (-1)bso_72] ≥ 0)







For Pair COND_9177_0_CREATETREE_LE3(TRUE, x0) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0) the following chains were created:
  • We consider the chain COND_9177_0_CREATETREE_LE3(TRUE, x0[11]) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[11]) which results in the following constraint:

    (62)    (COND_9177_0_CREATETREE_LE3(TRUE, x0[11])≥NonInfC∧COND_9177_0_CREATETREE_LE3(TRUE, x0[11])≥10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[11])∧(UIncreasing(10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[11])), ≥))



    We simplified constraint (62) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (63)    ((UIncreasing(10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[11])), ≥)∧[(-1)bso_74] ≥ 0)



    We simplified constraint (63) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (64)    ((UIncreasing(10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[11])), ≥)∧[(-1)bso_74] ≥ 0)



    We simplified constraint (64) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (65)    ((UIncreasing(10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[11])), ≥)∧[(-1)bso_74] ≥ 0)



    We simplified constraint (65) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (66)    ((UIncreasing(10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[11])), ≥)∧0 = 0∧[(-1)bso_74] ≥ 0)







For Pair 9177_0_CREATETREE_LE(x0) → COND_9177_0_CREATETREE_LE4(>(x0, 0), x0) the following chains were created:
  • We consider the chain 9177_0_CREATETREE_LE(x0[12]) → COND_9177_0_CREATETREE_LE4(>(x0[12], 0), x0[12]), COND_9177_0_CREATETREE_LE4(TRUE, x0[13]) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[13]) which results in the following constraint:

    (67)    (>(x0[12], 0)=TRUEx0[12]=x0[13]9177_0_CREATETREE_LE(x0[12])≥NonInfC∧9177_0_CREATETREE_LE(x0[12])≥COND_9177_0_CREATETREE_LE4(>(x0[12], 0), x0[12])∧(UIncreasing(COND_9177_0_CREATETREE_LE4(>(x0[12], 0), x0[12])), ≥))



    We simplified constraint (67) using rule (IV) which results in the following new constraint:

    (68)    (>(x0[12], 0)=TRUE9177_0_CREATETREE_LE(x0[12])≥NonInfC∧9177_0_CREATETREE_LE(x0[12])≥COND_9177_0_CREATETREE_LE4(>(x0[12], 0), x0[12])∧(UIncreasing(COND_9177_0_CREATETREE_LE4(>(x0[12], 0), x0[12])), ≥))



    We simplified constraint (68) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (69)    (x0[12] + [-1] ≥ 0 ⇒ (UIncreasing(COND_9177_0_CREATETREE_LE4(>(x0[12], 0), x0[12])), ≥)∧[(-1)Bound*bni_75] + [(2)bni_75]x0[12] ≥ 0∧[1 + (-1)bso_76] ≥ 0)



    We simplified constraint (69) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (70)    (x0[12] + [-1] ≥ 0 ⇒ (UIncreasing(COND_9177_0_CREATETREE_LE4(>(x0[12], 0), x0[12])), ≥)∧[(-1)Bound*bni_75] + [(2)bni_75]x0[12] ≥ 0∧[1 + (-1)bso_76] ≥ 0)



    We simplified constraint (70) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (71)    (x0[12] + [-1] ≥ 0 ⇒ (UIncreasing(COND_9177_0_CREATETREE_LE4(>(x0[12], 0), x0[12])), ≥)∧[(-1)Bound*bni_75] + [(2)bni_75]x0[12] ≥ 0∧[1 + (-1)bso_76] ≥ 0)



    We simplified constraint (71) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (72)    (x0[12] ≥ 0 ⇒ (UIncreasing(COND_9177_0_CREATETREE_LE4(>(x0[12], 0), x0[12])), ≥)∧[(-1)Bound*bni_75 + (2)bni_75] + [(2)bni_75]x0[12] ≥ 0∧[1 + (-1)bso_76] ≥ 0)







For Pair COND_9177_0_CREATETREE_LE4(TRUE, x0) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0) the following chains were created:
  • We consider the chain COND_9177_0_CREATETREE_LE4(TRUE, x0[13]) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[13]) which results in the following constraint:

    (73)    (COND_9177_0_CREATETREE_LE4(TRUE, x0[13])≥NonInfC∧COND_9177_0_CREATETREE_LE4(TRUE, x0[13])≥10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[13])∧(UIncreasing(10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[13])), ≥))



    We simplified constraint (73) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (74)    ((UIncreasing(10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[13])), ≥)∧[(-1)bso_78] ≥ 0)



    We simplified constraint (74) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (75)    ((UIncreasing(10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[13])), ≥)∧[(-1)bso_78] ≥ 0)



    We simplified constraint (75) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (76)    ((UIncreasing(10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[13])), ≥)∧[(-1)bso_78] ≥ 0)



    We simplified constraint (76) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (77)    ((UIncreasing(10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[13])), ≥)∧0 = 0∧[(-1)bso_78] ≥ 0)







For Pair 9177_0_CREATETREE_LE(x0) → COND_9177_0_CREATETREE_LE5(>(x0, 0), x0) the following chains were created:
  • We consider the chain 9177_0_CREATETREE_LE(x0[14]) → COND_9177_0_CREATETREE_LE5(>(x0[14], 0), x0[14]), COND_9177_0_CREATETREE_LE5(TRUE, x0[15]) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[15]) which results in the following constraint:

    (78)    (>(x0[14], 0)=TRUEx0[14]=x0[15]9177_0_CREATETREE_LE(x0[14])≥NonInfC∧9177_0_CREATETREE_LE(x0[14])≥COND_9177_0_CREATETREE_LE5(>(x0[14], 0), x0[14])∧(UIncreasing(COND_9177_0_CREATETREE_LE5(>(x0[14], 0), x0[14])), ≥))



    We simplified constraint (78) using rule (IV) which results in the following new constraint:

    (79)    (>(x0[14], 0)=TRUE9177_0_CREATETREE_LE(x0[14])≥NonInfC∧9177_0_CREATETREE_LE(x0[14])≥COND_9177_0_CREATETREE_LE5(>(x0[14], 0), x0[14])∧(UIncreasing(COND_9177_0_CREATETREE_LE5(>(x0[14], 0), x0[14])), ≥))



    We simplified constraint (79) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (80)    (x0[14] + [-1] ≥ 0 ⇒ (UIncreasing(COND_9177_0_CREATETREE_LE5(>(x0[14], 0), x0[14])), ≥)∧[(-1)Bound*bni_79] + [(2)bni_79]x0[14] ≥ 0∧[1 + (-1)bso_80] ≥ 0)



    We simplified constraint (80) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (81)    (x0[14] + [-1] ≥ 0 ⇒ (UIncreasing(COND_9177_0_CREATETREE_LE5(>(x0[14], 0), x0[14])), ≥)∧[(-1)Bound*bni_79] + [(2)bni_79]x0[14] ≥ 0∧[1 + (-1)bso_80] ≥ 0)



    We simplified constraint (81) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (82)    (x0[14] + [-1] ≥ 0 ⇒ (UIncreasing(COND_9177_0_CREATETREE_LE5(>(x0[14], 0), x0[14])), ≥)∧[(-1)Bound*bni_79] + [(2)bni_79]x0[14] ≥ 0∧[1 + (-1)bso_80] ≥ 0)



    We simplified constraint (82) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (83)    (x0[14] ≥ 0 ⇒ (UIncreasing(COND_9177_0_CREATETREE_LE5(>(x0[14], 0), x0[14])), ≥)∧[(-1)Bound*bni_79 + (2)bni_79] + [(2)bni_79]x0[14] ≥ 0∧[1 + (-1)bso_80] ≥ 0)







For Pair COND_9177_0_CREATETREE_LE5(TRUE, x0) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0) the following chains were created:
  • We consider the chain COND_9177_0_CREATETREE_LE5(TRUE, x0[15]) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[15]) which results in the following constraint:

    (84)    (COND_9177_0_CREATETREE_LE5(TRUE, x0[15])≥NonInfC∧COND_9177_0_CREATETREE_LE5(TRUE, x0[15])≥10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[15])∧(UIncreasing(10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[15])), ≥))



    We simplified constraint (84) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (85)    ((UIncreasing(10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[15])), ≥)∧[(-1)bso_82] ≥ 0)



    We simplified constraint (85) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (86)    ((UIncreasing(10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[15])), ≥)∧[(-1)bso_82] ≥ 0)



    We simplified constraint (86) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (87)    ((UIncreasing(10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[15])), ≥)∧[(-1)bso_82] ≥ 0)



    We simplified constraint (87) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (88)    ((UIncreasing(10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[15])), ≥)∧0 = 0∧[(-1)bso_82] ≥ 0)







For Pair 9177_0_CREATETREE_LE(x0) → COND_9177_0_CREATETREE_LE6(>(x0, 0), x0) the following chains were created:
  • We consider the chain 9177_0_CREATETREE_LE(x0[16]) → COND_9177_0_CREATETREE_LE6(>(x0[16], 0), x0[16]), COND_9177_0_CREATETREE_LE6(TRUE, x0[17]) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[17]) which results in the following constraint:

    (89)    (>(x0[16], 0)=TRUEx0[16]=x0[17]9177_0_CREATETREE_LE(x0[16])≥NonInfC∧9177_0_CREATETREE_LE(x0[16])≥COND_9177_0_CREATETREE_LE6(>(x0[16], 0), x0[16])∧(UIncreasing(COND_9177_0_CREATETREE_LE6(>(x0[16], 0), x0[16])), ≥))



    We simplified constraint (89) using rule (IV) which results in the following new constraint:

    (90)    (>(x0[16], 0)=TRUE9177_0_CREATETREE_LE(x0[16])≥NonInfC∧9177_0_CREATETREE_LE(x0[16])≥COND_9177_0_CREATETREE_LE6(>(x0[16], 0), x0[16])∧(UIncreasing(COND_9177_0_CREATETREE_LE6(>(x0[16], 0), x0[16])), ≥))



    We simplified constraint (90) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (91)    (x0[16] + [-1] ≥ 0 ⇒ (UIncreasing(COND_9177_0_CREATETREE_LE6(>(x0[16], 0), x0[16])), ≥)∧[(-1)Bound*bni_83] + [(2)bni_83]x0[16] ≥ 0∧[1 + (-1)bso_84] ≥ 0)



    We simplified constraint (91) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (92)    (x0[16] + [-1] ≥ 0 ⇒ (UIncreasing(COND_9177_0_CREATETREE_LE6(>(x0[16], 0), x0[16])), ≥)∧[(-1)Bound*bni_83] + [(2)bni_83]x0[16] ≥ 0∧[1 + (-1)bso_84] ≥ 0)



    We simplified constraint (92) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (93)    (x0[16] + [-1] ≥ 0 ⇒ (UIncreasing(COND_9177_0_CREATETREE_LE6(>(x0[16], 0), x0[16])), ≥)∧[(-1)Bound*bni_83] + [(2)bni_83]x0[16] ≥ 0∧[1 + (-1)bso_84] ≥ 0)



    We simplified constraint (93) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (94)    (x0[16] ≥ 0 ⇒ (UIncreasing(COND_9177_0_CREATETREE_LE6(>(x0[16], 0), x0[16])), ≥)∧[(-1)Bound*bni_83 + (2)bni_83] + [(2)bni_83]x0[16] ≥ 0∧[1 + (-1)bso_84] ≥ 0)







For Pair COND_9177_0_CREATETREE_LE6(TRUE, x0) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0) the following chains were created:
  • We consider the chain COND_9177_0_CREATETREE_LE6(TRUE, x0[17]) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[17]) which results in the following constraint:

    (95)    (COND_9177_0_CREATETREE_LE6(TRUE, x0[17])≥NonInfC∧COND_9177_0_CREATETREE_LE6(TRUE, x0[17])≥10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[17])∧(UIncreasing(10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[17])), ≥))



    We simplified constraint (95) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (96)    ((UIncreasing(10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[17])), ≥)∧[(-1)bso_86] ≥ 0)



    We simplified constraint (96) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (97)    ((UIncreasing(10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[17])), ≥)∧[(-1)bso_86] ≥ 0)



    We simplified constraint (97) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (98)    ((UIncreasing(10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[17])), ≥)∧[(-1)bso_86] ≥ 0)



    We simplified constraint (98) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (99)    ((UIncreasing(10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[17])), ≥)∧0 = 0∧[(-1)bso_86] ≥ 0)







For Pair 9177_0_CREATETREE_LE(x0) → COND_9177_0_CREATETREE_LE7(>(x0, 0), x0) the following chains were created:
  • We consider the chain 9177_0_CREATETREE_LE(x0[18]) → COND_9177_0_CREATETREE_LE7(>(x0[18], 0), x0[18]), COND_9177_0_CREATETREE_LE7(TRUE, x0[19]) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[19]) which results in the following constraint:

    (100)    (>(x0[18], 0)=TRUEx0[18]=x0[19]9177_0_CREATETREE_LE(x0[18])≥NonInfC∧9177_0_CREATETREE_LE(x0[18])≥COND_9177_0_CREATETREE_LE7(>(x0[18], 0), x0[18])∧(UIncreasing(COND_9177_0_CREATETREE_LE7(>(x0[18], 0), x0[18])), ≥))



    We simplified constraint (100) using rule (IV) which results in the following new constraint:

    (101)    (>(x0[18], 0)=TRUE9177_0_CREATETREE_LE(x0[18])≥NonInfC∧9177_0_CREATETREE_LE(x0[18])≥COND_9177_0_CREATETREE_LE7(>(x0[18], 0), x0[18])∧(UIncreasing(COND_9177_0_CREATETREE_LE7(>(x0[18], 0), x0[18])), ≥))



    We simplified constraint (101) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (102)    (x0[18] + [-1] ≥ 0 ⇒ (UIncreasing(COND_9177_0_CREATETREE_LE7(>(x0[18], 0), x0[18])), ≥)∧[(-1)Bound*bni_87] + [(2)bni_87]x0[18] ≥ 0∧[(-1)bso_88] ≥ 0)



    We simplified constraint (102) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (103)    (x0[18] + [-1] ≥ 0 ⇒ (UIncreasing(COND_9177_0_CREATETREE_LE7(>(x0[18], 0), x0[18])), ≥)∧[(-1)Bound*bni_87] + [(2)bni_87]x0[18] ≥ 0∧[(-1)bso_88] ≥ 0)



    We simplified constraint (103) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (104)    (x0[18] + [-1] ≥ 0 ⇒ (UIncreasing(COND_9177_0_CREATETREE_LE7(>(x0[18], 0), x0[18])), ≥)∧[(-1)Bound*bni_87] + [(2)bni_87]x0[18] ≥ 0∧[(-1)bso_88] ≥ 0)



    We simplified constraint (104) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (105)    (x0[18] ≥ 0 ⇒ (UIncreasing(COND_9177_0_CREATETREE_LE7(>(x0[18], 0), x0[18])), ≥)∧[(-1)Bound*bni_87 + (2)bni_87] + [(2)bni_87]x0[18] ≥ 0∧[(-1)bso_88] ≥ 0)







For Pair COND_9177_0_CREATETREE_LE7(TRUE, x0) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0) the following chains were created:
  • We consider the chain COND_9177_0_CREATETREE_LE7(TRUE, x0[19]) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[19]) which results in the following constraint:

    (106)    (COND_9177_0_CREATETREE_LE7(TRUE, x0[19])≥NonInfC∧COND_9177_0_CREATETREE_LE7(TRUE, x0[19])≥10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[19])∧(UIncreasing(10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[19])), ≥))



    We simplified constraint (106) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (107)    ((UIncreasing(10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[19])), ≥)∧[1 + (-1)bso_90] ≥ 0)



    We simplified constraint (107) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (108)    ((UIncreasing(10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[19])), ≥)∧[1 + (-1)bso_90] ≥ 0)



    We simplified constraint (108) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (109)    ((UIncreasing(10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[19])), ≥)∧[1 + (-1)bso_90] ≥ 0)



    We simplified constraint (109) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (110)    ((UIncreasing(10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[19])), ≥)∧0 = 0∧[1 + (-1)bso_90] ≥ 0)







For Pair 9177_0_CREATETREE_LE(x0) → COND_9177_0_CREATETREE_LE8(>(x0, 0), x0) the following chains were created:
  • We consider the chain 9177_0_CREATETREE_LE(x0[20]) → COND_9177_0_CREATETREE_LE8(>(x0[20], 0), x0[20]), COND_9177_0_CREATETREE_LE8(TRUE, x0[21]) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[21]) which results in the following constraint:

    (111)    (>(x0[20], 0)=TRUEx0[20]=x0[21]9177_0_CREATETREE_LE(x0[20])≥NonInfC∧9177_0_CREATETREE_LE(x0[20])≥COND_9177_0_CREATETREE_LE8(>(x0[20], 0), x0[20])∧(UIncreasing(COND_9177_0_CREATETREE_LE8(>(x0[20], 0), x0[20])), ≥))



    We simplified constraint (111) using rule (IV) which results in the following new constraint:

    (112)    (>(x0[20], 0)=TRUE9177_0_CREATETREE_LE(x0[20])≥NonInfC∧9177_0_CREATETREE_LE(x0[20])≥COND_9177_0_CREATETREE_LE8(>(x0[20], 0), x0[20])∧(UIncreasing(COND_9177_0_CREATETREE_LE8(>(x0[20], 0), x0[20])), ≥))



    We simplified constraint (112) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (113)    (x0[20] + [-1] ≥ 0 ⇒ (UIncreasing(COND_9177_0_CREATETREE_LE8(>(x0[20], 0), x0[20])), ≥)∧[(-1)Bound*bni_91] + [(2)bni_91]x0[20] ≥ 0∧[1 + (-1)bso_92] ≥ 0)



    We simplified constraint (113) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (114)    (x0[20] + [-1] ≥ 0 ⇒ (UIncreasing(COND_9177_0_CREATETREE_LE8(>(x0[20], 0), x0[20])), ≥)∧[(-1)Bound*bni_91] + [(2)bni_91]x0[20] ≥ 0∧[1 + (-1)bso_92] ≥ 0)



    We simplified constraint (114) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (115)    (x0[20] + [-1] ≥ 0 ⇒ (UIncreasing(COND_9177_0_CREATETREE_LE8(>(x0[20], 0), x0[20])), ≥)∧[(-1)Bound*bni_91] + [(2)bni_91]x0[20] ≥ 0∧[1 + (-1)bso_92] ≥ 0)



    We simplified constraint (115) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (116)    (x0[20] ≥ 0 ⇒ (UIncreasing(COND_9177_0_CREATETREE_LE8(>(x0[20], 0), x0[20])), ≥)∧[(-1)Bound*bni_91 + (2)bni_91] + [(2)bni_91]x0[20] ≥ 0∧[1 + (-1)bso_92] ≥ 0)







For Pair COND_9177_0_CREATETREE_LE8(TRUE, x0) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0) the following chains were created:
  • We consider the chain COND_9177_0_CREATETREE_LE8(TRUE, x0[21]) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[21]) which results in the following constraint:

    (117)    (COND_9177_0_CREATETREE_LE8(TRUE, x0[21])≥NonInfC∧COND_9177_0_CREATETREE_LE8(TRUE, x0[21])≥10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[21])∧(UIncreasing(10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[21])), ≥))



    We simplified constraint (117) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (118)    ((UIncreasing(10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[21])), ≥)∧[(-1)bso_94] ≥ 0)



    We simplified constraint (118) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (119)    ((UIncreasing(10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[21])), ≥)∧[(-1)bso_94] ≥ 0)



    We simplified constraint (119) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (120)    ((UIncreasing(10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[21])), ≥)∧[(-1)bso_94] ≥ 0)



    We simplified constraint (120) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (121)    ((UIncreasing(10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[21])), ≥)∧0 = 0∧[(-1)bso_94] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 10501_1_CREATETREE_INVOKEMETHOD(1621_0_createNode_Return, x0) → COND_10501_1_CREATETREE_INVOKEMETHOD(>(x0, 0), 1621_0_createNode_Return, x0)
    • (x0[0] ≥ 0 ⇒ (UIncreasing(COND_10501_1_CREATETREE_INVOKEMETHOD(>(x0[0], 0), 1621_0_createNode_Return, x0[0])), ≥)∧[bni_51 + (-1)Bound*bni_51] + [(2)bni_51]x0[0] ≥ 0∧[(-1)bso_52] ≥ 0)

  • COND_10501_1_CREATETREE_INVOKEMETHOD(TRUE, 1621_0_createNode_Return, x0) → 9177_0_CREATETREE_LE(+(x0, -1))
    • ((UIncreasing(9177_0_CREATETREE_LE(+(x0[1], -1))), ≥)∧0 = 0∧[1 + (-1)bso_54] ≥ 0)

  • 10501_1_CREATETREE_INVOKEMETHOD(1925_0_createNode_Return, x0) → COND_10501_1_CREATETREE_INVOKEMETHOD1(>(x0, 0), 1925_0_createNode_Return, x0)
    • (x0[2] ≥ 0 ⇒ (UIncreasing(COND_10501_1_CREATETREE_INVOKEMETHOD1(>(x0[2], 0), 1925_0_createNode_Return, x0[2])), ≥)∧[bni_55 + (-1)Bound*bni_55] + [(2)bni_55]x0[2] ≥ 0∧[(-1)bso_56] ≥ 0)

  • COND_10501_1_CREATETREE_INVOKEMETHOD1(TRUE, 1925_0_createNode_Return, x0) → 9177_0_CREATETREE_LE(+(x0, -1))
    • ((UIncreasing(9177_0_CREATETREE_LE(+(x0[3], -1))), ≥)∧0 = 0∧[1 + (-1)bso_58] ≥ 0)

  • 9177_0_CREATETREE_LE(x0) → COND_9177_0_CREATETREE_LE(>(x0, 0), x0)
    • (x0[4] ≥ 0 ⇒ (UIncreasing(COND_9177_0_CREATETREE_LE(>(x0[4], 0), x0[4])), ≥)∧[(-1)Bound*bni_59 + (2)bni_59] + [(2)bni_59]x0[4] ≥ 0∧[1 + (-1)bso_60] ≥ 0)

  • COND_9177_0_CREATETREE_LE(TRUE, x0) → 9177_0_CREATETREE_LE(+(x0, -1))
    • ((UIncreasing(9177_0_CREATETREE_LE(+(x0[5], -1))), ≥)∧0 = 0∧[1 + (-1)bso_62] ≥ 0)

  • 9177_0_CREATETREE_LE(x0) → COND_9177_0_CREATETREE_LE1(>(x0, 0), x0)
    • (x0[6] ≥ 0 ⇒ (UIncreasing(COND_9177_0_CREATETREE_LE1(>(x0[6], 0), x0[6])), ≥)∧[(-1)Bound*bni_63 + (2)bni_63] + [(2)bni_63]x0[6] ≥ 0∧[1 + (-1)bso_64] ≥ 0)

  • COND_9177_0_CREATETREE_LE1(TRUE, x0) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0)
    • ((UIncreasing(10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[7])), ≥)∧0 = 0∧[(-1)bso_66] ≥ 0)

  • 9177_0_CREATETREE_LE(x0) → COND_9177_0_CREATETREE_LE2(>(x0, 0), x0)
    • (x0[8] ≥ 0 ⇒ (UIncreasing(COND_9177_0_CREATETREE_LE2(>(x0[8], 0), x0[8])), ≥)∧[(-1)Bound*bni_67 + (2)bni_67] + [(2)bni_67]x0[8] ≥ 0∧[(-1)bso_68] ≥ 0)

  • COND_9177_0_CREATETREE_LE2(TRUE, x0) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0)
    • ((UIncreasing(10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[9])), ≥)∧0 = 0∧[1 + (-1)bso_70] ≥ 0)

  • 9177_0_CREATETREE_LE(x0) → COND_9177_0_CREATETREE_LE3(>(x0, 0), x0)
    • (x0[10] ≥ 0 ⇒ (UIncreasing(COND_9177_0_CREATETREE_LE3(>(x0[10], 0), x0[10])), ≥)∧[(-1)Bound*bni_71 + (2)bni_71] + [(2)bni_71]x0[10] ≥ 0∧[1 + (-1)bso_72] ≥ 0)

  • COND_9177_0_CREATETREE_LE3(TRUE, x0) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0)
    • ((UIncreasing(10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[11])), ≥)∧0 = 0∧[(-1)bso_74] ≥ 0)

  • 9177_0_CREATETREE_LE(x0) → COND_9177_0_CREATETREE_LE4(>(x0, 0), x0)
    • (x0[12] ≥ 0 ⇒ (UIncreasing(COND_9177_0_CREATETREE_LE4(>(x0[12], 0), x0[12])), ≥)∧[(-1)Bound*bni_75 + (2)bni_75] + [(2)bni_75]x0[12] ≥ 0∧[1 + (-1)bso_76] ≥ 0)

  • COND_9177_0_CREATETREE_LE4(TRUE, x0) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0)
    • ((UIncreasing(10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[13])), ≥)∧0 = 0∧[(-1)bso_78] ≥ 0)

  • 9177_0_CREATETREE_LE(x0) → COND_9177_0_CREATETREE_LE5(>(x0, 0), x0)
    • (x0[14] ≥ 0 ⇒ (UIncreasing(COND_9177_0_CREATETREE_LE5(>(x0[14], 0), x0[14])), ≥)∧[(-1)Bound*bni_79 + (2)bni_79] + [(2)bni_79]x0[14] ≥ 0∧[1 + (-1)bso_80] ≥ 0)

  • COND_9177_0_CREATETREE_LE5(TRUE, x0) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0)
    • ((UIncreasing(10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[15])), ≥)∧0 = 0∧[(-1)bso_82] ≥ 0)

  • 9177_0_CREATETREE_LE(x0) → COND_9177_0_CREATETREE_LE6(>(x0, 0), x0)
    • (x0[16] ≥ 0 ⇒ (UIncreasing(COND_9177_0_CREATETREE_LE6(>(x0[16], 0), x0[16])), ≥)∧[(-1)Bound*bni_83 + (2)bni_83] + [(2)bni_83]x0[16] ≥ 0∧[1 + (-1)bso_84] ≥ 0)

  • COND_9177_0_CREATETREE_LE6(TRUE, x0) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0)
    • ((UIncreasing(10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[17])), ≥)∧0 = 0∧[(-1)bso_86] ≥ 0)

  • 9177_0_CREATETREE_LE(x0) → COND_9177_0_CREATETREE_LE7(>(x0, 0), x0)
    • (x0[18] ≥ 0 ⇒ (UIncreasing(COND_9177_0_CREATETREE_LE7(>(x0[18], 0), x0[18])), ≥)∧[(-1)Bound*bni_87 + (2)bni_87] + [(2)bni_87]x0[18] ≥ 0∧[(-1)bso_88] ≥ 0)

  • COND_9177_0_CREATETREE_LE7(TRUE, x0) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0)
    • ((UIncreasing(10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[19])), ≥)∧0 = 0∧[1 + (-1)bso_90] ≥ 0)

  • 9177_0_CREATETREE_LE(x0) → COND_9177_0_CREATETREE_LE8(>(x0, 0), x0)
    • (x0[20] ≥ 0 ⇒ (UIncreasing(COND_9177_0_CREATETREE_LE8(>(x0[20], 0), x0[20])), ≥)∧[(-1)Bound*bni_91 + (2)bni_91] + [(2)bni_91]x0[20] ≥ 0∧[1 + (-1)bso_92] ≥ 0)

  • COND_9177_0_CREATETREE_LE8(TRUE, x0) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0)
    • ((UIncreasing(10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[21])), ≥)∧0 = 0∧[(-1)bso_94] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(10501_0_createNode_New) = [-1]   
POL(12141_0_createNode_InvokeMethod) = [-1]   
POL(11882_0_createNode_InvokeMethod) = [-1]   
POL(12023_0_createNode_InvokeMethod) = [-1]   
POL(11910_0_createNode_InvokeMethod) = [-1]   
POL(9177_0_createTree_LE(x1)) = [-1]   
POL(0) = 0   
POL(9203_0_createTree_Return) = [-1]   
POL(1502_1_createNode_InvokeMethod) = [-1]   
POL(10501_1_createTree_InvokeMethod(x1, x2)) = [-1]   
POL(2014_0_createNode_InvokeMethod) = [-1]   
POL(10799_0_createTree_InvokeMethod(x1)) = [-1]   
POL(2043_0_createNode_InvokeMethod) = [-1]   
POL(10301_0_createTree_InvokeMethod(x1)) = [-1]   
POL(10647_0_createTree_InvokeMethod(x1)) = [-1]   
POL(10396_0_createTree_InvokeMethod(x1)) = [-1]   
POL(12277_0_createTree_InvokeMethod(x1)) = [-1]   
POL(11992_0_createTree_InvokeMethod(x1)) = [-1]   
POL(12189_0_createTree_InvokeMethod(x1)) = [-1]   
POL(12050_0_createTree_InvokeMethod(x1)) = [-1]   
POL(1621_0_createNode_Return) = [-1]   
POL(1925_0_createNode_Return) = [-1]   
POL(10501_1_CREATETREE_INVOKEMETHOD(x1, x2)) = [-1] + [2]x2   
POL(COND_10501_1_CREATETREE_INVOKEMETHOD(x1, x2, x3)) = [-1] + [2]x3   
POL(>(x1, x2)) = [-1]   
POL(9177_0_CREATETREE_LE(x1)) = [2]x1   
POL(+(x1, x2)) = x1 + x2   
POL(-1) = [-1]   
POL(COND_10501_1_CREATETREE_INVOKEMETHOD1(x1, x2, x3)) = [-1] + [2]x3   
POL(COND_9177_0_CREATETREE_LE(x1, x2)) = [-1] + [2]x2   
POL(COND_9177_0_CREATETREE_LE1(x1, x2)) = [-1] + [2]x2   
POL(COND_9177_0_CREATETREE_LE2(x1, x2)) = [2]x2   
POL(COND_9177_0_CREATETREE_LE3(x1, x2)) = [-1] + [2]x2   
POL(COND_9177_0_CREATETREE_LE4(x1, x2)) = [-1] + [2]x2   
POL(COND_9177_0_CREATETREE_LE5(x1, x2)) = [-1] + [2]x2   
POL(COND_9177_0_CREATETREE_LE6(x1, x2)) = [-1] + [2]x2   
POL(COND_9177_0_CREATETREE_LE7(x1, x2)) = [2]x2   
POL(COND_9177_0_CREATETREE_LE8(x1, x2)) = [-1] + [2]x2   

The following pairs are in P>:

COND_10501_1_CREATETREE_INVOKEMETHOD(TRUE, 1621_0_createNode_Return, x0[1]) → 9177_0_CREATETREE_LE(+(x0[1], -1))
COND_10501_1_CREATETREE_INVOKEMETHOD1(TRUE, 1925_0_createNode_Return, x0[3]) → 9177_0_CREATETREE_LE(+(x0[3], -1))
9177_0_CREATETREE_LE(x0[4]) → COND_9177_0_CREATETREE_LE(>(x0[4], 0), x0[4])
COND_9177_0_CREATETREE_LE(TRUE, x0[5]) → 9177_0_CREATETREE_LE(+(x0[5], -1))
9177_0_CREATETREE_LE(x0[6]) → COND_9177_0_CREATETREE_LE1(>(x0[6], 0), x0[6])
COND_9177_0_CREATETREE_LE2(TRUE, x0[9]) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[9])
9177_0_CREATETREE_LE(x0[10]) → COND_9177_0_CREATETREE_LE3(>(x0[10], 0), x0[10])
9177_0_CREATETREE_LE(x0[12]) → COND_9177_0_CREATETREE_LE4(>(x0[12], 0), x0[12])
9177_0_CREATETREE_LE(x0[14]) → COND_9177_0_CREATETREE_LE5(>(x0[14], 0), x0[14])
9177_0_CREATETREE_LE(x0[16]) → COND_9177_0_CREATETREE_LE6(>(x0[16], 0), x0[16])
COND_9177_0_CREATETREE_LE7(TRUE, x0[19]) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[19])
9177_0_CREATETREE_LE(x0[20]) → COND_9177_0_CREATETREE_LE8(>(x0[20], 0), x0[20])

The following pairs are in Pbound:

10501_1_CREATETREE_INVOKEMETHOD(1621_0_createNode_Return, x0[0]) → COND_10501_1_CREATETREE_INVOKEMETHOD(>(x0[0], 0), 1621_0_createNode_Return, x0[0])
10501_1_CREATETREE_INVOKEMETHOD(1925_0_createNode_Return, x0[2]) → COND_10501_1_CREATETREE_INVOKEMETHOD1(>(x0[2], 0), 1925_0_createNode_Return, x0[2])
9177_0_CREATETREE_LE(x0[4]) → COND_9177_0_CREATETREE_LE(>(x0[4], 0), x0[4])
9177_0_CREATETREE_LE(x0[6]) → COND_9177_0_CREATETREE_LE1(>(x0[6], 0), x0[6])
9177_0_CREATETREE_LE(x0[8]) → COND_9177_0_CREATETREE_LE2(>(x0[8], 0), x0[8])
9177_0_CREATETREE_LE(x0[10]) → COND_9177_0_CREATETREE_LE3(>(x0[10], 0), x0[10])
9177_0_CREATETREE_LE(x0[12]) → COND_9177_0_CREATETREE_LE4(>(x0[12], 0), x0[12])
9177_0_CREATETREE_LE(x0[14]) → COND_9177_0_CREATETREE_LE5(>(x0[14], 0), x0[14])
9177_0_CREATETREE_LE(x0[16]) → COND_9177_0_CREATETREE_LE6(>(x0[16], 0), x0[16])
9177_0_CREATETREE_LE(x0[18]) → COND_9177_0_CREATETREE_LE7(>(x0[18], 0), x0[18])
9177_0_CREATETREE_LE(x0[20]) → COND_9177_0_CREATETREE_LE8(>(x0[20], 0), x0[20])

The following pairs are in P:

10501_1_CREATETREE_INVOKEMETHOD(1621_0_createNode_Return, x0[0]) → COND_10501_1_CREATETREE_INVOKEMETHOD(>(x0[0], 0), 1621_0_createNode_Return, x0[0])
10501_1_CREATETREE_INVOKEMETHOD(1925_0_createNode_Return, x0[2]) → COND_10501_1_CREATETREE_INVOKEMETHOD1(>(x0[2], 0), 1925_0_createNode_Return, x0[2])
COND_9177_0_CREATETREE_LE1(TRUE, x0[7]) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[7])
9177_0_CREATETREE_LE(x0[8]) → COND_9177_0_CREATETREE_LE2(>(x0[8], 0), x0[8])
COND_9177_0_CREATETREE_LE3(TRUE, x0[11]) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[11])
COND_9177_0_CREATETREE_LE4(TRUE, x0[13]) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[13])
COND_9177_0_CREATETREE_LE5(TRUE, x0[15]) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[15])
COND_9177_0_CREATETREE_LE6(TRUE, x0[17]) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[17])
9177_0_CREATETREE_LE(x0[18]) → COND_9177_0_CREATETREE_LE7(>(x0[18], 0), x0[18])
COND_9177_0_CREATETREE_LE8(TRUE, x0[21]) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[21])

There are no usable rules.

(24) Complex Obligation (AND)

(25) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


The ITRS R consists of the following rules:
10501_0_createNode_New12141_0_createNode_InvokeMethod
10501_0_createNode_New11882_0_createNode_InvokeMethod
10501_0_createNode_New12023_0_createNode_InvokeMethod
10501_0_createNode_New11910_0_createNode_InvokeMethod
9177_0_createTree_LE(0) → 9203_0_createTree_Return
10501_0_createNode_New1502_1_createNode_InvokeMethod
10501_1_createTree_InvokeMethod(2014_0_createNode_InvokeMethod, x0) → 10799_0_createTree_InvokeMethod(x0)
10501_1_createTree_InvokeMethod(2043_0_createNode_InvokeMethod, x0) → 10799_0_createTree_InvokeMethod(x0)
10501_1_createTree_InvokeMethod(2014_0_createNode_InvokeMethod, x0) → 10301_0_createTree_InvokeMethod(x0)
10501_1_createTree_InvokeMethod(2043_0_createNode_InvokeMethod, x0) → 10301_0_createTree_InvokeMethod(x0)
10501_1_createTree_InvokeMethod(2014_0_createNode_InvokeMethod, x0) → 10647_0_createTree_InvokeMethod(x0)
10501_1_createTree_InvokeMethod(2043_0_createNode_InvokeMethod, x0) → 10647_0_createTree_InvokeMethod(x0)
10501_1_createTree_InvokeMethod(2014_0_createNode_InvokeMethod, x0) → 10396_0_createTree_InvokeMethod(x0)
10501_1_createTree_InvokeMethod(2043_0_createNode_InvokeMethod, x0) → 10396_0_createTree_InvokeMethod(x0)
10501_1_createTree_InvokeMethod(2043_0_createNode_InvokeMethod, x0) → 12277_0_createTree_InvokeMethod(x0)
10501_1_createTree_InvokeMethod(2043_0_createNode_InvokeMethod, x0) → 11992_0_createTree_InvokeMethod(x0)
10501_1_createTree_InvokeMethod(2043_0_createNode_InvokeMethod, x0) → 12189_0_createTree_InvokeMethod(x0)
10501_1_createTree_InvokeMethod(2043_0_createNode_InvokeMethod, x0) → 12050_0_createTree_InvokeMethod(x0)
1502_1_createNode_InvokeMethod1621_0_createNode_Return
1502_1_createNode_InvokeMethod2014_0_createNode_InvokeMethod
1502_1_createNode_InvokeMethod2043_0_createNode_InvokeMethod
1502_1_createNode_InvokeMethod1925_0_createNode_Return

The integer pair graph contains the following rules and edges:
(0): 10501_1_CREATETREE_INVOKEMETHOD(1621_0_createNode_Return, x0[0]) → COND_10501_1_CREATETREE_INVOKEMETHOD(x0[0] > 0, 1621_0_createNode_Return, x0[0])
(2): 10501_1_CREATETREE_INVOKEMETHOD(1925_0_createNode_Return, x0[2]) → COND_10501_1_CREATETREE_INVOKEMETHOD1(x0[2] > 0, 1925_0_createNode_Return, x0[2])
(7): COND_9177_0_CREATETREE_LE1(TRUE, x0[7]) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[7])
(8): 9177_0_CREATETREE_LE(x0[8]) → COND_9177_0_CREATETREE_LE2(x0[8] > 0, x0[8])
(11): COND_9177_0_CREATETREE_LE3(TRUE, x0[11]) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[11])
(13): COND_9177_0_CREATETREE_LE4(TRUE, x0[13]) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[13])
(15): COND_9177_0_CREATETREE_LE5(TRUE, x0[15]) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[15])
(17): COND_9177_0_CREATETREE_LE6(TRUE, x0[17]) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[17])
(18): 9177_0_CREATETREE_LE(x0[18]) → COND_9177_0_CREATETREE_LE7(x0[18] > 0, x0[18])
(21): COND_9177_0_CREATETREE_LE8(TRUE, x0[21]) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[21])

(7) -> (0), if ((10501_0_createNode_New* 1621_0_createNode_Return)∧(x0[7]* x0[0]))


(11) -> (0), if ((10501_0_createNode_New* 1621_0_createNode_Return)∧(x0[11]* x0[0]))


(13) -> (0), if ((10501_0_createNode_New* 1621_0_createNode_Return)∧(x0[13]* x0[0]))


(15) -> (0), if ((10501_0_createNode_New* 1621_0_createNode_Return)∧(x0[15]* x0[0]))


(17) -> (0), if ((10501_0_createNode_New* 1621_0_createNode_Return)∧(x0[17]* x0[0]))


(21) -> (0), if ((10501_0_createNode_New* 1621_0_createNode_Return)∧(x0[21]* x0[0]))


(7) -> (2), if ((10501_0_createNode_New* 1925_0_createNode_Return)∧(x0[7]* x0[2]))


(11) -> (2), if ((10501_0_createNode_New* 1925_0_createNode_Return)∧(x0[11]* x0[2]))


(13) -> (2), if ((10501_0_createNode_New* 1925_0_createNode_Return)∧(x0[13]* x0[2]))


(15) -> (2), if ((10501_0_createNode_New* 1925_0_createNode_Return)∧(x0[15]* x0[2]))


(17) -> (2), if ((10501_0_createNode_New* 1925_0_createNode_Return)∧(x0[17]* x0[2]))


(21) -> (2), if ((10501_0_createNode_New* 1925_0_createNode_Return)∧(x0[21]* x0[2]))



The set Q consists of the following terms:
10501_0_createNode_New
9177_0_createTree_LE(0)
10501_1_createTree_InvokeMethod(2014_0_createNode_InvokeMethod, x0)
10501_1_createTree_InvokeMethod(2043_0_createNode_InvokeMethod, x0)
1502_1_createNode_InvokeMethod

(26) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 10 less nodes.

(27) TRUE

(28) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


The ITRS R consists of the following rules:
10501_0_createNode_New12141_0_createNode_InvokeMethod
10501_0_createNode_New11882_0_createNode_InvokeMethod
10501_0_createNode_New12023_0_createNode_InvokeMethod
10501_0_createNode_New11910_0_createNode_InvokeMethod
9177_0_createTree_LE(0) → 9203_0_createTree_Return
10501_0_createNode_New1502_1_createNode_InvokeMethod
10501_1_createTree_InvokeMethod(2014_0_createNode_InvokeMethod, x0) → 10799_0_createTree_InvokeMethod(x0)
10501_1_createTree_InvokeMethod(2043_0_createNode_InvokeMethod, x0) → 10799_0_createTree_InvokeMethod(x0)
10501_1_createTree_InvokeMethod(2014_0_createNode_InvokeMethod, x0) → 10301_0_createTree_InvokeMethod(x0)
10501_1_createTree_InvokeMethod(2043_0_createNode_InvokeMethod, x0) → 10301_0_createTree_InvokeMethod(x0)
10501_1_createTree_InvokeMethod(2014_0_createNode_InvokeMethod, x0) → 10647_0_createTree_InvokeMethod(x0)
10501_1_createTree_InvokeMethod(2043_0_createNode_InvokeMethod, x0) → 10647_0_createTree_InvokeMethod(x0)
10501_1_createTree_InvokeMethod(2014_0_createNode_InvokeMethod, x0) → 10396_0_createTree_InvokeMethod(x0)
10501_1_createTree_InvokeMethod(2043_0_createNode_InvokeMethod, x0) → 10396_0_createTree_InvokeMethod(x0)
10501_1_createTree_InvokeMethod(2043_0_createNode_InvokeMethod, x0) → 12277_0_createTree_InvokeMethod(x0)
10501_1_createTree_InvokeMethod(2043_0_createNode_InvokeMethod, x0) → 11992_0_createTree_InvokeMethod(x0)
10501_1_createTree_InvokeMethod(2043_0_createNode_InvokeMethod, x0) → 12189_0_createTree_InvokeMethod(x0)
10501_1_createTree_InvokeMethod(2043_0_createNode_InvokeMethod, x0) → 12050_0_createTree_InvokeMethod(x0)
1502_1_createNode_InvokeMethod1621_0_createNode_Return
1502_1_createNode_InvokeMethod2014_0_createNode_InvokeMethod
1502_1_createNode_InvokeMethod2043_0_createNode_InvokeMethod
1502_1_createNode_InvokeMethod1925_0_createNode_Return

The integer pair graph contains the following rules and edges:
(1): COND_10501_1_CREATETREE_INVOKEMETHOD(TRUE, 1621_0_createNode_Return, x0[1]) → 9177_0_CREATETREE_LE(x0[1] + -1)
(3): COND_10501_1_CREATETREE_INVOKEMETHOD1(TRUE, 1925_0_createNode_Return, x0[3]) → 9177_0_CREATETREE_LE(x0[3] + -1)
(5): COND_9177_0_CREATETREE_LE(TRUE, x0[5]) → 9177_0_CREATETREE_LE(x0[5] + -1)
(7): COND_9177_0_CREATETREE_LE1(TRUE, x0[7]) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[7])
(9): COND_9177_0_CREATETREE_LE2(TRUE, x0[9]) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[9])
(11): COND_9177_0_CREATETREE_LE3(TRUE, x0[11]) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[11])
(13): COND_9177_0_CREATETREE_LE4(TRUE, x0[13]) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[13])
(15): COND_9177_0_CREATETREE_LE5(TRUE, x0[15]) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[15])
(17): COND_9177_0_CREATETREE_LE6(TRUE, x0[17]) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[17])
(19): COND_9177_0_CREATETREE_LE7(TRUE, x0[19]) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[19])
(21): COND_9177_0_CREATETREE_LE8(TRUE, x0[21]) → 10501_1_CREATETREE_INVOKEMETHOD(10501_0_createNode_New, x0[21])


The set Q consists of the following terms:
10501_0_createNode_New
9177_0_createTree_LE(0)
10501_1_createTree_InvokeMethod(2014_0_createNode_InvokeMethod, x0)
10501_1_createTree_InvokeMethod(2043_0_createNode_InvokeMethod, x0)
1502_1_createNode_InvokeMethod

(29) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 11 less nodes.

(30) TRUE