(0) Obligation:
JBC Problem based on JBC Program:
Manifest-Version: 1.0
Created-By: 1.6.0_22 (Sun Microsystems Inc.)
Main-Class: IntListDupRec/IntListDupRec
package IntListDupRec;
public class IntListDupRec {
public static void main(String[] args) {
Random.args = args;
List l = List.createList(Random.random());
l.dupList();
}
}
class List {
boolean dupped;
List next;
public List(boolean d, List n) {
this.dupped = d;
this.next = n;
}
public void dupList() {
if (this.next == null) {
new List(false, this);
} else if (this.dupped == false) {
List next = this.next;
this.next = new List(true, next);
}
this.next.dupList();
this.dupped = false;
}
public static List createList(int l) {
if (l < 0) {
return null;
} else {
return new List(false, createList(l - 1));
}
}
}
class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
(1) JBC2FIG (SOUND transformation)
Constructed FIGraph.
(2) Obligation:
FIGraph based on JBC Program:
IntListDupRec.IntListDupRec.main([Ljava/lang/String;)V: Graph of 97 nodes with 0 SCCs.
IntListDupRec.List.createList(I)LIntListDupRec/List;: Graph of 44 nodes with 0 SCCs.
IntListDupRec.List.dupList()V: Graph of 95 nodes with 0 SCCs.
(3) FIGtoITRSProof (SOUND transformation)
Transformed FIGraph SCCs to IDPs. Logs:
Log for SCC 0: Generated 42 rules for P and 54 rules for R.
Combined rules. Obtained 2 rules for P and 5 rules for R.
Filtered ground terms:
IntListDupRec.List(x1, x2, x3) → IntListDupRec.List(x2, x3)
765_0_dupList_FieldAccess(x1, x2, x3) → 765_0_dupList_FieldAccess(x2, x3)
Cond_765_0_dupList_FieldAccess(x1, x2, x3, x4) → Cond_765_0_dupList_FieldAccess(x1, x3, x4)
1169_0_dupList_InvokeMethod(x1, x2, x3, x4) → 1169_0_dupList_InvokeMethod(x3, x4)
java.lang.NullPointerException(x1) → java.lang.NullPointerException
java.lang.RuntimeException(x1) → java.lang.RuntimeException
java.lang.Exception(x1) → java.lang.Exception
java.lang.Throwable(x1) → java.lang.Throwable
1107_0_dupList_InvokeMethod(x1, x2, x3, x4) → 1107_0_dupList_InvokeMethod(x3, x4)
950_0_dupList_InvokeMethod(x1, x2, x3, x4) → 950_0_dupList_InvokeMethod(x3)
Filtered duplicate args:
765_0_dupList_FieldAccess(x1, x2) → 765_0_dupList_FieldAccess(x2)
Cond_765_0_dupList_FieldAccess(x1, x2, x3) → Cond_765_0_dupList_FieldAccess(x1, x3)
Combined rules. Obtained 2 rules for P and 5 rules for R.
Finished conversion. Obtained 2 rules for P and 5 rules for R. System has predefined symbols.
Log for SCC 1: Generated 12 rules for P and 30 rules for R.
Combined rules. Obtained 1 rules for P and 4 rules for R.
Filtered ground terms:
243_0_createList_GE(x1, x2, x3) → 243_0_createList_GE(x2, x3)
Cond_243_0_createList_GE(x1, x2, x3, x4) → Cond_243_0_createList_GE(x1, x3, x4)
562_0_createList_Return(x1) → 562_0_createList_Return
316_0_createList_Return(x1) → 316_0_createList_Return
262_0_createList_Return(x1, x2) → 262_0_createList_Return
Filtered duplicate args:
243_0_createList_GE(x1, x2) → 243_0_createList_GE(x2)
Cond_243_0_createList_GE(x1, x2, x3) → Cond_243_0_createList_GE(x1, x3)
Combined rules. Obtained 1 rules for P and 4 rules for R.
Finished conversion. Obtained 1 rules for P and 4 rules for R. System has predefined symbols.
(4) Complex Obligation (AND)
(5) Obligation:
IDP problem:
The following function symbols are pre-defined:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
| ~ | Bwxor: (Integer, Integer) -> Integer |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
The following domains are used:
Boolean, Integer
The ITRS R consists of the following rules:
807_1_dupList_InvokeMethod(
950_0_dupList_InvokeMethod(
java.lang.Object(
IntListDupRec.List(
NULL,
x0))),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
NULL,
x0)),
x1)),
java.lang.Object(
IntListDupRec.List(
NULL,
x0))) →
1107_0_dupList_InvokeMethod(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
NULL,
x0)),
x1)),
java.lang.Object(
IntListDupRec.List(
NULL,
x0)))
807_1_dupList_InvokeMethod(
1107_0_dupList_InvokeMethod(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2)),
java.lang.Object(
IntListDupRec.List(
x0,
x1))),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x3),
x4)),
java.lang.Object(
x3)) →
1107_0_dupList_InvokeMethod(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2)),
x4)),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2)))
807_1_dupList_InvokeMethod(
1169_0_dupList_InvokeMethod(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2)),
0)),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2))),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x4),
x5)),
java.lang.Object(
x4)) →
1107_0_dupList_InvokeMethod(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2)),
0)),
x5)),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2)),
0)))
916_1_dupList_InvokeMethod(
1107_0_dupList_InvokeMethod(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2)),
java.lang.Object(
IntListDupRec.List(
x0,
x1))),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x3),
1)),
0)),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x3),
1))) →
1169_0_dupList_InvokeMethod(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2)),
0)),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2)))
916_1_dupList_InvokeMethod(
1169_0_dupList_InvokeMethod(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2)),
0)),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2))),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x4),
1)),
0)),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x4),
1))) →
1169_0_dupList_InvokeMethod(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2)),
0)),
0)),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2)),
0)))
The integer pair graph contains the following rules and edges:
(0):
765_0_DUPLIST_FIELDACCESS(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x0[0]),
x1[0]))) →
COND_765_0_DUPLIST_FIELDACCESS(
!(
x1[0] = 0),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x0[0]),
x1[0])))
(1):
COND_765_0_DUPLIST_FIELDACCESS(
TRUE,
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x0[1]),
x1[1]))) →
765_0_DUPLIST_FIELDACCESS(
java.lang.Object(
x0[1]))
(2):
765_0_DUPLIST_FIELDACCESS(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x0[2]),
0))) →
765_0_DUPLIST_FIELDACCESS(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x0[2]),
1)))
(0) -> (1), if ((!(x1[0] = 0) →* TRUE)∧(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[0]), x1[0])) →* java.lang.Object(IntListDupRec.List(java.lang.Object(x0[1]), x1[1]))))
(1) -> (0), if ((java.lang.Object(x0[1]) →* java.lang.Object(IntListDupRec.List(java.lang.Object(x0[0]), x1[0]))))
(1) -> (2), if ((java.lang.Object(x0[1]) →* java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), 0))))
(2) -> (0), if ((java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), 1)) →* java.lang.Object(IntListDupRec.List(java.lang.Object(x0[0]), x1[0]))))
(2) -> (2), if ((java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), 1)) →* java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]'), 0))))
The set Q consists of the following terms:
807_1_dupList_InvokeMethod(
950_0_dupList_InvokeMethod(
java.lang.Object(
IntListDupRec.List(
NULL,
x0))),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
NULL,
x0)),
x1)),
java.lang.Object(
IntListDupRec.List(
NULL,
x0)))
807_1_dupList_InvokeMethod(
1107_0_dupList_InvokeMethod(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2)),
java.lang.Object(
IntListDupRec.List(
x0,
x1))),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x3),
x4)),
java.lang.Object(
x3))
807_1_dupList_InvokeMethod(
1169_0_dupList_InvokeMethod(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2)),
0)),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2))),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x3),
x4)),
java.lang.Object(
x3))
916_1_dupList_InvokeMethod(
1107_0_dupList_InvokeMethod(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2)),
java.lang.Object(
IntListDupRec.List(
x0,
x1))),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x3),
1)),
0)),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x3),
1)))
916_1_dupList_InvokeMethod(
1169_0_dupList_InvokeMethod(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2)),
0)),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2))),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x3),
1)),
0)),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x3),
1)))
(6) IDPNonInfProof (SOUND transformation)
The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that
final constraints are written in
bold face.
For Pair
765_0_DUPLIST_FIELDACCESS(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x0),
x1))) →
COND_765_0_DUPLIST_FIELDACCESS(
!(
=(
x1,
0)),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x0),
x1))) the following chains were created:
- We consider the chain 765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[0]), x1[0]))) → COND_765_0_DUPLIST_FIELDACCESS(!(=(x1[0], 0)), java.lang.Object(IntListDupRec.List(java.lang.Object(x0[0]), x1[0]))), COND_765_0_DUPLIST_FIELDACCESS(TRUE, java.lang.Object(IntListDupRec.List(java.lang.Object(x0[1]), x1[1]))) → 765_0_DUPLIST_FIELDACCESS(java.lang.Object(x0[1])) which results in the following constraint:
(1) (!(=(x1[0], 0))=TRUE∧java.lang.Object(IntListDupRec.List(java.lang.Object(x0[0]), x1[0]))=java.lang.Object(IntListDupRec.List(java.lang.Object(x0[1]), x1[1])) ⇒ 765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[0]), x1[0])))≥NonInfC∧765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[0]), x1[0])))≥COND_765_0_DUPLIST_FIELDACCESS(!(=(x1[0], 0)), java.lang.Object(IntListDupRec.List(java.lang.Object(x0[0]), x1[0])))∧(UIncreasing(COND_765_0_DUPLIST_FIELDACCESS(!(=(x1[0], 0)), java.lang.Object(IntListDupRec.List(java.lang.Object(x0[0]), x1[0])))), ≥))
We simplified constraint (1) using rules (I), (II), (IV) which results in the following new constraint:
(2) (!(=(x1[0], 0))=TRUE ⇒ 765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[0]), x1[0])))≥NonInfC∧765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[0]), x1[0])))≥COND_765_0_DUPLIST_FIELDACCESS(!(=(x1[0], 0)), java.lang.Object(IntListDupRec.List(java.lang.Object(x0[0]), x1[0])))∧(UIncreasing(COND_765_0_DUPLIST_FIELDACCESS(!(=(x1[0], 0)), java.lang.Object(IntListDupRec.List(java.lang.Object(x0[0]), x1[0])))), ≥))
We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(3) (0 ≥ 0 ⇒ (UIncreasing(COND_765_0_DUPLIST_FIELDACCESS(!(=(x1[0], 0)), java.lang.Object(IntListDupRec.List(java.lang.Object(x0[0]), x1[0])))), ≥)∧[(5)bni_28 + (-1)Bound*bni_28] + [(4)bni_28]x0[0] ≥ 0∧[(-1)bso_29] ≥ 0)
We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(4) (0 ≥ 0 ⇒ (UIncreasing(COND_765_0_DUPLIST_FIELDACCESS(!(=(x1[0], 0)), java.lang.Object(IntListDupRec.List(java.lang.Object(x0[0]), x1[0])))), ≥)∧[(5)bni_28 + (-1)Bound*bni_28] + [(4)bni_28]x0[0] ≥ 0∧[(-1)bso_29] ≥ 0)
We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(5) (0 ≥ 0 ⇒ (UIncreasing(COND_765_0_DUPLIST_FIELDACCESS(!(=(x1[0], 0)), java.lang.Object(IntListDupRec.List(java.lang.Object(x0[0]), x1[0])))), ≥)∧[(5)bni_28 + (-1)Bound*bni_28] + [(4)bni_28]x0[0] ≥ 0∧[(-1)bso_29] ≥ 0)
We simplified constraint (5) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:
(6) (0 ≥ 0 ⇒ (UIncreasing(COND_765_0_DUPLIST_FIELDACCESS(!(=(x1[0], 0)), java.lang.Object(IntListDupRec.List(java.lang.Object(x0[0]), x1[0])))), ≥)∧0 ≥ 0∧[(4)bni_28] ≥ 0∧[(5)bni_28 + (-1)Bound*bni_28] ≥ 0∧0 ≥ 0∧0 ≥ 0∧[(-1)bso_29] ≥ 0)
For Pair
COND_765_0_DUPLIST_FIELDACCESS(
TRUE,
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x0),
x1))) →
765_0_DUPLIST_FIELDACCESS(
java.lang.Object(
x0)) the following chains were created:
- We consider the chain 765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[0]), x1[0]))) → COND_765_0_DUPLIST_FIELDACCESS(!(=(x1[0], 0)), java.lang.Object(IntListDupRec.List(java.lang.Object(x0[0]), x1[0]))), COND_765_0_DUPLIST_FIELDACCESS(TRUE, java.lang.Object(IntListDupRec.List(java.lang.Object(x0[1]), x1[1]))) → 765_0_DUPLIST_FIELDACCESS(java.lang.Object(x0[1])), 765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[0]), x1[0]))) → COND_765_0_DUPLIST_FIELDACCESS(!(=(x1[0], 0)), java.lang.Object(IntListDupRec.List(java.lang.Object(x0[0]), x1[0]))) which results in the following constraint:
(7) (!(=(x1[0], 0))=TRUE∧java.lang.Object(IntListDupRec.List(java.lang.Object(x0[0]), x1[0]))=java.lang.Object(IntListDupRec.List(java.lang.Object(x0[1]), x1[1]))∧java.lang.Object(x0[1])=java.lang.Object(IntListDupRec.List(java.lang.Object(x0[0]1), x1[0]1)) ⇒ COND_765_0_DUPLIST_FIELDACCESS(TRUE, java.lang.Object(IntListDupRec.List(java.lang.Object(x0[1]), x1[1])))≥NonInfC∧COND_765_0_DUPLIST_FIELDACCESS(TRUE, java.lang.Object(IntListDupRec.List(java.lang.Object(x0[1]), x1[1])))≥765_0_DUPLIST_FIELDACCESS(java.lang.Object(x0[1]))∧(UIncreasing(765_0_DUPLIST_FIELDACCESS(java.lang.Object(x0[1]))), ≥))
We simplified constraint (7) using rules (I), (II), (III) which results in the following new constraint:
(8) (!(=(x1[0], 0))=TRUE ⇒ COND_765_0_DUPLIST_FIELDACCESS(TRUE, java.lang.Object(IntListDupRec.List(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[0]1), x1[0]1)), x1[0])))≥NonInfC∧COND_765_0_DUPLIST_FIELDACCESS(TRUE, java.lang.Object(IntListDupRec.List(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[0]1), x1[0]1)), x1[0])))≥765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[0]1), x1[0]1)))∧(UIncreasing(765_0_DUPLIST_FIELDACCESS(java.lang.Object(x0[1]))), ≥))
We simplified constraint (8) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(9) (0 ≥ 0 ⇒ (UIncreasing(765_0_DUPLIST_FIELDACCESS(java.lang.Object(x0[1]))), ≥)∧[(13)bni_30 + (-1)Bound*bni_30] + [(8)bni_30]x0[0]1 ≥ 0∧[8 + (-1)bso_31] + [4]x0[0]1 ≥ 0)
We simplified constraint (9) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(10) (0 ≥ 0 ⇒ (UIncreasing(765_0_DUPLIST_FIELDACCESS(java.lang.Object(x0[1]))), ≥)∧[(13)bni_30 + (-1)Bound*bni_30] + [(8)bni_30]x0[0]1 ≥ 0∧[8 + (-1)bso_31] + [4]x0[0]1 ≥ 0)
We simplified constraint (10) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(11) (0 ≥ 0 ⇒ (UIncreasing(765_0_DUPLIST_FIELDACCESS(java.lang.Object(x0[1]))), ≥)∧[(13)bni_30 + (-1)Bound*bni_30] + [(8)bni_30]x0[0]1 ≥ 0∧[8 + (-1)bso_31] + [4]x0[0]1 ≥ 0)
We simplified constraint (11) using rules (IDP_UNRESTRICTED_VARS), (IDP_POLY_GCD) which results in the following new constraint:
(12) (0 ≥ 0 ⇒ (UIncreasing(765_0_DUPLIST_FIELDACCESS(java.lang.Object(x0[1]))), ≥)∧0 ≥ 0∧0 ≥ 0∧[(8)bni_30] ≥ 0∧[(13)bni_30 + (-1)Bound*bni_30] ≥ 0∧0 ≥ 0∧0 ≥ 0∧[8 + (-1)bso_31] ≥ 0∧[1] ≥ 0)
- We consider the chain 765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[0]), x1[0]))) → COND_765_0_DUPLIST_FIELDACCESS(!(=(x1[0], 0)), java.lang.Object(IntListDupRec.List(java.lang.Object(x0[0]), x1[0]))), COND_765_0_DUPLIST_FIELDACCESS(TRUE, java.lang.Object(IntListDupRec.List(java.lang.Object(x0[1]), x1[1]))) → 765_0_DUPLIST_FIELDACCESS(java.lang.Object(x0[1])), 765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), 0))) → 765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), 1))) which results in the following constraint:
(13) (!(=(x1[0], 0))=TRUE∧java.lang.Object(IntListDupRec.List(java.lang.Object(x0[0]), x1[0]))=java.lang.Object(IntListDupRec.List(java.lang.Object(x0[1]), x1[1]))∧java.lang.Object(x0[1])=java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), 0)) ⇒ COND_765_0_DUPLIST_FIELDACCESS(TRUE, java.lang.Object(IntListDupRec.List(java.lang.Object(x0[1]), x1[1])))≥NonInfC∧COND_765_0_DUPLIST_FIELDACCESS(TRUE, java.lang.Object(IntListDupRec.List(java.lang.Object(x0[1]), x1[1])))≥765_0_DUPLIST_FIELDACCESS(java.lang.Object(x0[1]))∧(UIncreasing(765_0_DUPLIST_FIELDACCESS(java.lang.Object(x0[1]))), ≥))
We simplified constraint (13) using rules (I), (II), (III) which results in the following new constraint:
(14) (!(=(x1[0], 0))=TRUE ⇒ COND_765_0_DUPLIST_FIELDACCESS(TRUE, java.lang.Object(IntListDupRec.List(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), 0)), x1[0])))≥NonInfC∧COND_765_0_DUPLIST_FIELDACCESS(TRUE, java.lang.Object(IntListDupRec.List(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), 0)), x1[0])))≥765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), 0)))∧(UIncreasing(765_0_DUPLIST_FIELDACCESS(java.lang.Object(x0[1]))), ≥))
We simplified constraint (14) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(15) (0 ≥ 0 ⇒ (UIncreasing(765_0_DUPLIST_FIELDACCESS(java.lang.Object(x0[1]))), ≥)∧[(13)bni_30 + (-1)Bound*bni_30] + [(8)bni_30]x0[2] ≥ 0∧[8 + (-1)bso_31] + [4]x0[2] ≥ 0)
We simplified constraint (15) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(16) (0 ≥ 0 ⇒ (UIncreasing(765_0_DUPLIST_FIELDACCESS(java.lang.Object(x0[1]))), ≥)∧[(13)bni_30 + (-1)Bound*bni_30] + [(8)bni_30]x0[2] ≥ 0∧[8 + (-1)bso_31] + [4]x0[2] ≥ 0)
We simplified constraint (16) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(17) (0 ≥ 0 ⇒ (UIncreasing(765_0_DUPLIST_FIELDACCESS(java.lang.Object(x0[1]))), ≥)∧[(13)bni_30 + (-1)Bound*bni_30] + [(8)bni_30]x0[2] ≥ 0∧[8 + (-1)bso_31] + [4]x0[2] ≥ 0)
We simplified constraint (17) using rules (IDP_UNRESTRICTED_VARS), (IDP_POLY_GCD) which results in the following new constraint:
(18) (0 ≥ 0 ⇒ (UIncreasing(765_0_DUPLIST_FIELDACCESS(java.lang.Object(x0[1]))), ≥)∧0 ≥ 0∧[(8)bni_30] ≥ 0∧[(13)bni_30 + (-1)Bound*bni_30] ≥ 0∧0 ≥ 0∧[8 + (-1)bso_31] ≥ 0∧[1] ≥ 0)
For Pair
765_0_DUPLIST_FIELDACCESS(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x0),
0))) →
765_0_DUPLIST_FIELDACCESS(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x0),
1))) the following chains were created:
- We consider the chain COND_765_0_DUPLIST_FIELDACCESS(TRUE, java.lang.Object(IntListDupRec.List(java.lang.Object(x0[1]), x1[1]))) → 765_0_DUPLIST_FIELDACCESS(java.lang.Object(x0[1])), 765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), 0))) → 765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), 1))), 765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[0]), x1[0]))) → COND_765_0_DUPLIST_FIELDACCESS(!(=(x1[0], 0)), java.lang.Object(IntListDupRec.List(java.lang.Object(x0[0]), x1[0]))) which results in the following constraint:
(19) (java.lang.Object(x0[1])=java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), 0))∧java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), 1))=java.lang.Object(IntListDupRec.List(java.lang.Object(x0[0]), x1[0])) ⇒ 765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), 0)))≥NonInfC∧765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), 0)))≥765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), 1)))∧(UIncreasing(765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), 1)))), ≥))
We simplified constraint (19) using rules (I), (II), (III), (IV) which results in the following new constraint:
(20) (765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), 0)))≥NonInfC∧765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), 0)))≥765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), 1)))∧(UIncreasing(765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), 1)))), ≥))
We simplified constraint (20) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(21) ((UIncreasing(765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), 1)))), ≥)∧[(-1)bso_33] ≥ 0)
We simplified constraint (21) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(22) ((UIncreasing(765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), 1)))), ≥)∧[(-1)bso_33] ≥ 0)
We simplified constraint (22) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(23) ((UIncreasing(765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), 1)))), ≥)∧[(-1)bso_33] ≥ 0)
We simplified constraint (23) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:
(24) ((UIncreasing(765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), 1)))), ≥)∧0 ≥ 0∧[(-1)bso_33] ≥ 0)
- We consider the chain 765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), 0))) → 765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), 1))), 765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), 0))) → 765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), 1))), 765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[0]), x1[0]))) → COND_765_0_DUPLIST_FIELDACCESS(!(=(x1[0], 0)), java.lang.Object(IntListDupRec.List(java.lang.Object(x0[0]), x1[0]))) which results in the following constraint:
(25) (java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), 1))=java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]1), 0))∧java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]1), 1))=java.lang.Object(IntListDupRec.List(java.lang.Object(x0[0]), x1[0])) ⇒ 765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]1), 0)))≥NonInfC∧765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]1), 0)))≥765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]1), 1)))∧(UIncreasing(765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]1), 1)))), ≥))
We solved constraint (25) using rules (I), (II).
- We consider the chain COND_765_0_DUPLIST_FIELDACCESS(TRUE, java.lang.Object(IntListDupRec.List(java.lang.Object(x0[1]), x1[1]))) → 765_0_DUPLIST_FIELDACCESS(java.lang.Object(x0[1])), 765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), 0))) → 765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), 1))), 765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), 0))) → 765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), 1))) which results in the following constraint:
(26) (java.lang.Object(x0[1])=java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), 0))∧java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), 1))=java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]1), 0)) ⇒ 765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), 0)))≥NonInfC∧765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), 0)))≥765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), 1)))∧(UIncreasing(765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), 1)))), ≥))
We solved constraint (26) using rules (I), (II).
- We consider the chain 765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), 0))) → 765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), 1))), 765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), 0))) → 765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), 1))), 765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), 0))) → 765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), 1))) which results in the following constraint:
(27) (java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), 1))=java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]1), 0))∧java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]1), 1))=java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]2), 0)) ⇒ 765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]1), 0)))≥NonInfC∧765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]1), 0)))≥765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]1), 1)))∧(UIncreasing(765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]1), 1)))), ≥))
We solved constraint (27) using rules (I), (II).
To summarize, we get the following constraints P
≥ for the following pairs.
- 765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0), x1))) → COND_765_0_DUPLIST_FIELDACCESS(!(=(x1, 0)), java.lang.Object(IntListDupRec.List(java.lang.Object(x0), x1)))
- (0 ≥ 0 ⇒ (UIncreasing(COND_765_0_DUPLIST_FIELDACCESS(!(=(x1[0], 0)), java.lang.Object(IntListDupRec.List(java.lang.Object(x0[0]), x1[0])))), ≥)∧0 ≥ 0∧[(4)bni_28] ≥ 0∧[(5)bni_28 + (-1)Bound*bni_28] ≥ 0∧0 ≥ 0∧0 ≥ 0∧[(-1)bso_29] ≥ 0)
- COND_765_0_DUPLIST_FIELDACCESS(TRUE, java.lang.Object(IntListDupRec.List(java.lang.Object(x0), x1))) → 765_0_DUPLIST_FIELDACCESS(java.lang.Object(x0))
- (0 ≥ 0 ⇒ (UIncreasing(765_0_DUPLIST_FIELDACCESS(java.lang.Object(x0[1]))), ≥)∧0 ≥ 0∧0 ≥ 0∧[(8)bni_30] ≥ 0∧[(13)bni_30 + (-1)Bound*bni_30] ≥ 0∧0 ≥ 0∧0 ≥ 0∧[8 + (-1)bso_31] ≥ 0∧[1] ≥ 0)
- (0 ≥ 0 ⇒ (UIncreasing(765_0_DUPLIST_FIELDACCESS(java.lang.Object(x0[1]))), ≥)∧0 ≥ 0∧[(8)bni_30] ≥ 0∧[(13)bni_30 + (-1)Bound*bni_30] ≥ 0∧0 ≥ 0∧[8 + (-1)bso_31] ≥ 0∧[1] ≥ 0)
- 765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0), 0))) → 765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0), 1)))
- ((UIncreasing(765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), 1)))), ≥)∧0 ≥ 0∧[(-1)bso_33] ≥ 0)
The constraints for P
> respective P
bound are constructed from P
≥ where we just replace every occurence of "t ≥ s" in P
≥ by "t > s" respective "t ≥
c". Here
c stands for the fresh constant used for P
bound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers with natural coefficients for non-tuple symbols [NONINF][POLO]:
POL(TRUE) = 0
POL(FALSE) = 0
POL(807_1_dupList_InvokeMethod(x1, x2, x3)) = 0
POL(950_0_dupList_InvokeMethod(x1)) = 0
POL(java.lang.Object(x1)) = [2] + [2]x1
POL(IntListDupRec.List(x1, x2)) = x1
POL(NULL) = 0
POL(1107_0_dupList_InvokeMethod(x1, x2)) = 0
POL(1169_0_dupList_InvokeMethod(x1, x2)) = 0
POL(0) = 0
POL(916_1_dupList_InvokeMethod(x1, x2, x3)) = 0
POL(1) = 0
POL(765_0_DUPLIST_FIELDACCESS(x1)) = [-1] + x1
POL(COND_765_0_DUPLIST_FIELDACCESS(x1, x2)) = [-1] + x2 + x1
POL(!(x1)) = 0
POL(=(x1, x2)) = 0
The following pairs are in P
>:
COND_765_0_DUPLIST_FIELDACCESS(TRUE, java.lang.Object(IntListDupRec.List(java.lang.Object(x0[1]), x1[1]))) → 765_0_DUPLIST_FIELDACCESS(java.lang.Object(x0[1]))
The following pairs are in P
bound:
765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[0]), x1[0]))) → COND_765_0_DUPLIST_FIELDACCESS(!(=(x1[0], 0)), java.lang.Object(IntListDupRec.List(java.lang.Object(x0[0]), x1[0])))
COND_765_0_DUPLIST_FIELDACCESS(TRUE, java.lang.Object(IntListDupRec.List(java.lang.Object(x0[1]), x1[1]))) → 765_0_DUPLIST_FIELDACCESS(java.lang.Object(x0[1]))
The following pairs are in P
≥:
765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[0]), x1[0]))) → COND_765_0_DUPLIST_FIELDACCESS(!(=(x1[0], 0)), java.lang.Object(IntListDupRec.List(java.lang.Object(x0[0]), x1[0])))
765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), 0))) → 765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), 1)))
At least the following rules have been oriented under context sensitive arithmetic replacement:
!(TRUE)1 ↔ FALSE1
!(FALSE)1 ↔ TRUE1
(7) Obligation:
IDP problem:
The following function symbols are pre-defined:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
| ~ | Bwxor: (Integer, Integer) -> Integer |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
The following domains are used:
Boolean, Integer
The ITRS R consists of the following rules:
807_1_dupList_InvokeMethod(
950_0_dupList_InvokeMethod(
java.lang.Object(
IntListDupRec.List(
NULL,
x0))),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
NULL,
x0)),
x1)),
java.lang.Object(
IntListDupRec.List(
NULL,
x0))) →
1107_0_dupList_InvokeMethod(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
NULL,
x0)),
x1)),
java.lang.Object(
IntListDupRec.List(
NULL,
x0)))
807_1_dupList_InvokeMethod(
1107_0_dupList_InvokeMethod(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2)),
java.lang.Object(
IntListDupRec.List(
x0,
x1))),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x3),
x4)),
java.lang.Object(
x3)) →
1107_0_dupList_InvokeMethod(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2)),
x4)),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2)))
807_1_dupList_InvokeMethod(
1169_0_dupList_InvokeMethod(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2)),
0)),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2))),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x4),
x5)),
java.lang.Object(
x4)) →
1107_0_dupList_InvokeMethod(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2)),
0)),
x5)),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2)),
0)))
916_1_dupList_InvokeMethod(
1107_0_dupList_InvokeMethod(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2)),
java.lang.Object(
IntListDupRec.List(
x0,
x1))),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x3),
1)),
0)),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x3),
1))) →
1169_0_dupList_InvokeMethod(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2)),
0)),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2)))
916_1_dupList_InvokeMethod(
1169_0_dupList_InvokeMethod(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2)),
0)),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2))),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x4),
1)),
0)),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x4),
1))) →
1169_0_dupList_InvokeMethod(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2)),
0)),
0)),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2)),
0)))
The integer pair graph contains the following rules and edges:
(0):
765_0_DUPLIST_FIELDACCESS(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x0[0]),
x1[0]))) →
COND_765_0_DUPLIST_FIELDACCESS(
!(
x1[0] = 0),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x0[0]),
x1[0])))
(2):
765_0_DUPLIST_FIELDACCESS(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x0[2]),
0))) →
765_0_DUPLIST_FIELDACCESS(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x0[2]),
1)))
(2) -> (0), if ((java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), 1)) →* java.lang.Object(IntListDupRec.List(java.lang.Object(x0[0]), x1[0]))))
(2) -> (2), if ((java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), 1)) →* java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]'), 0))))
The set Q consists of the following terms:
807_1_dupList_InvokeMethod(
950_0_dupList_InvokeMethod(
java.lang.Object(
IntListDupRec.List(
NULL,
x0))),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
NULL,
x0)),
x1)),
java.lang.Object(
IntListDupRec.List(
NULL,
x0)))
807_1_dupList_InvokeMethod(
1107_0_dupList_InvokeMethod(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2)),
java.lang.Object(
IntListDupRec.List(
x0,
x1))),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x3),
x4)),
java.lang.Object(
x3))
807_1_dupList_InvokeMethod(
1169_0_dupList_InvokeMethod(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2)),
0)),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2))),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x3),
x4)),
java.lang.Object(
x3))
916_1_dupList_InvokeMethod(
1107_0_dupList_InvokeMethod(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2)),
java.lang.Object(
IntListDupRec.List(
x0,
x1))),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x3),
1)),
0)),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x3),
1)))
916_1_dupList_InvokeMethod(
1169_0_dupList_InvokeMethod(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2)),
0)),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2))),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x3),
1)),
0)),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x3),
1)))
(8) IDependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(9) Obligation:
IDP problem:
The following function symbols are pre-defined:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
| ~ | Bwxor: (Integer, Integer) -> Integer |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
The following domains are used:
none
The ITRS R consists of the following rules:
807_1_dupList_InvokeMethod(
950_0_dupList_InvokeMethod(
java.lang.Object(
IntListDupRec.List(
NULL,
x0))),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
NULL,
x0)),
x1)),
java.lang.Object(
IntListDupRec.List(
NULL,
x0))) →
1107_0_dupList_InvokeMethod(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
NULL,
x0)),
x1)),
java.lang.Object(
IntListDupRec.List(
NULL,
x0)))
807_1_dupList_InvokeMethod(
1107_0_dupList_InvokeMethod(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2)),
java.lang.Object(
IntListDupRec.List(
x0,
x1))),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x3),
x4)),
java.lang.Object(
x3)) →
1107_0_dupList_InvokeMethod(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2)),
x4)),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2)))
807_1_dupList_InvokeMethod(
1169_0_dupList_InvokeMethod(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2)),
0)),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2))),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x4),
x5)),
java.lang.Object(
x4)) →
1107_0_dupList_InvokeMethod(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2)),
0)),
x5)),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2)),
0)))
916_1_dupList_InvokeMethod(
1107_0_dupList_InvokeMethod(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2)),
java.lang.Object(
IntListDupRec.List(
x0,
x1))),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x3),
1)),
0)),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x3),
1))) →
1169_0_dupList_InvokeMethod(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2)),
0)),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2)))
916_1_dupList_InvokeMethod(
1169_0_dupList_InvokeMethod(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2)),
0)),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2))),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x4),
1)),
0)),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x4),
1))) →
1169_0_dupList_InvokeMethod(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2)),
0)),
0)),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2)),
0)))
The integer pair graph contains the following rules and edges:
(2):
765_0_DUPLIST_FIELDACCESS(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x0[2]),
0))) →
765_0_DUPLIST_FIELDACCESS(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x0[2]),
1)))
(2) -> (2), if ((java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), 1)) →* java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]'), 0))))
The set Q consists of the following terms:
807_1_dupList_InvokeMethod(
950_0_dupList_InvokeMethod(
java.lang.Object(
IntListDupRec.List(
NULL,
x0))),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
NULL,
x0)),
x1)),
java.lang.Object(
IntListDupRec.List(
NULL,
x0)))
807_1_dupList_InvokeMethod(
1107_0_dupList_InvokeMethod(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2)),
java.lang.Object(
IntListDupRec.List(
x0,
x1))),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x3),
x4)),
java.lang.Object(
x3))
807_1_dupList_InvokeMethod(
1169_0_dupList_InvokeMethod(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2)),
0)),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2))),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x3),
x4)),
java.lang.Object(
x3))
916_1_dupList_InvokeMethod(
1107_0_dupList_InvokeMethod(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2)),
java.lang.Object(
IntListDupRec.List(
x0,
x1))),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x3),
1)),
0)),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x3),
1)))
916_1_dupList_InvokeMethod(
1169_0_dupList_InvokeMethod(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2)),
0)),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2))),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x3),
1)),
0)),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x3),
1)))
(10) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(11) Obligation:
IDP problem:
The following function symbols are pre-defined:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
| ~ | Bwxor: (Integer, Integer) -> Integer |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
The following domains are used:
none
R is empty.
The integer pair graph contains the following rules and edges:
(2):
765_0_DUPLIST_FIELDACCESS(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x0[2]),
0))) →
765_0_DUPLIST_FIELDACCESS(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x0[2]),
1)))
(2) -> (2), if ((java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), 1)) →* java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]'), 0))))
The set Q consists of the following terms:
807_1_dupList_InvokeMethod(
950_0_dupList_InvokeMethod(
java.lang.Object(
IntListDupRec.List(
NULL,
x0))),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
NULL,
x0)),
x1)),
java.lang.Object(
IntListDupRec.List(
NULL,
x0)))
807_1_dupList_InvokeMethod(
1107_0_dupList_InvokeMethod(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2)),
java.lang.Object(
IntListDupRec.List(
x0,
x1))),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x3),
x4)),
java.lang.Object(
x3))
807_1_dupList_InvokeMethod(
1169_0_dupList_InvokeMethod(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2)),
0)),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2))),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x3),
x4)),
java.lang.Object(
x3))
916_1_dupList_InvokeMethod(
1107_0_dupList_InvokeMethod(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2)),
java.lang.Object(
IntListDupRec.List(
x0,
x1))),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x3),
1)),
0)),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x3),
1)))
916_1_dupList_InvokeMethod(
1169_0_dupList_InvokeMethod(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2)),
0)),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
x0,
x1)),
x2))),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x3),
1)),
0)),
java.lang.Object(
IntListDupRec.List(
java.lang.Object(
x3),
1)))
(12) IDPtoQDPProof (SOUND transformation)
Represented integers and predefined function symbols by Terms
(13) Obligation:
Q DP problem:
The TRS P consists of the following rules:
765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), pos(01)))) → 765_0_DUPLIST_FIELDACCESS(java.lang.Object(IntListDupRec.List(java.lang.Object(x0[2]), pos(s(01)))))
R is empty.
The set Q consists of the following terms:
807_1_dupList_InvokeMethod(950_0_dupList_InvokeMethod(java.lang.Object(IntListDupRec.List(NULL, x0))), java.lang.Object(IntListDupRec.List(java.lang.Object(IntListDupRec.List(NULL, x0)), x1)), java.lang.Object(IntListDupRec.List(NULL, x0)))
807_1_dupList_InvokeMethod(1107_0_dupList_InvokeMethod(java.lang.Object(IntListDupRec.List(java.lang.Object(IntListDupRec.List(x0, x1)), x2)), java.lang.Object(IntListDupRec.List(x0, x1))), java.lang.Object(IntListDupRec.List(java.lang.Object(x3), x4)), java.lang.Object(x3))
807_1_dupList_InvokeMethod(1169_0_dupList_InvokeMethod(java.lang.Object(IntListDupRec.List(java.lang.Object(IntListDupRec.List(java.lang.Object(IntListDupRec.List(x0, x1)), x2)), pos(01))), java.lang.Object(IntListDupRec.List(java.lang.Object(IntListDupRec.List(x0, x1)), x2))), java.lang.Object(IntListDupRec.List(java.lang.Object(x3), x4)), java.lang.Object(x3))
916_1_dupList_InvokeMethod(1107_0_dupList_InvokeMethod(java.lang.Object(IntListDupRec.List(java.lang.Object(IntListDupRec.List(x0, x1)), x2)), java.lang.Object(IntListDupRec.List(x0, x1))), java.lang.Object(IntListDupRec.List(java.lang.Object(IntListDupRec.List(java.lang.Object(x3), pos(s(01)))), pos(01))), java.lang.Object(IntListDupRec.List(java.lang.Object(x3), pos(s(01)))))
916_1_dupList_InvokeMethod(1169_0_dupList_InvokeMethod(java.lang.Object(IntListDupRec.List(java.lang.Object(IntListDupRec.List(java.lang.Object(IntListDupRec.List(x0, x1)), x2)), pos(01))), java.lang.Object(IntListDupRec.List(java.lang.Object(IntListDupRec.List(x0, x1)), x2))), java.lang.Object(IntListDupRec.List(java.lang.Object(IntListDupRec.List(java.lang.Object(x3), pos(s(01)))), pos(01))), java.lang.Object(IntListDupRec.List(java.lang.Object(x3), pos(s(01)))))
We have to consider all minimal (P,Q,R)-chains.
(14) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(15) TRUE
(16) Obligation:
IDP problem:
The following function symbols are pre-defined:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
| ~ | Bwxor: (Integer, Integer) -> Integer |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
The following domains are used:
Integer
The ITRS R consists of the following rules:
243_0_createList_GE(
-1) →
Cond_243_0_createList_GE(
0 > -1,
-1)
Cond_243_0_createList_GE(
TRUE,
-1) →
262_0_createList_Return290_1_createList_InvokeMethod(
262_0_createList_Return,
-1) →
316_0_createList_Return290_1_createList_InvokeMethod(
316_0_createList_Return,
x0) →
562_0_createList_Return290_1_createList_InvokeMethod(
562_0_createList_Return,
x0) →
562_0_createList_ReturnThe integer pair graph contains the following rules and edges:
(0):
243_0_CREATELIST_GE(
x0[0]) →
COND_243_0_CREATELIST_GE(
x0[0] >= 0,
x0[0])
(1):
COND_243_0_CREATELIST_GE(
TRUE,
x0[1]) →
243_0_CREATELIST_GE(
x0[1] - 1)
(0) -> (1), if ((x0[0] >= 0 →* TRUE)∧(x0[0] →* x0[1]))
(1) -> (0), if ((x0[1] - 1 →* x0[0]))
The set Q consists of the following terms:
243_0_createList_GE(
-1)
Cond_243_0_createList_GE(
TRUE,
-1)
290_1_createList_InvokeMethod(
262_0_createList_Return,
-1)
290_1_createList_InvokeMethod(
316_0_createList_Return,
x0)
290_1_createList_InvokeMethod(
562_0_createList_Return,
x0)
(17) IDPNonInfProof (SOUND transformation)
The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that
final constraints are written in
bold face.
For Pair
243_0_CREATELIST_GE(
x0) →
COND_243_0_CREATELIST_GE(
>=(
x0,
0),
x0) the following chains were created:
- We consider the chain 243_0_CREATELIST_GE(x0[0]) → COND_243_0_CREATELIST_GE(>=(x0[0], 0), x0[0]), COND_243_0_CREATELIST_GE(TRUE, x0[1]) → 243_0_CREATELIST_GE(-(x0[1], 1)) which results in the following constraint:
(1) (>=(x0[0], 0)=TRUE∧x0[0]=x0[1] ⇒ 243_0_CREATELIST_GE(x0[0])≥NonInfC∧243_0_CREATELIST_GE(x0[0])≥COND_243_0_CREATELIST_GE(>=(x0[0], 0), x0[0])∧(UIncreasing(COND_243_0_CREATELIST_GE(>=(x0[0], 0), x0[0])), ≥))
We simplified constraint (1) using rule (IV) which results in the following new constraint:
(2) (>=(x0[0], 0)=TRUE ⇒ 243_0_CREATELIST_GE(x0[0])≥NonInfC∧243_0_CREATELIST_GE(x0[0])≥COND_243_0_CREATELIST_GE(>=(x0[0], 0), x0[0])∧(UIncreasing(COND_243_0_CREATELIST_GE(>=(x0[0], 0), x0[0])), ≥))
We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(3) (x0[0] ≥ 0 ⇒ (UIncreasing(COND_243_0_CREATELIST_GE(>=(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_15] + [(2)bni_15]x0[0] ≥ 0∧[(-1)bso_16] ≥ 0)
We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(4) (x0[0] ≥ 0 ⇒ (UIncreasing(COND_243_0_CREATELIST_GE(>=(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_15] + [(2)bni_15]x0[0] ≥ 0∧[(-1)bso_16] ≥ 0)
We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(5) (x0[0] ≥ 0 ⇒ (UIncreasing(COND_243_0_CREATELIST_GE(>=(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_15] + [(2)bni_15]x0[0] ≥ 0∧[(-1)bso_16] ≥ 0)
For Pair
COND_243_0_CREATELIST_GE(
TRUE,
x0) →
243_0_CREATELIST_GE(
-(
x0,
1)) the following chains were created:
- We consider the chain COND_243_0_CREATELIST_GE(TRUE, x0[1]) → 243_0_CREATELIST_GE(-(x0[1], 1)) which results in the following constraint:
(6) (COND_243_0_CREATELIST_GE(TRUE, x0[1])≥NonInfC∧COND_243_0_CREATELIST_GE(TRUE, x0[1])≥243_0_CREATELIST_GE(-(x0[1], 1))∧(UIncreasing(243_0_CREATELIST_GE(-(x0[1], 1))), ≥))
We simplified constraint (6) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(7) ((UIncreasing(243_0_CREATELIST_GE(-(x0[1], 1))), ≥)∧[2 + (-1)bso_18] ≥ 0)
We simplified constraint (7) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(8) ((UIncreasing(243_0_CREATELIST_GE(-(x0[1], 1))), ≥)∧[2 + (-1)bso_18] ≥ 0)
We simplified constraint (8) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(9) ((UIncreasing(243_0_CREATELIST_GE(-(x0[1], 1))), ≥)∧[2 + (-1)bso_18] ≥ 0)
We simplified constraint (9) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:
(10) ((UIncreasing(243_0_CREATELIST_GE(-(x0[1], 1))), ≥)∧0 = 0∧[2 + (-1)bso_18] ≥ 0)
To summarize, we get the following constraints P
≥ for the following pairs.
- 243_0_CREATELIST_GE(x0) → COND_243_0_CREATELIST_GE(>=(x0, 0), x0)
- (x0[0] ≥ 0 ⇒ (UIncreasing(COND_243_0_CREATELIST_GE(>=(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_15] + [(2)bni_15]x0[0] ≥ 0∧[(-1)bso_16] ≥ 0)
- COND_243_0_CREATELIST_GE(TRUE, x0) → 243_0_CREATELIST_GE(-(x0, 1))
- ((UIncreasing(243_0_CREATELIST_GE(-(x0[1], 1))), ≥)∧0 = 0∧[2 + (-1)bso_18] ≥ 0)
The constraints for P
> respective P
bound are constructed from P
≥ where we just replace every occurence of "t ≥ s" in P
≥ by "t > s" respective "t ≥
c". Here
c stands for the fresh constant used for P
bound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:
POL(TRUE) = 0
POL(FALSE) = 0
POL(243_0_createList_GE(x1)) = [-1]
POL(-1) = [-1]
POL(Cond_243_0_createList_GE(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(262_0_createList_Return) = [-1]
POL(290_1_createList_InvokeMethod(x1, x2)) = [-1]
POL(316_0_createList_Return) = [-1]
POL(562_0_createList_Return) = [-1]
POL(243_0_CREATELIST_GE(x1)) = [2]x1
POL(COND_243_0_CREATELIST_GE(x1, x2)) = [2]x2
POL(>=(x1, x2)) = [-1]
POL(-(x1, x2)) = x1 + [-1]x2
POL(1) = [1]
The following pairs are in P
>:
COND_243_0_CREATELIST_GE(TRUE, x0[1]) → 243_0_CREATELIST_GE(-(x0[1], 1))
The following pairs are in P
bound:
243_0_CREATELIST_GE(x0[0]) → COND_243_0_CREATELIST_GE(>=(x0[0], 0), x0[0])
The following pairs are in P
≥:
243_0_CREATELIST_GE(x0[0]) → COND_243_0_CREATELIST_GE(>=(x0[0], 0), x0[0])
There are no usable rules.
(18) Complex Obligation (AND)
(19) Obligation:
IDP problem:
The following function symbols are pre-defined:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
| ~ | Bwxor: (Integer, Integer) -> Integer |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
The following domains are used:
Integer
The ITRS R consists of the following rules:
243_0_createList_GE(
-1) →
Cond_243_0_createList_GE(
0 > -1,
-1)
Cond_243_0_createList_GE(
TRUE,
-1) →
262_0_createList_Return290_1_createList_InvokeMethod(
262_0_createList_Return,
-1) →
316_0_createList_Return290_1_createList_InvokeMethod(
316_0_createList_Return,
x0) →
562_0_createList_Return290_1_createList_InvokeMethod(
562_0_createList_Return,
x0) →
562_0_createList_ReturnThe integer pair graph contains the following rules and edges:
(0):
243_0_CREATELIST_GE(
x0[0]) →
COND_243_0_CREATELIST_GE(
x0[0] >= 0,
x0[0])
The set Q consists of the following terms:
243_0_createList_GE(
-1)
Cond_243_0_createList_GE(
TRUE,
-1)
290_1_createList_InvokeMethod(
262_0_createList_Return,
-1)
290_1_createList_InvokeMethod(
316_0_createList_Return,
x0)
290_1_createList_InvokeMethod(
562_0_createList_Return,
x0)
(20) IDependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(21) TRUE
(22) Obligation:
IDP problem:
The following function symbols are pre-defined:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
| ~ | Bwxor: (Integer, Integer) -> Integer |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
The following domains are used:
Integer
The ITRS R consists of the following rules:
243_0_createList_GE(
-1) →
Cond_243_0_createList_GE(
0 > -1,
-1)
Cond_243_0_createList_GE(
TRUE,
-1) →
262_0_createList_Return290_1_createList_InvokeMethod(
262_0_createList_Return,
-1) →
316_0_createList_Return290_1_createList_InvokeMethod(
316_0_createList_Return,
x0) →
562_0_createList_Return290_1_createList_InvokeMethod(
562_0_createList_Return,
x0) →
562_0_createList_ReturnThe integer pair graph contains the following rules and edges:
(1):
COND_243_0_CREATELIST_GE(
TRUE,
x0[1]) →
243_0_CREATELIST_GE(
x0[1] - 1)
The set Q consists of the following terms:
243_0_createList_GE(
-1)
Cond_243_0_createList_GE(
TRUE,
-1)
290_1_createList_InvokeMethod(
262_0_createList_Return,
-1)
290_1_createList_InvokeMethod(
316_0_createList_Return,
x0)
290_1_createList_InvokeMethod(
562_0_createList_Return,
x0)
(23) IDependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(24) TRUE