(0) Obligation:
JBC Problem based on JBC Program:
Manifest-Version: 1.0
Created-By: 1.6.0_22 (Sun Microsystems Inc.)
Main-Class: ConvertRec/ConvertRec
package ConvertRec;
public class ConvertRec {
public static int convert(List xs, int b) {
if (xs == null) return 0;
if (xs.value <= 0) return b * convert(xs.next, b);
return 1 + convert(new List(xs.value - 1, xs.next), b);
}
public static void main(String[] args) {
Random.args = args;
List xs = createList(Random.random());
convert(xs, Random.random());
}
public static List createList(int l) {
if (l <= 0) {
return null;
} else {
return new List(Random.random(), createList(l-1));
}
}
}
package ConvertRec;
public class List {
int value;
List next;
public List() {}
public List(int value, List next) {
this.value = value;
this.next = next;
}
public static List copy(List x) {
if (x == null) return null;
else return new List(x.value,copy(x.next));
}
}
package ConvertRec;
public class Random {
static String[] args;
static int index = 0;
public static int random() {
if (args.length <= index) {
return 0;
}
String string = args[index];
index++;
if (string == null) {
return 0;
}
return string.length();
}
}
(1) JBC2FIG (SOUND transformation)
Constructed FIGraph.
(2) Obligation:
FIGraph based on JBC Program:
ConvertRec.ConvertRec.main([Ljava/lang/String;)V: Graph of 279 nodes with 0 SCCs.
ConvertRec.ConvertRec.createList(I)LConvertRec/List;: Graph of 145 nodes with 0 SCCs.
ConvertRec.ConvertRec.convert(LConvertRec/List;I)I: Graph of 74 nodes with 0 SCCs.
(3) FIGtoITRSProof (SOUND transformation)
Transformed FIGraph SCCs to IDPs. Logs:
Log for SCC 0: Generated 42 rules for P and 33 rules for R.
Combined rules. Obtained 2 rules for P and 10 rules for R.
Filtered ground terms:
2929_1_convert_InvokeMethod(x1, x2, x3) → 2929_1_convert_InvokeMethod(x1, x3)
ConvertRec.List(x1, x2, x3) → ConvertRec.List(x2, x3)
1756_0_convert_NONNULL(x1, x2, x3) → 1756_0_convert_NONNULL(x2, x3)
Cond_1756_0_convert_NONNULL1(x1, x2, x3, x4) → Cond_1756_0_convert_NONNULL1(x1, x3, x4)
Cond_1756_0_convert_NONNULL(x1, x2, x3, x4) → Cond_1756_0_convert_NONNULL(x1, x3, x4)
3418_0_convert_Return(x1) → 3418_0_convert_Return
3660_0_convert_Return(x1, x2) → 3660_0_convert_Return(x2)
3411_0_convert_Return(x1, x2) → 3411_0_convert_Return(x2)
2344_0_convert_Return(x1, x2) → 2344_0_convert_Return(x2)
1908_0_convert_Return(x1, x2) → 1908_0_convert_Return
Filtered duplicate args:
1756_0_convert_NONNULL(x1, x2) → 1756_0_convert_NONNULL(x2)
Cond_1756_0_convert_NONNULL1(x1, x2, x3) → Cond_1756_0_convert_NONNULL1(x1, x3)
Cond_1756_0_convert_NONNULL(x1, x2, x3) → Cond_1756_0_convert_NONNULL(x1, x3)
Combined rules. Obtained 2 rules for P and 10 rules for R.
Finished conversion. Obtained 2 rules for P and 10 rules for R. System has predefined symbols.
Log for SCC 1: Generated 51 rules for P and 104 rules for R.
Combined rules. Obtained 7 rules for P and 19 rules for R.
Filtered ground terms:
825_1_createList_InvokeMethod(x1, x2, x3, x4, x5) → 825_1_createList_InvokeMethod(x1, x5)
ConvertRec.List(x1) → ConvertRec.List
666_0_createList_GT(x1, x2, x3) → 666_0_createList_GT(x2, x3)
Cond_783_1_createList_InvokeMethod(x1, x2, x3, x4, x5) → Cond_783_1_createList_InvokeMethod(x1, x2, x3)
783_0_random_GT(x1, x2, x3) → 783_0_random_GT(x2, x3)
783_1_createList_InvokeMethod(x1, x2, x3, x4) → 783_1_createList_InvokeMethod(x1, x2)
1080_1_createList_InvokeMethod(x1, x2, x3, x4, x5) → 1080_1_createList_InvokeMethod(x1, x4, x5)
Cond_835_1_createList_InvokeMethod1(x1, x2, x3, x4, x5) → Cond_835_1_createList_InvokeMethod1(x1, x2, x3)
835_0_random_IntArithmetic(x1, x2, x3, x4) → 835_0_random_IntArithmetic(x2, x3)
835_1_createList_InvokeMethod(x1, x2, x3, x4) → 835_1_createList_InvokeMethod(x1, x2)
Cond_835_1_createList_InvokeMethod(x1, x2, x3, x4, x5) → Cond_835_1_createList_InvokeMethod(x1, x2, x3)
Cond_800_1_createList_InvokeMethod(x1, x2, x3, x4, x5) → Cond_800_1_createList_InvokeMethod(x1, x2, x3)
800_0_random_ArrayAccess(x1, x2, x3) → 800_0_random_ArrayAccess(x2, x3)
800_1_createList_InvokeMethod(x1, x2, x3, x4) → 800_1_createList_InvokeMethod(x1, x2)
Cond_781_1_createList_InvokeMethod(x1, x2, x3, x4, x5) → Cond_781_1_createList_InvokeMethod(x1, x2, x3)
781_0_random_GT(x1, x2, x3) → 781_0_random_GT(x2, x3)
781_1_createList_InvokeMethod(x1, x2, x3, x4) → 781_1_createList_InvokeMethod(x1, x2)
Cond_666_0_createList_GT1(x1, x2, x3, x4) → Cond_666_0_createList_GT1(x1, x3, x4)
Cond_666_0_createList_GT(x1, x2, x3, x4) → Cond_666_0_createList_GT(x1, x3, x4)
2865_0_createList_Return(x1, x2) → 2865_0_createList_Return
1904_0_createList_Return(x1, x2) → 1904_0_createList_Return
1812_0_createList_InvokeMethod(x1, x2, x3, x4, x5, x6) → 1812_0_createList_InvokeMethod(x5, x6)
java.lang.ArrayIndexOutOfBoundsException(x1) → java.lang.ArrayIndexOutOfBoundsException
java.lang.IndexOutOfBoundsException(x1) → java.lang.IndexOutOfBoundsException
java.lang.RuntimeException(x1) → java.lang.RuntimeException
java.lang.Exception(x1) → java.lang.Exception
java.lang.Throwable(x1) → java.lang.Throwable
1627_0_createList_InvokeMethod(x1, x2, x3, x4, x5, x6) → 1627_0_createList_InvokeMethod(x6)
1365_0_createList_InvokeMethod(x1, x2, x3, x4, x5, x6) → 1365_0_createList_InvokeMethod(x5, x6)
1353_0_createList_InvokeMethod(x1, x2, x3, x4, x5, x6) → 1353_0_createList_InvokeMethod(x6)
1221_0_createList_InvokeMethod(x1, x2, x3, x4, x5) → 1221_0_createList_InvokeMethod(x3)
954_0_createList_Return(x1, x2) → 954_0_createList_Return
715_0_createList_Return(x1, x2, x3) → 715_0_createList_Return
Filtered duplicate args:
666_0_createList_GT(x1, x2) → 666_0_createList_GT(x2)
Cond_666_0_createList_GT1(x1, x2, x3) → Cond_666_0_createList_GT1(x1, x3)
Cond_666_0_createList_GT(x1, x2, x3) → Cond_666_0_createList_GT(x1, x3)
Filtered unneeded arguments:
1080_1_createList_InvokeMethod(x1, x2, x3) → 1080_1_createList_InvokeMethod(x1, x3)
Filtered all non-integer terms:
835_0_random_IntArithmetic(x1, x2) → 835_0_random_IntArithmetic(x2)
Filtered all free variables:
781_1_createList_InvokeMethod(x1, x2) → 781_1_createList_InvokeMethod(x2)
783_1_createList_InvokeMethod(x1, x2) → 783_1_createList_InvokeMethod(x2)
Cond_781_1_createList_InvokeMethod(x1, x2, x3) → Cond_781_1_createList_InvokeMethod(x1, x3)
800_1_createList_InvokeMethod(x1, x2) → 800_1_createList_InvokeMethod(x2)
Cond_800_1_createList_InvokeMethod(x1, x2, x3) → Cond_800_1_createList_InvokeMethod(x1, x3)
835_1_createList_InvokeMethod(x1, x2) → 835_1_createList_InvokeMethod(x2)
Cond_835_1_createList_InvokeMethod(x1, x2, x3) → Cond_835_1_createList_InvokeMethod(x1, x3)
Cond_835_1_createList_InvokeMethod1(x1, x2, x3) → Cond_835_1_createList_InvokeMethod1(x1, x3)
Cond_783_1_createList_InvokeMethod(x1, x2, x3) → Cond_783_1_createList_InvokeMethod(x1, x3)
1812_0_createList_InvokeMethod(x1, x2) → 1812_0_createList_InvokeMethod(x2)
Combined rules. Obtained 2 rules for P and 19 rules for R.
Finished conversion. Obtained 2 rules for P and 19 rules for R. System has predefined symbols.
(4) Complex Obligation (AND)
(5) Obligation:
IDP problem:
The following function symbols are pre-defined:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
| ~ | Bwxor: (Integer, Integer) -> Integer |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
The following domains are used:
Integer
The ITRS R consists of the following rules:
1756_0_convert_NONNULL(
NULL) →
1908_0_convert_Return2252_1_convert_InvokeMethod(
1908_0_convert_Return,
java.lang.Object(
ConvertRec.List(
x0,
NULL)),
NULL) →
2344_0_convert_Return(
java.lang.Object(
ConvertRec.List(
x0,
NULL)))
2252_1_convert_InvokeMethod(
2344_0_convert_Return(
java.lang.Object(
ConvertRec.List(
x0,
NULL))),
java.lang.Object(
ConvertRec.List(
x1,
java.lang.Object(
ConvertRec.List(
x0,
NULL)))),
java.lang.Object(
ConvertRec.List(
x0,
NULL))) →
3411_0_convert_Return(
java.lang.Object(
ConvertRec.List(
x1,
java.lang.Object(
ConvertRec.List(
x0,
NULL)))))
2252_1_convert_InvokeMethod(
3411_0_convert_Return(
java.lang.Object(
ConvertRec.List(
x0,
java.lang.Object(
ConvertRec.List(
x1,
x2))))),
java.lang.Object(
ConvertRec.List(
x3,
java.lang.Object(
ConvertRec.List(
x0,
java.lang.Object(
ConvertRec.List(
x1,
x2)))))),
java.lang.Object(
ConvertRec.List(
x0,
java.lang.Object(
ConvertRec.List(
x1,
x2))))) →
3411_0_convert_Return(
java.lang.Object(
ConvertRec.List(
x3,
java.lang.Object(
ConvertRec.List(
x0,
java.lang.Object(
ConvertRec.List(
x1,
x2)))))))
2252_1_convert_InvokeMethod(
3418_0_convert_Return,
java.lang.Object(
ConvertRec.List(
x0,
java.lang.Object(
ConvertRec.List(
x1,
x2)))),
java.lang.Object(
ConvertRec.List(
x1,
x2))) →
3660_0_convert_Return(
java.lang.Object(
ConvertRec.List(
x0,
java.lang.Object(
ConvertRec.List(
x1,
x2)))))
2252_1_convert_InvokeMethod(
3660_0_convert_Return(
java.lang.Object(
ConvertRec.List(
x0,
java.lang.Object(
ConvertRec.List(
x1,
x2))))),
java.lang.Object(
ConvertRec.List(
x3,
java.lang.Object(
ConvertRec.List(
x0,
java.lang.Object(
ConvertRec.List(
x1,
x2)))))),
java.lang.Object(
ConvertRec.List(
x0,
java.lang.Object(
ConvertRec.List(
x1,
x2))))) →
3411_0_convert_Return(
java.lang.Object(
ConvertRec.List(
x3,
java.lang.Object(
ConvertRec.List(
x0,
java.lang.Object(
ConvertRec.List(
x1,
x2)))))))
2929_1_convert_InvokeMethod(
2344_0_convert_Return(
java.lang.Object(
ConvertRec.List(
0,
NULL))),
java.lang.Object(
ConvertRec.List(
0,
NULL))) →
3418_0_convert_Return2929_1_convert_InvokeMethod(
3411_0_convert_Return(
java.lang.Object(
ConvertRec.List(
0,
java.lang.Object(
ConvertRec.List(
x1,
x2))))),
java.lang.Object(
ConvertRec.List(
0,
java.lang.Object(
ConvertRec.List(
x1,
x2))))) →
3418_0_convert_Return2929_1_convert_InvokeMethod(
3418_0_convert_Return,
java.lang.Object(
ConvertRec.List(
x1,
x2))) →
3418_0_convert_Return2929_1_convert_InvokeMethod(
3660_0_convert_Return(
java.lang.Object(
ConvertRec.List(
0,
java.lang.Object(
ConvertRec.List(
x1,
x2))))),
java.lang.Object(
ConvertRec.List(
0,
java.lang.Object(
ConvertRec.List(
x1,
x2))))) →
3418_0_convert_ReturnThe integer pair graph contains the following rules and edges:
(0):
1756_0_CONVERT_NONNULL(
java.lang.Object(
ConvertRec.List(
x0[0],
x1[0]))) →
COND_1756_0_CONVERT_NONNULL(
x0[0] <= 0,
java.lang.Object(
ConvertRec.List(
x0[0],
x1[0])))
(1):
COND_1756_0_CONVERT_NONNULL(
TRUE,
java.lang.Object(
ConvertRec.List(
x0[1],
x1[1]))) →
1756_0_CONVERT_NONNULL(
x1[1])
(2):
1756_0_CONVERT_NONNULL(
java.lang.Object(
ConvertRec.List(
x0[2],
x1[2]))) →
COND_1756_0_CONVERT_NONNULL1(
x0[2] > 0,
java.lang.Object(
ConvertRec.List(
x0[2],
x1[2])))
(3):
COND_1756_0_CONVERT_NONNULL1(
TRUE,
java.lang.Object(
ConvertRec.List(
x0[3],
x1[3]))) →
1756_0_CONVERT_NONNULL(
java.lang.Object(
ConvertRec.List(
x0[3] - 1,
x1[3])))
(0) -> (1), if ((x0[0] <= 0 →* TRUE)∧(java.lang.Object(ConvertRec.List(x0[0], x1[0])) →* java.lang.Object(ConvertRec.List(x0[1], x1[1]))))
(1) -> (0), if ((x1[1] →* java.lang.Object(ConvertRec.List(x0[0], x1[0]))))
(1) -> (2), if ((x1[1] →* java.lang.Object(ConvertRec.List(x0[2], x1[2]))))
(2) -> (3), if ((x0[2] > 0 →* TRUE)∧(java.lang.Object(ConvertRec.List(x0[2], x1[2])) →* java.lang.Object(ConvertRec.List(x0[3], x1[3]))))
(3) -> (0), if ((java.lang.Object(ConvertRec.List(x0[3] - 1, x1[3])) →* java.lang.Object(ConvertRec.List(x0[0], x1[0]))))
(3) -> (2), if ((java.lang.Object(ConvertRec.List(x0[3] - 1, x1[3])) →* java.lang.Object(ConvertRec.List(x0[2], x1[2]))))
The set Q consists of the following terms:
1756_0_convert_NONNULL(
NULL)
2252_1_convert_InvokeMethod(
1908_0_convert_Return,
java.lang.Object(
ConvertRec.List(
x0,
NULL)),
NULL)
2252_1_convert_InvokeMethod(
2344_0_convert_Return(
java.lang.Object(
ConvertRec.List(
x0,
NULL))),
java.lang.Object(
ConvertRec.List(
x1,
java.lang.Object(
ConvertRec.List(
x0,
NULL)))),
java.lang.Object(
ConvertRec.List(
x0,
NULL)))
2252_1_convert_InvokeMethod(
3411_0_convert_Return(
java.lang.Object(
ConvertRec.List(
x0,
java.lang.Object(
ConvertRec.List(
x1,
x2))))),
java.lang.Object(
ConvertRec.List(
x3,
java.lang.Object(
ConvertRec.List(
x0,
java.lang.Object(
ConvertRec.List(
x1,
x2)))))),
java.lang.Object(
ConvertRec.List(
x0,
java.lang.Object(
ConvertRec.List(
x1,
x2)))))
2252_1_convert_InvokeMethod(
3418_0_convert_Return,
java.lang.Object(
ConvertRec.List(
x0,
java.lang.Object(
ConvertRec.List(
x1,
x2)))),
java.lang.Object(
ConvertRec.List(
x1,
x2)))
2252_1_convert_InvokeMethod(
3660_0_convert_Return(
java.lang.Object(
ConvertRec.List(
x0,
java.lang.Object(
ConvertRec.List(
x1,
x2))))),
java.lang.Object(
ConvertRec.List(
x3,
java.lang.Object(
ConvertRec.List(
x0,
java.lang.Object(
ConvertRec.List(
x1,
x2)))))),
java.lang.Object(
ConvertRec.List(
x0,
java.lang.Object(
ConvertRec.List(
x1,
x2)))))
2929_1_convert_InvokeMethod(
2344_0_convert_Return(
java.lang.Object(
ConvertRec.List(
0,
NULL))),
java.lang.Object(
ConvertRec.List(
0,
NULL)))
2929_1_convert_InvokeMethod(
3411_0_convert_Return(
java.lang.Object(
ConvertRec.List(
0,
java.lang.Object(
ConvertRec.List(
x0,
x1))))),
java.lang.Object(
ConvertRec.List(
0,
java.lang.Object(
ConvertRec.List(
x0,
x1)))))
2929_1_convert_InvokeMethod(
3418_0_convert_Return,
java.lang.Object(
ConvertRec.List(
x0,
x1)))
2929_1_convert_InvokeMethod(
3660_0_convert_Return(
java.lang.Object(
ConvertRec.List(
0,
java.lang.Object(
ConvertRec.List(
x0,
x1))))),
java.lang.Object(
ConvertRec.List(
0,
java.lang.Object(
ConvertRec.List(
x0,
x1)))))
(6) IDPNonInfProof (SOUND transformation)
The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that
final constraints are written in
bold face.
For Pair
1756_0_CONVERT_NONNULL(
java.lang.Object(
ConvertRec.List(
x0,
x1))) →
COND_1756_0_CONVERT_NONNULL(
<=(
x0,
0),
java.lang.Object(
ConvertRec.List(
x0,
x1))) the following chains were created:
- We consider the chain 1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(x0[0], x1[0]))) → COND_1756_0_CONVERT_NONNULL(<=(x0[0], 0), java.lang.Object(ConvertRec.List(x0[0], x1[0]))), COND_1756_0_CONVERT_NONNULL(TRUE, java.lang.Object(ConvertRec.List(x0[1], x1[1]))) → 1756_0_CONVERT_NONNULL(x1[1]) which results in the following constraint:
(1) (<=(x0[0], 0)=TRUE∧java.lang.Object(ConvertRec.List(x0[0], x1[0]))=java.lang.Object(ConvertRec.List(x0[1], x1[1])) ⇒ 1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(x0[0], x1[0])))≥NonInfC∧1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(x0[0], x1[0])))≥COND_1756_0_CONVERT_NONNULL(<=(x0[0], 0), java.lang.Object(ConvertRec.List(x0[0], x1[0])))∧(UIncreasing(COND_1756_0_CONVERT_NONNULL(<=(x0[0], 0), java.lang.Object(ConvertRec.List(x0[0], x1[0])))), ≥))
We simplified constraint (1) using rules (I), (II), (IV) which results in the following new constraint:
(2) (<=(x0[0], 0)=TRUE ⇒ 1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(x0[0], x1[0])))≥NonInfC∧1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(x0[0], x1[0])))≥COND_1756_0_CONVERT_NONNULL(<=(x0[0], 0), java.lang.Object(ConvertRec.List(x0[0], x1[0])))∧(UIncreasing(COND_1756_0_CONVERT_NONNULL(<=(x0[0], 0), java.lang.Object(ConvertRec.List(x0[0], x1[0])))), ≥))
We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(3) (0 ≥ 0 ⇒ (UIncreasing(COND_1756_0_CONVERT_NONNULL(<=(x0[0], 0), java.lang.Object(ConvertRec.List(x0[0], x1[0])))), ≥)∧[(7)bni_32 + (-1)Bound*bni_32] + [(3)bni_32]x1[0] + [(3)bni_32]x0[0] ≥ 0∧[2 + (-1)bso_33] ≥ 0)
We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(4) (0 ≥ 0 ⇒ (UIncreasing(COND_1756_0_CONVERT_NONNULL(<=(x0[0], 0), java.lang.Object(ConvertRec.List(x0[0], x1[0])))), ≥)∧[(7)bni_32 + (-1)Bound*bni_32] + [(3)bni_32]x1[0] + [(3)bni_32]x0[0] ≥ 0∧[2 + (-1)bso_33] ≥ 0)
We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(5) (0 ≥ 0 ⇒ (UIncreasing(COND_1756_0_CONVERT_NONNULL(<=(x0[0], 0), java.lang.Object(ConvertRec.List(x0[0], x1[0])))), ≥)∧[(7)bni_32 + (-1)Bound*bni_32] + [(3)bni_32]x1[0] + [(3)bni_32]x0[0] ≥ 0∧[2 + (-1)bso_33] ≥ 0)
We simplified constraint (5) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:
(6) (0 ≥ 0 ⇒ (UIncreasing(COND_1756_0_CONVERT_NONNULL(<=(x0[0], 0), java.lang.Object(ConvertRec.List(x0[0], x1[0])))), ≥)∧[(3)bni_32] ≥ 0∧[(3)bni_32] ≥ 0∧[(7)bni_32 + (-1)Bound*bni_32] ≥ 0∧0 ≥ 0∧0 ≥ 0∧[2 + (-1)bso_33] ≥ 0)
For Pair
COND_1756_0_CONVERT_NONNULL(
TRUE,
java.lang.Object(
ConvertRec.List(
x0,
x1))) →
1756_0_CONVERT_NONNULL(
x1) the following chains were created:
- We consider the chain 1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(x0[0], x1[0]))) → COND_1756_0_CONVERT_NONNULL(<=(x0[0], 0), java.lang.Object(ConvertRec.List(x0[0], x1[0]))), COND_1756_0_CONVERT_NONNULL(TRUE, java.lang.Object(ConvertRec.List(x0[1], x1[1]))) → 1756_0_CONVERT_NONNULL(x1[1]), 1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(x0[0], x1[0]))) → COND_1756_0_CONVERT_NONNULL(<=(x0[0], 0), java.lang.Object(ConvertRec.List(x0[0], x1[0]))) which results in the following constraint:
(7) (<=(x0[0], 0)=TRUE∧java.lang.Object(ConvertRec.List(x0[0], x1[0]))=java.lang.Object(ConvertRec.List(x0[1], x1[1]))∧x1[1]=java.lang.Object(ConvertRec.List(x0[0]1, x1[0]1)) ⇒ COND_1756_0_CONVERT_NONNULL(TRUE, java.lang.Object(ConvertRec.List(x0[1], x1[1])))≥NonInfC∧COND_1756_0_CONVERT_NONNULL(TRUE, java.lang.Object(ConvertRec.List(x0[1], x1[1])))≥1756_0_CONVERT_NONNULL(x1[1])∧(UIncreasing(1756_0_CONVERT_NONNULL(x1[1])), ≥))
We simplified constraint (7) using rules (I), (II), (III) which results in the following new constraint:
(8) (<=(x0[0], 0)=TRUE ⇒ COND_1756_0_CONVERT_NONNULL(TRUE, java.lang.Object(ConvertRec.List(x0[0], java.lang.Object(ConvertRec.List(x0[0]1, x1[0]1)))))≥NonInfC∧COND_1756_0_CONVERT_NONNULL(TRUE, java.lang.Object(ConvertRec.List(x0[0], java.lang.Object(ConvertRec.List(x0[0]1, x1[0]1)))))≥1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(x0[0]1, x1[0]1)))∧(UIncreasing(1756_0_CONVERT_NONNULL(x1[1])), ≥))
We simplified constraint (8) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(9) (0 ≥ 0 ⇒ (UIncreasing(1756_0_CONVERT_NONNULL(x1[1])), ≥)∧[(23)bni_34 + (-1)Bound*bni_34] + [(9)bni_34]x1[0]1 + [(9)bni_34]x0[0]1 + [(3)bni_34]x0[0] ≥ 0∧[16 + (-1)bso_35] + [6]x1[0]1 + [6]x0[0]1 + [3]x0[0] ≥ 0)
We simplified constraint (9) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(10) (0 ≥ 0 ⇒ (UIncreasing(1756_0_CONVERT_NONNULL(x1[1])), ≥)∧[(23)bni_34 + (-1)Bound*bni_34] + [(9)bni_34]x1[0]1 + [(9)bni_34]x0[0]1 + [(3)bni_34]x0[0] ≥ 0∧[16 + (-1)bso_35] + [6]x1[0]1 + [6]x0[0]1 + [3]x0[0] ≥ 0)
We simplified constraint (10) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(11) (0 ≥ 0 ⇒ (UIncreasing(1756_0_CONVERT_NONNULL(x1[1])), ≥)∧[(23)bni_34 + (-1)Bound*bni_34] + [(9)bni_34]x1[0]1 + [(9)bni_34]x0[0]1 + [(3)bni_34]x0[0] ≥ 0∧[16 + (-1)bso_35] + [6]x1[0]1 + [6]x0[0]1 + [3]x0[0] ≥ 0)
We simplified constraint (11) using rules (IDP_UNRESTRICTED_VARS), (IDP_POLY_GCD) which results in the following new constraint:
(12) (0 ≥ 0 ⇒ (UIncreasing(1756_0_CONVERT_NONNULL(x1[1])), ≥)∧[(9)bni_34] ≥ 0∧[(9)bni_34] ≥ 0∧[(3)bni_34] ≥ 0∧[(23)bni_34 + (-1)Bound*bni_34] ≥ 0∧[16 + (-1)bso_35] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0)
- We consider the chain 1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(x0[0], x1[0]))) → COND_1756_0_CONVERT_NONNULL(<=(x0[0], 0), java.lang.Object(ConvertRec.List(x0[0], x1[0]))), COND_1756_0_CONVERT_NONNULL(TRUE, java.lang.Object(ConvertRec.List(x0[1], x1[1]))) → 1756_0_CONVERT_NONNULL(x1[1]), 1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(x0[2], x1[2]))) → COND_1756_0_CONVERT_NONNULL1(>(x0[2], 0), java.lang.Object(ConvertRec.List(x0[2], x1[2]))) which results in the following constraint:
(13) (<=(x0[0], 0)=TRUE∧java.lang.Object(ConvertRec.List(x0[0], x1[0]))=java.lang.Object(ConvertRec.List(x0[1], x1[1]))∧x1[1]=java.lang.Object(ConvertRec.List(x0[2], x1[2])) ⇒ COND_1756_0_CONVERT_NONNULL(TRUE, java.lang.Object(ConvertRec.List(x0[1], x1[1])))≥NonInfC∧COND_1756_0_CONVERT_NONNULL(TRUE, java.lang.Object(ConvertRec.List(x0[1], x1[1])))≥1756_0_CONVERT_NONNULL(x1[1])∧(UIncreasing(1756_0_CONVERT_NONNULL(x1[1])), ≥))
We simplified constraint (13) using rules (I), (II), (III) which results in the following new constraint:
(14) (<=(x0[0], 0)=TRUE ⇒ COND_1756_0_CONVERT_NONNULL(TRUE, java.lang.Object(ConvertRec.List(x0[0], java.lang.Object(ConvertRec.List(x0[2], x1[2])))))≥NonInfC∧COND_1756_0_CONVERT_NONNULL(TRUE, java.lang.Object(ConvertRec.List(x0[0], java.lang.Object(ConvertRec.List(x0[2], x1[2])))))≥1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(x0[2], x1[2])))∧(UIncreasing(1756_0_CONVERT_NONNULL(x1[1])), ≥))
We simplified constraint (14) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(15) (0 ≥ 0 ⇒ (UIncreasing(1756_0_CONVERT_NONNULL(x1[1])), ≥)∧[(23)bni_34 + (-1)Bound*bni_34] + [(9)bni_34]x1[2] + [(9)bni_34]x0[2] + [(3)bni_34]x0[0] ≥ 0∧[16 + (-1)bso_35] + [6]x1[2] + [6]x0[2] + [3]x0[0] ≥ 0)
We simplified constraint (15) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(16) (0 ≥ 0 ⇒ (UIncreasing(1756_0_CONVERT_NONNULL(x1[1])), ≥)∧[(23)bni_34 + (-1)Bound*bni_34] + [(9)bni_34]x1[2] + [(9)bni_34]x0[2] + [(3)bni_34]x0[0] ≥ 0∧[16 + (-1)bso_35] + [6]x1[2] + [6]x0[2] + [3]x0[0] ≥ 0)
We simplified constraint (16) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(17) (0 ≥ 0 ⇒ (UIncreasing(1756_0_CONVERT_NONNULL(x1[1])), ≥)∧[(23)bni_34 + (-1)Bound*bni_34] + [(9)bni_34]x1[2] + [(9)bni_34]x0[2] + [(3)bni_34]x0[0] ≥ 0∧[16 + (-1)bso_35] + [6]x1[2] + [6]x0[2] + [3]x0[0] ≥ 0)
We simplified constraint (17) using rules (IDP_UNRESTRICTED_VARS), (IDP_POLY_GCD) which results in the following new constraint:
(18) (0 ≥ 0 ⇒ (UIncreasing(1756_0_CONVERT_NONNULL(x1[1])), ≥)∧[(9)bni_34] ≥ 0∧[(9)bni_34] ≥ 0∧[(3)bni_34] ≥ 0∧[(23)bni_34 + (-1)Bound*bni_34] ≥ 0∧[16 + (-1)bso_35] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0)
For Pair
1756_0_CONVERT_NONNULL(
java.lang.Object(
ConvertRec.List(
x0,
x1))) →
COND_1756_0_CONVERT_NONNULL1(
>(
x0,
0),
java.lang.Object(
ConvertRec.List(
x0,
x1))) the following chains were created:
- We consider the chain 1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(x0[2], x1[2]))) → COND_1756_0_CONVERT_NONNULL1(>(x0[2], 0), java.lang.Object(ConvertRec.List(x0[2], x1[2]))), COND_1756_0_CONVERT_NONNULL1(TRUE, java.lang.Object(ConvertRec.List(x0[3], x1[3]))) → 1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(-(x0[3], 1), x1[3]))) which results in the following constraint:
(19) (>(x0[2], 0)=TRUE∧java.lang.Object(ConvertRec.List(x0[2], x1[2]))=java.lang.Object(ConvertRec.List(x0[3], x1[3])) ⇒ 1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(x0[2], x1[2])))≥NonInfC∧1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(x0[2], x1[2])))≥COND_1756_0_CONVERT_NONNULL1(>(x0[2], 0), java.lang.Object(ConvertRec.List(x0[2], x1[2])))∧(UIncreasing(COND_1756_0_CONVERT_NONNULL1(>(x0[2], 0), java.lang.Object(ConvertRec.List(x0[2], x1[2])))), ≥))
We simplified constraint (19) using rules (I), (II), (IV) which results in the following new constraint:
(20) (>(x0[2], 0)=TRUE ⇒ 1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(x0[2], x1[2])))≥NonInfC∧1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(x0[2], x1[2])))≥COND_1756_0_CONVERT_NONNULL1(>(x0[2], 0), java.lang.Object(ConvertRec.List(x0[2], x1[2])))∧(UIncreasing(COND_1756_0_CONVERT_NONNULL1(>(x0[2], 0), java.lang.Object(ConvertRec.List(x0[2], x1[2])))), ≥))
We simplified constraint (20) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(21) (0 ≥ 0 ⇒ (UIncreasing(COND_1756_0_CONVERT_NONNULL1(>(x0[2], 0), java.lang.Object(ConvertRec.List(x0[2], x1[2])))), ≥)∧[(7)bni_36 + (-1)Bound*bni_36] + [(3)bni_36]x1[2] + [(3)bni_36]x0[2] ≥ 0∧[(-1)bso_37] ≥ 0)
We simplified constraint (21) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(22) (0 ≥ 0 ⇒ (UIncreasing(COND_1756_0_CONVERT_NONNULL1(>(x0[2], 0), java.lang.Object(ConvertRec.List(x0[2], x1[2])))), ≥)∧[(7)bni_36 + (-1)Bound*bni_36] + [(3)bni_36]x1[2] + [(3)bni_36]x0[2] ≥ 0∧[(-1)bso_37] ≥ 0)
We simplified constraint (22) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(23) (0 ≥ 0 ⇒ (UIncreasing(COND_1756_0_CONVERT_NONNULL1(>(x0[2], 0), java.lang.Object(ConvertRec.List(x0[2], x1[2])))), ≥)∧[(7)bni_36 + (-1)Bound*bni_36] + [(3)bni_36]x1[2] + [(3)bni_36]x0[2] ≥ 0∧[(-1)bso_37] ≥ 0)
We simplified constraint (23) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:
(24) (0 ≥ 0 ⇒ (UIncreasing(COND_1756_0_CONVERT_NONNULL1(>(x0[2], 0), java.lang.Object(ConvertRec.List(x0[2], x1[2])))), ≥)∧[(3)bni_36] ≥ 0∧[(3)bni_36] ≥ 0∧[(7)bni_36 + (-1)Bound*bni_36] ≥ 0∧0 ≥ 0∧0 ≥ 0∧[(-1)bso_37] ≥ 0)
For Pair
COND_1756_0_CONVERT_NONNULL1(
TRUE,
java.lang.Object(
ConvertRec.List(
x0,
x1))) →
1756_0_CONVERT_NONNULL(
java.lang.Object(
ConvertRec.List(
-(
x0,
1),
x1))) the following chains were created:
- We consider the chain 1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(x0[2], x1[2]))) → COND_1756_0_CONVERT_NONNULL1(>(x0[2], 0), java.lang.Object(ConvertRec.List(x0[2], x1[2]))), COND_1756_0_CONVERT_NONNULL1(TRUE, java.lang.Object(ConvertRec.List(x0[3], x1[3]))) → 1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(-(x0[3], 1), x1[3]))), 1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(x0[0], x1[0]))) → COND_1756_0_CONVERT_NONNULL(<=(x0[0], 0), java.lang.Object(ConvertRec.List(x0[0], x1[0]))) which results in the following constraint:
(25) (>(x0[2], 0)=TRUE∧java.lang.Object(ConvertRec.List(x0[2], x1[2]))=java.lang.Object(ConvertRec.List(x0[3], x1[3]))∧java.lang.Object(ConvertRec.List(-(x0[3], 1), x1[3]))=java.lang.Object(ConvertRec.List(x0[0], x1[0])) ⇒ COND_1756_0_CONVERT_NONNULL1(TRUE, java.lang.Object(ConvertRec.List(x0[3], x1[3])))≥NonInfC∧COND_1756_0_CONVERT_NONNULL1(TRUE, java.lang.Object(ConvertRec.List(x0[3], x1[3])))≥1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(-(x0[3], 1), x1[3])))∧(UIncreasing(1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(-(x0[3], 1), x1[3])))), ≥))
We simplified constraint (25) using rules (I), (II), (III), (IV) which results in the following new constraint:
(26) (>(x0[2], 0)=TRUE ⇒ COND_1756_0_CONVERT_NONNULL1(TRUE, java.lang.Object(ConvertRec.List(x0[2], x1[2])))≥NonInfC∧COND_1756_0_CONVERT_NONNULL1(TRUE, java.lang.Object(ConvertRec.List(x0[2], x1[2])))≥1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(-(x0[2], 1), x1[2])))∧(UIncreasing(1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(-(x0[3], 1), x1[3])))), ≥))
We simplified constraint (26) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(27) (0 ≥ 0 ⇒ (UIncreasing(1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(-(x0[3], 1), x1[3])))), ≥)∧[(7)bni_38 + (-1)Bound*bni_38] + [(3)bni_38]x1[2] + [(3)bni_38]x0[2] ≥ 0∧[(-1)bso_39] + [3]x0[2] ≥ 0)
We simplified constraint (27) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(28) (0 ≥ 0 ⇒ (UIncreasing(1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(-(x0[3], 1), x1[3])))), ≥)∧[(7)bni_38 + (-1)Bound*bni_38] + [(3)bni_38]x1[2] + [(3)bni_38]x0[2] ≥ 0∧[(-1)bso_39] + [3]x0[2] ≥ 0)
We simplified constraint (28) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(29) (0 ≥ 0 ⇒ (UIncreasing(1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(-(x0[3], 1), x1[3])))), ≥)∧[(7)bni_38 + (-1)Bound*bni_38] + [(3)bni_38]x1[2] + [(3)bni_38]x0[2] ≥ 0∧[(-1)bso_39] + [3]x0[2] ≥ 0)
We simplified constraint (29) using rules (IDP_UNRESTRICTED_VARS), (IDP_POLY_GCD) which results in the following new constraint:
(30) (0 ≥ 0 ⇒ (UIncreasing(1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(-(x0[3], 1), x1[3])))), ≥)∧[(3)bni_38] ≥ 0∧[(3)bni_38] ≥ 0∧[(7)bni_38 + (-1)Bound*bni_38] ≥ 0∧0 ≥ 0∧[(-1)bso_39] ≥ 0∧[1] ≥ 0)
- We consider the chain 1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(x0[2], x1[2]))) → COND_1756_0_CONVERT_NONNULL1(>(x0[2], 0), java.lang.Object(ConvertRec.List(x0[2], x1[2]))), COND_1756_0_CONVERT_NONNULL1(TRUE, java.lang.Object(ConvertRec.List(x0[3], x1[3]))) → 1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(-(x0[3], 1), x1[3]))), 1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(x0[2], x1[2]))) → COND_1756_0_CONVERT_NONNULL1(>(x0[2], 0), java.lang.Object(ConvertRec.List(x0[2], x1[2]))) which results in the following constraint:
(31) (>(x0[2], 0)=TRUE∧java.lang.Object(ConvertRec.List(x0[2], x1[2]))=java.lang.Object(ConvertRec.List(x0[3], x1[3]))∧java.lang.Object(ConvertRec.List(-(x0[3], 1), x1[3]))=java.lang.Object(ConvertRec.List(x0[2]1, x1[2]1)) ⇒ COND_1756_0_CONVERT_NONNULL1(TRUE, java.lang.Object(ConvertRec.List(x0[3], x1[3])))≥NonInfC∧COND_1756_0_CONVERT_NONNULL1(TRUE, java.lang.Object(ConvertRec.List(x0[3], x1[3])))≥1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(-(x0[3], 1), x1[3])))∧(UIncreasing(1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(-(x0[3], 1), x1[3])))), ≥))
We simplified constraint (31) using rules (I), (II), (III), (IV) which results in the following new constraint:
(32) (>(x0[2], 0)=TRUE ⇒ COND_1756_0_CONVERT_NONNULL1(TRUE, java.lang.Object(ConvertRec.List(x0[2], x1[2])))≥NonInfC∧COND_1756_0_CONVERT_NONNULL1(TRUE, java.lang.Object(ConvertRec.List(x0[2], x1[2])))≥1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(-(x0[2], 1), x1[2])))∧(UIncreasing(1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(-(x0[3], 1), x1[3])))), ≥))
We simplified constraint (32) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(33) (0 ≥ 0 ⇒ (UIncreasing(1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(-(x0[3], 1), x1[3])))), ≥)∧[(7)bni_38 + (-1)Bound*bni_38] + [(3)bni_38]x1[2] + [(3)bni_38]x0[2] ≥ 0∧[(-1)bso_39] + [3]x0[2] ≥ 0)
We simplified constraint (33) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(34) (0 ≥ 0 ⇒ (UIncreasing(1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(-(x0[3], 1), x1[3])))), ≥)∧[(7)bni_38 + (-1)Bound*bni_38] + [(3)bni_38]x1[2] + [(3)bni_38]x0[2] ≥ 0∧[(-1)bso_39] + [3]x0[2] ≥ 0)
We simplified constraint (34) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(35) (0 ≥ 0 ⇒ (UIncreasing(1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(-(x0[3], 1), x1[3])))), ≥)∧[(7)bni_38 + (-1)Bound*bni_38] + [(3)bni_38]x1[2] + [(3)bni_38]x0[2] ≥ 0∧[(-1)bso_39] + [3]x0[2] ≥ 0)
We simplified constraint (35) using rules (IDP_UNRESTRICTED_VARS), (IDP_POLY_GCD) which results in the following new constraint:
(36) (0 ≥ 0 ⇒ (UIncreasing(1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(-(x0[3], 1), x1[3])))), ≥)∧[(3)bni_38] ≥ 0∧[(3)bni_38] ≥ 0∧[(7)bni_38 + (-1)Bound*bni_38] ≥ 0∧0 ≥ 0∧[(-1)bso_39] ≥ 0∧[1] ≥ 0)
To summarize, we get the following constraints P
≥ for the following pairs.
- 1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(x0, x1))) → COND_1756_0_CONVERT_NONNULL(<=(x0, 0), java.lang.Object(ConvertRec.List(x0, x1)))
- (0 ≥ 0 ⇒ (UIncreasing(COND_1756_0_CONVERT_NONNULL(<=(x0[0], 0), java.lang.Object(ConvertRec.List(x0[0], x1[0])))), ≥)∧[(3)bni_32] ≥ 0∧[(3)bni_32] ≥ 0∧[(7)bni_32 + (-1)Bound*bni_32] ≥ 0∧0 ≥ 0∧0 ≥ 0∧[2 + (-1)bso_33] ≥ 0)
- COND_1756_0_CONVERT_NONNULL(TRUE, java.lang.Object(ConvertRec.List(x0, x1))) → 1756_0_CONVERT_NONNULL(x1)
- (0 ≥ 0 ⇒ (UIncreasing(1756_0_CONVERT_NONNULL(x1[1])), ≥)∧[(9)bni_34] ≥ 0∧[(9)bni_34] ≥ 0∧[(3)bni_34] ≥ 0∧[(23)bni_34 + (-1)Bound*bni_34] ≥ 0∧[16 + (-1)bso_35] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0)
- (0 ≥ 0 ⇒ (UIncreasing(1756_0_CONVERT_NONNULL(x1[1])), ≥)∧[(9)bni_34] ≥ 0∧[(9)bni_34] ≥ 0∧[(3)bni_34] ≥ 0∧[(23)bni_34 + (-1)Bound*bni_34] ≥ 0∧[16 + (-1)bso_35] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0)
- 1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(x0, x1))) → COND_1756_0_CONVERT_NONNULL1(>(x0, 0), java.lang.Object(ConvertRec.List(x0, x1)))
- (0 ≥ 0 ⇒ (UIncreasing(COND_1756_0_CONVERT_NONNULL1(>(x0[2], 0), java.lang.Object(ConvertRec.List(x0[2], x1[2])))), ≥)∧[(3)bni_36] ≥ 0∧[(3)bni_36] ≥ 0∧[(7)bni_36 + (-1)Bound*bni_36] ≥ 0∧0 ≥ 0∧0 ≥ 0∧[(-1)bso_37] ≥ 0)
- COND_1756_0_CONVERT_NONNULL1(TRUE, java.lang.Object(ConvertRec.List(x0, x1))) → 1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(-(x0, 1), x1)))
- (0 ≥ 0 ⇒ (UIncreasing(1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(-(x0[3], 1), x1[3])))), ≥)∧[(3)bni_38] ≥ 0∧[(3)bni_38] ≥ 0∧[(7)bni_38 + (-1)Bound*bni_38] ≥ 0∧0 ≥ 0∧[(-1)bso_39] ≥ 0∧[1] ≥ 0)
- (0 ≥ 0 ⇒ (UIncreasing(1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(-(x0[3], 1), x1[3])))), ≥)∧[(3)bni_38] ≥ 0∧[(3)bni_38] ≥ 0∧[(7)bni_38 + (-1)Bound*bni_38] ≥ 0∧0 ≥ 0∧[(-1)bso_39] ≥ 0∧[1] ≥ 0)
The constraints for P
> respective P
bound are constructed from P
≥ where we just replace every occurence of "t ≥ s" in P
≥ by "t > s" respective "t ≥
c". Here
c stands for the fresh constant used for P
bound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers with natural coefficients for non-tuple symbols [NONINF][POLO]:
POL(TRUE) = 0
POL(FALSE) = 0
POL(1756_0_convert_NONNULL(x1)) = 0
POL(NULL) = 0
POL(1908_0_convert_Return) = 0
POL(2252_1_convert_InvokeMethod(x1, x2, x3)) = 0
POL(java.lang.Object(x1)) = [3]x1
POL(ConvertRec.List(x1, x2)) = [2] + x2 + x1
POL(2344_0_convert_Return(x1)) = 0
POL(3411_0_convert_Return(x1)) = 0
POL(3418_0_convert_Return) = 0
POL(3660_0_convert_Return(x1)) = 0
POL(2929_1_convert_InvokeMethod(x1, x2)) = 0
POL(0) = 0
POL(1756_0_CONVERT_NONNULL(x1)) = [1] + x1
POL(COND_1756_0_CONVERT_NONNULL(x1, x2)) = [-1] + x2
POL(<=(x1, x2)) = 0
POL(COND_1756_0_CONVERT_NONNULL1(x1, x2)) = [1] + x2
POL(>(x1, x2)) = 0
POL(-(x1, x2)) = 0
POL(1) = 0
The following pairs are in P
>:
1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(x0[0], x1[0]))) → COND_1756_0_CONVERT_NONNULL(<=(x0[0], 0), java.lang.Object(ConvertRec.List(x0[0], x1[0])))
COND_1756_0_CONVERT_NONNULL(TRUE, java.lang.Object(ConvertRec.List(x0[1], x1[1]))) → 1756_0_CONVERT_NONNULL(x1[1])
The following pairs are in P
bound:
1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(x0[0], x1[0]))) → COND_1756_0_CONVERT_NONNULL(<=(x0[0], 0), java.lang.Object(ConvertRec.List(x0[0], x1[0])))
COND_1756_0_CONVERT_NONNULL(TRUE, java.lang.Object(ConvertRec.List(x0[1], x1[1]))) → 1756_0_CONVERT_NONNULL(x1[1])
1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(x0[2], x1[2]))) → COND_1756_0_CONVERT_NONNULL1(>(x0[2], 0), java.lang.Object(ConvertRec.List(x0[2], x1[2])))
COND_1756_0_CONVERT_NONNULL1(TRUE, java.lang.Object(ConvertRec.List(x0[3], x1[3]))) → 1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(-(x0[3], 1), x1[3])))
The following pairs are in P
≥:
1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(x0[2], x1[2]))) → COND_1756_0_CONVERT_NONNULL1(>(x0[2], 0), java.lang.Object(ConvertRec.List(x0[2], x1[2])))
COND_1756_0_CONVERT_NONNULL1(TRUE, java.lang.Object(ConvertRec.List(x0[3], x1[3]))) → 1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(-(x0[3], 1), x1[3])))
There are no usable rules.
(7) Obligation:
IDP problem:
The following function symbols are pre-defined:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
| ~ | Bwxor: (Integer, Integer) -> Integer |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
The following domains are used:
Integer
The ITRS R consists of the following rules:
1756_0_convert_NONNULL(
NULL) →
1908_0_convert_Return2252_1_convert_InvokeMethod(
1908_0_convert_Return,
java.lang.Object(
ConvertRec.List(
x0,
NULL)),
NULL) →
2344_0_convert_Return(
java.lang.Object(
ConvertRec.List(
x0,
NULL)))
2252_1_convert_InvokeMethod(
2344_0_convert_Return(
java.lang.Object(
ConvertRec.List(
x0,
NULL))),
java.lang.Object(
ConvertRec.List(
x1,
java.lang.Object(
ConvertRec.List(
x0,
NULL)))),
java.lang.Object(
ConvertRec.List(
x0,
NULL))) →
3411_0_convert_Return(
java.lang.Object(
ConvertRec.List(
x1,
java.lang.Object(
ConvertRec.List(
x0,
NULL)))))
2252_1_convert_InvokeMethod(
3411_0_convert_Return(
java.lang.Object(
ConvertRec.List(
x0,
java.lang.Object(
ConvertRec.List(
x1,
x2))))),
java.lang.Object(
ConvertRec.List(
x3,
java.lang.Object(
ConvertRec.List(
x0,
java.lang.Object(
ConvertRec.List(
x1,
x2)))))),
java.lang.Object(
ConvertRec.List(
x0,
java.lang.Object(
ConvertRec.List(
x1,
x2))))) →
3411_0_convert_Return(
java.lang.Object(
ConvertRec.List(
x3,
java.lang.Object(
ConvertRec.List(
x0,
java.lang.Object(
ConvertRec.List(
x1,
x2)))))))
2252_1_convert_InvokeMethod(
3418_0_convert_Return,
java.lang.Object(
ConvertRec.List(
x0,
java.lang.Object(
ConvertRec.List(
x1,
x2)))),
java.lang.Object(
ConvertRec.List(
x1,
x2))) →
3660_0_convert_Return(
java.lang.Object(
ConvertRec.List(
x0,
java.lang.Object(
ConvertRec.List(
x1,
x2)))))
2252_1_convert_InvokeMethod(
3660_0_convert_Return(
java.lang.Object(
ConvertRec.List(
x0,
java.lang.Object(
ConvertRec.List(
x1,
x2))))),
java.lang.Object(
ConvertRec.List(
x3,
java.lang.Object(
ConvertRec.List(
x0,
java.lang.Object(
ConvertRec.List(
x1,
x2)))))),
java.lang.Object(
ConvertRec.List(
x0,
java.lang.Object(
ConvertRec.List(
x1,
x2))))) →
3411_0_convert_Return(
java.lang.Object(
ConvertRec.List(
x3,
java.lang.Object(
ConvertRec.List(
x0,
java.lang.Object(
ConvertRec.List(
x1,
x2)))))))
2929_1_convert_InvokeMethod(
2344_0_convert_Return(
java.lang.Object(
ConvertRec.List(
0,
NULL))),
java.lang.Object(
ConvertRec.List(
0,
NULL))) →
3418_0_convert_Return2929_1_convert_InvokeMethod(
3411_0_convert_Return(
java.lang.Object(
ConvertRec.List(
0,
java.lang.Object(
ConvertRec.List(
x1,
x2))))),
java.lang.Object(
ConvertRec.List(
0,
java.lang.Object(
ConvertRec.List(
x1,
x2))))) →
3418_0_convert_Return2929_1_convert_InvokeMethod(
3418_0_convert_Return,
java.lang.Object(
ConvertRec.List(
x1,
x2))) →
3418_0_convert_Return2929_1_convert_InvokeMethod(
3660_0_convert_Return(
java.lang.Object(
ConvertRec.List(
0,
java.lang.Object(
ConvertRec.List(
x1,
x2))))),
java.lang.Object(
ConvertRec.List(
0,
java.lang.Object(
ConvertRec.List(
x1,
x2))))) →
3418_0_convert_ReturnThe integer pair graph contains the following rules and edges:
(2):
1756_0_CONVERT_NONNULL(
java.lang.Object(
ConvertRec.List(
x0[2],
x1[2]))) →
COND_1756_0_CONVERT_NONNULL1(
x0[2] > 0,
java.lang.Object(
ConvertRec.List(
x0[2],
x1[2])))
(3):
COND_1756_0_CONVERT_NONNULL1(
TRUE,
java.lang.Object(
ConvertRec.List(
x0[3],
x1[3]))) →
1756_0_CONVERT_NONNULL(
java.lang.Object(
ConvertRec.List(
x0[3] - 1,
x1[3])))
(3) -> (2), if ((java.lang.Object(ConvertRec.List(x0[3] - 1, x1[3])) →* java.lang.Object(ConvertRec.List(x0[2], x1[2]))))
(2) -> (3), if ((x0[2] > 0 →* TRUE)∧(java.lang.Object(ConvertRec.List(x0[2], x1[2])) →* java.lang.Object(ConvertRec.List(x0[3], x1[3]))))
The set Q consists of the following terms:
1756_0_convert_NONNULL(
NULL)
2252_1_convert_InvokeMethod(
1908_0_convert_Return,
java.lang.Object(
ConvertRec.List(
x0,
NULL)),
NULL)
2252_1_convert_InvokeMethod(
2344_0_convert_Return(
java.lang.Object(
ConvertRec.List(
x0,
NULL))),
java.lang.Object(
ConvertRec.List(
x1,
java.lang.Object(
ConvertRec.List(
x0,
NULL)))),
java.lang.Object(
ConvertRec.List(
x0,
NULL)))
2252_1_convert_InvokeMethod(
3411_0_convert_Return(
java.lang.Object(
ConvertRec.List(
x0,
java.lang.Object(
ConvertRec.List(
x1,
x2))))),
java.lang.Object(
ConvertRec.List(
x3,
java.lang.Object(
ConvertRec.List(
x0,
java.lang.Object(
ConvertRec.List(
x1,
x2)))))),
java.lang.Object(
ConvertRec.List(
x0,
java.lang.Object(
ConvertRec.List(
x1,
x2)))))
2252_1_convert_InvokeMethod(
3418_0_convert_Return,
java.lang.Object(
ConvertRec.List(
x0,
java.lang.Object(
ConvertRec.List(
x1,
x2)))),
java.lang.Object(
ConvertRec.List(
x1,
x2)))
2252_1_convert_InvokeMethod(
3660_0_convert_Return(
java.lang.Object(
ConvertRec.List(
x0,
java.lang.Object(
ConvertRec.List(
x1,
x2))))),
java.lang.Object(
ConvertRec.List(
x3,
java.lang.Object(
ConvertRec.List(
x0,
java.lang.Object(
ConvertRec.List(
x1,
x2)))))),
java.lang.Object(
ConvertRec.List(
x0,
java.lang.Object(
ConvertRec.List(
x1,
x2)))))
2929_1_convert_InvokeMethod(
2344_0_convert_Return(
java.lang.Object(
ConvertRec.List(
0,
NULL))),
java.lang.Object(
ConvertRec.List(
0,
NULL)))
2929_1_convert_InvokeMethod(
3411_0_convert_Return(
java.lang.Object(
ConvertRec.List(
0,
java.lang.Object(
ConvertRec.List(
x0,
x1))))),
java.lang.Object(
ConvertRec.List(
0,
java.lang.Object(
ConvertRec.List(
x0,
x1)))))
2929_1_convert_InvokeMethod(
3418_0_convert_Return,
java.lang.Object(
ConvertRec.List(
x0,
x1)))
2929_1_convert_InvokeMethod(
3660_0_convert_Return(
java.lang.Object(
ConvertRec.List(
0,
java.lang.Object(
ConvertRec.List(
x0,
x1))))),
java.lang.Object(
ConvertRec.List(
0,
java.lang.Object(
ConvertRec.List(
x0,
x1)))))
(8) IDPNonInfProof (SOUND transformation)
The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that
final constraints are written in
bold face.
For Pair
1756_0_CONVERT_NONNULL(
java.lang.Object(
ConvertRec.List(
x0[2],
x1[2]))) →
COND_1756_0_CONVERT_NONNULL1(
>(
x0[2],
0),
java.lang.Object(
ConvertRec.List(
x0[2],
x1[2]))) the following chains were created:
- We consider the chain 1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(x0[2], x1[2]))) → COND_1756_0_CONVERT_NONNULL1(>(x0[2], 0), java.lang.Object(ConvertRec.List(x0[2], x1[2]))), COND_1756_0_CONVERT_NONNULL1(TRUE, java.lang.Object(ConvertRec.List(x0[3], x1[3]))) → 1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(-(x0[3], 1), x1[3]))) which results in the following constraint:
(1) (>(x0[2], 0)=TRUE∧java.lang.Object(ConvertRec.List(x0[2], x1[2]))=java.lang.Object(ConvertRec.List(x0[3], x1[3])) ⇒ 1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(x0[2], x1[2])))≥NonInfC∧1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(x0[2], x1[2])))≥COND_1756_0_CONVERT_NONNULL1(>(x0[2], 0), java.lang.Object(ConvertRec.List(x0[2], x1[2])))∧(UIncreasing(COND_1756_0_CONVERT_NONNULL1(>(x0[2], 0), java.lang.Object(ConvertRec.List(x0[2], x1[2])))), ≥))
We simplified constraint (1) using rules (I), (II), (IV) which results in the following new constraint:
(2) (>(x0[2], 0)=TRUE ⇒ 1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(x0[2], x1[2])))≥NonInfC∧1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(x0[2], x1[2])))≥COND_1756_0_CONVERT_NONNULL1(>(x0[2], 0), java.lang.Object(ConvertRec.List(x0[2], x1[2])))∧(UIncreasing(COND_1756_0_CONVERT_NONNULL1(>(x0[2], 0), java.lang.Object(ConvertRec.List(x0[2], x1[2])))), ≥))
We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(3) (x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1756_0_CONVERT_NONNULL1(>(x0[2], 0), java.lang.Object(ConvertRec.List(x0[2], x1[2])))), ≥)∧[(-2)bni_32 + (-1)Bound*bni_32] + [bni_32]x0[2] ≥ 0∧[(-1)bso_33] ≥ 0)
We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(4) (x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1756_0_CONVERT_NONNULL1(>(x0[2], 0), java.lang.Object(ConvertRec.List(x0[2], x1[2])))), ≥)∧[(-2)bni_32 + (-1)Bound*bni_32] + [bni_32]x0[2] ≥ 0∧[(-1)bso_33] ≥ 0)
We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(5) (x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1756_0_CONVERT_NONNULL1(>(x0[2], 0), java.lang.Object(ConvertRec.List(x0[2], x1[2])))), ≥)∧[(-2)bni_32 + (-1)Bound*bni_32] + [bni_32]x0[2] ≥ 0∧[(-1)bso_33] ≥ 0)
We simplified constraint (5) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:
(6) (x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1756_0_CONVERT_NONNULL1(>(x0[2], 0), java.lang.Object(ConvertRec.List(x0[2], x1[2])))), ≥)∧0 = 0∧[(-2)bni_32 + (-1)Bound*bni_32] + [bni_32]x0[2] ≥ 0∧0 = 0∧[(-1)bso_33] ≥ 0)
We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint:
(7) (x0[2] ≥ 0 ⇒ (UIncreasing(COND_1756_0_CONVERT_NONNULL1(>(x0[2], 0), java.lang.Object(ConvertRec.List(x0[2], x1[2])))), ≥)∧0 = 0∧[(-1)bni_32 + (-1)Bound*bni_32] + [bni_32]x0[2] ≥ 0∧0 = 0∧[(-1)bso_33] ≥ 0)
For Pair
COND_1756_0_CONVERT_NONNULL1(
TRUE,
java.lang.Object(
ConvertRec.List(
x0[3],
x1[3]))) →
1756_0_CONVERT_NONNULL(
java.lang.Object(
ConvertRec.List(
-(
x0[3],
1),
x1[3]))) the following chains were created:
- We consider the chain 1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(x0[2], x1[2]))) → COND_1756_0_CONVERT_NONNULL1(>(x0[2], 0), java.lang.Object(ConvertRec.List(x0[2], x1[2]))), COND_1756_0_CONVERT_NONNULL1(TRUE, java.lang.Object(ConvertRec.List(x0[3], x1[3]))) → 1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(-(x0[3], 1), x1[3]))), 1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(x0[2], x1[2]))) → COND_1756_0_CONVERT_NONNULL1(>(x0[2], 0), java.lang.Object(ConvertRec.List(x0[2], x1[2]))) which results in the following constraint:
(8) (>(x0[2], 0)=TRUE∧java.lang.Object(ConvertRec.List(x0[2], x1[2]))=java.lang.Object(ConvertRec.List(x0[3], x1[3]))∧java.lang.Object(ConvertRec.List(-(x0[3], 1), x1[3]))=java.lang.Object(ConvertRec.List(x0[2]1, x1[2]1)) ⇒ COND_1756_0_CONVERT_NONNULL1(TRUE, java.lang.Object(ConvertRec.List(x0[3], x1[3])))≥NonInfC∧COND_1756_0_CONVERT_NONNULL1(TRUE, java.lang.Object(ConvertRec.List(x0[3], x1[3])))≥1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(-(x0[3], 1), x1[3])))∧(UIncreasing(1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(-(x0[3], 1), x1[3])))), ≥))
We simplified constraint (8) using rules (I), (II), (III), (IV) which results in the following new constraint:
(9) (>(x0[2], 0)=TRUE ⇒ COND_1756_0_CONVERT_NONNULL1(TRUE, java.lang.Object(ConvertRec.List(x0[2], x1[2])))≥NonInfC∧COND_1756_0_CONVERT_NONNULL1(TRUE, java.lang.Object(ConvertRec.List(x0[2], x1[2])))≥1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(-(x0[2], 1), x1[2])))∧(UIncreasing(1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(-(x0[3], 1), x1[3])))), ≥))
We simplified constraint (9) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(10) (x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(-(x0[3], 1), x1[3])))), ≥)∧[(-2)bni_34 + (-1)Bound*bni_34] + [bni_34]x0[2] ≥ 0∧[1 + (-1)bso_35] ≥ 0)
We simplified constraint (10) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(11) (x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(-(x0[3], 1), x1[3])))), ≥)∧[(-2)bni_34 + (-1)Bound*bni_34] + [bni_34]x0[2] ≥ 0∧[1 + (-1)bso_35] ≥ 0)
We simplified constraint (11) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(12) (x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(-(x0[3], 1), x1[3])))), ≥)∧[(-2)bni_34 + (-1)Bound*bni_34] + [bni_34]x0[2] ≥ 0∧[1 + (-1)bso_35] ≥ 0)
We simplified constraint (12) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:
(13) (x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(-(x0[3], 1), x1[3])))), ≥)∧0 = 0∧[(-2)bni_34 + (-1)Bound*bni_34] + [bni_34]x0[2] ≥ 0∧0 = 0∧[1 + (-1)bso_35] ≥ 0)
We simplified constraint (13) using rule (IDP_SMT_SPLIT) which results in the following new constraint:
(14) (x0[2] ≥ 0 ⇒ (UIncreasing(1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(-(x0[3], 1), x1[3])))), ≥)∧0 = 0∧[(-1)bni_34 + (-1)Bound*bni_34] + [bni_34]x0[2] ≥ 0∧0 = 0∧[1 + (-1)bso_35] ≥ 0)
To summarize, we get the following constraints P
≥ for the following pairs.
- 1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(x0[2], x1[2]))) → COND_1756_0_CONVERT_NONNULL1(>(x0[2], 0), java.lang.Object(ConvertRec.List(x0[2], x1[2])))
- (x0[2] ≥ 0 ⇒ (UIncreasing(COND_1756_0_CONVERT_NONNULL1(>(x0[2], 0), java.lang.Object(ConvertRec.List(x0[2], x1[2])))), ≥)∧0 = 0∧[(-1)bni_32 + (-1)Bound*bni_32] + [bni_32]x0[2] ≥ 0∧0 = 0∧[(-1)bso_33] ≥ 0)
- COND_1756_0_CONVERT_NONNULL1(TRUE, java.lang.Object(ConvertRec.List(x0[3], x1[3]))) → 1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(-(x0[3], 1), x1[3])))
- (x0[2] ≥ 0 ⇒ (UIncreasing(1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(-(x0[3], 1), x1[3])))), ≥)∧0 = 0∧[(-1)bni_34 + (-1)Bound*bni_34] + [bni_34]x0[2] ≥ 0∧0 = 0∧[1 + (-1)bso_35] ≥ 0)
The constraints for P
> respective P
bound are constructed from P
≥ where we just replace every occurence of "t ≥ s" in P
≥ by "t > s" respective "t ≥
c". Here
c stands for the fresh constant used for P
bound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:
POL(TRUE) = [2]
POL(FALSE) = 0
POL(1756_0_convert_NONNULL(x1)) = [-1] + [-1]x1
POL(NULL) = [-1]
POL(1908_0_convert_Return) = [-1]
POL(2252_1_convert_InvokeMethod(x1, x2, x3)) = [-1] + [-1]x3 + [-1]x2 + [-1]x1
POL(java.lang.Object(x1)) = [-1]x1
POL(ConvertRec.List(x1, x2)) = [-1] + x1
POL(2344_0_convert_Return(x1)) = [-1] + [-1]x1
POL(3411_0_convert_Return(x1)) = [-1] + [-1]x1
POL(3418_0_convert_Return) = [-1]
POL(3660_0_convert_Return(x1)) = [-1] + [-1]x1
POL(2929_1_convert_InvokeMethod(x1, x2)) = [-1] + [-1]x2 + [-1]x1
POL(0) = 0
POL(1756_0_CONVERT_NONNULL(x1)) = [-1] + [-1]x1
POL(COND_1756_0_CONVERT_NONNULL1(x1, x2)) = [-1] + [-1]x2
POL(>(x1, x2)) = [-1]
POL(-(x1, x2)) = x1 + [-1]x2
POL(1) = [1]
The following pairs are in P
>:
COND_1756_0_CONVERT_NONNULL1(TRUE, java.lang.Object(ConvertRec.List(x0[3], x1[3]))) → 1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(-(x0[3], 1), x1[3])))
The following pairs are in P
bound:
1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(x0[2], x1[2]))) → COND_1756_0_CONVERT_NONNULL1(>(x0[2], 0), java.lang.Object(ConvertRec.List(x0[2], x1[2])))
COND_1756_0_CONVERT_NONNULL1(TRUE, java.lang.Object(ConvertRec.List(x0[3], x1[3]))) → 1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(-(x0[3], 1), x1[3])))
The following pairs are in P
≥:
1756_0_CONVERT_NONNULL(java.lang.Object(ConvertRec.List(x0[2], x1[2]))) → COND_1756_0_CONVERT_NONNULL1(>(x0[2], 0), java.lang.Object(ConvertRec.List(x0[2], x1[2])))
There are no usable rules.
(9) Obligation:
IDP problem:
The following function symbols are pre-defined:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
| ~ | Bwxor: (Integer, Integer) -> Integer |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
The following domains are used:
Integer
The ITRS R consists of the following rules:
1756_0_convert_NONNULL(
NULL) →
1908_0_convert_Return2252_1_convert_InvokeMethod(
1908_0_convert_Return,
java.lang.Object(
ConvertRec.List(
x0,
NULL)),
NULL) →
2344_0_convert_Return(
java.lang.Object(
ConvertRec.List(
x0,
NULL)))
2252_1_convert_InvokeMethod(
2344_0_convert_Return(
java.lang.Object(
ConvertRec.List(
x0,
NULL))),
java.lang.Object(
ConvertRec.List(
x1,
java.lang.Object(
ConvertRec.List(
x0,
NULL)))),
java.lang.Object(
ConvertRec.List(
x0,
NULL))) →
3411_0_convert_Return(
java.lang.Object(
ConvertRec.List(
x1,
java.lang.Object(
ConvertRec.List(
x0,
NULL)))))
2252_1_convert_InvokeMethod(
3411_0_convert_Return(
java.lang.Object(
ConvertRec.List(
x0,
java.lang.Object(
ConvertRec.List(
x1,
x2))))),
java.lang.Object(
ConvertRec.List(
x3,
java.lang.Object(
ConvertRec.List(
x0,
java.lang.Object(
ConvertRec.List(
x1,
x2)))))),
java.lang.Object(
ConvertRec.List(
x0,
java.lang.Object(
ConvertRec.List(
x1,
x2))))) →
3411_0_convert_Return(
java.lang.Object(
ConvertRec.List(
x3,
java.lang.Object(
ConvertRec.List(
x0,
java.lang.Object(
ConvertRec.List(
x1,
x2)))))))
2252_1_convert_InvokeMethod(
3418_0_convert_Return,
java.lang.Object(
ConvertRec.List(
x0,
java.lang.Object(
ConvertRec.List(
x1,
x2)))),
java.lang.Object(
ConvertRec.List(
x1,
x2))) →
3660_0_convert_Return(
java.lang.Object(
ConvertRec.List(
x0,
java.lang.Object(
ConvertRec.List(
x1,
x2)))))
2252_1_convert_InvokeMethod(
3660_0_convert_Return(
java.lang.Object(
ConvertRec.List(
x0,
java.lang.Object(
ConvertRec.List(
x1,
x2))))),
java.lang.Object(
ConvertRec.List(
x3,
java.lang.Object(
ConvertRec.List(
x0,
java.lang.Object(
ConvertRec.List(
x1,
x2)))))),
java.lang.Object(
ConvertRec.List(
x0,
java.lang.Object(
ConvertRec.List(
x1,
x2))))) →
3411_0_convert_Return(
java.lang.Object(
ConvertRec.List(
x3,
java.lang.Object(
ConvertRec.List(
x0,
java.lang.Object(
ConvertRec.List(
x1,
x2)))))))
2929_1_convert_InvokeMethod(
2344_0_convert_Return(
java.lang.Object(
ConvertRec.List(
0,
NULL))),
java.lang.Object(
ConvertRec.List(
0,
NULL))) →
3418_0_convert_Return2929_1_convert_InvokeMethod(
3411_0_convert_Return(
java.lang.Object(
ConvertRec.List(
0,
java.lang.Object(
ConvertRec.List(
x1,
x2))))),
java.lang.Object(
ConvertRec.List(
0,
java.lang.Object(
ConvertRec.List(
x1,
x2))))) →
3418_0_convert_Return2929_1_convert_InvokeMethod(
3418_0_convert_Return,
java.lang.Object(
ConvertRec.List(
x1,
x2))) →
3418_0_convert_Return2929_1_convert_InvokeMethod(
3660_0_convert_Return(
java.lang.Object(
ConvertRec.List(
0,
java.lang.Object(
ConvertRec.List(
x1,
x2))))),
java.lang.Object(
ConvertRec.List(
0,
java.lang.Object(
ConvertRec.List(
x1,
x2))))) →
3418_0_convert_ReturnThe integer pair graph contains the following rules and edges:
(2):
1756_0_CONVERT_NONNULL(
java.lang.Object(
ConvertRec.List(
x0[2],
x1[2]))) →
COND_1756_0_CONVERT_NONNULL1(
x0[2] > 0,
java.lang.Object(
ConvertRec.List(
x0[2],
x1[2])))
The set Q consists of the following terms:
1756_0_convert_NONNULL(
NULL)
2252_1_convert_InvokeMethod(
1908_0_convert_Return,
java.lang.Object(
ConvertRec.List(
x0,
NULL)),
NULL)
2252_1_convert_InvokeMethod(
2344_0_convert_Return(
java.lang.Object(
ConvertRec.List(
x0,
NULL))),
java.lang.Object(
ConvertRec.List(
x1,
java.lang.Object(
ConvertRec.List(
x0,
NULL)))),
java.lang.Object(
ConvertRec.List(
x0,
NULL)))
2252_1_convert_InvokeMethod(
3411_0_convert_Return(
java.lang.Object(
ConvertRec.List(
x0,
java.lang.Object(
ConvertRec.List(
x1,
x2))))),
java.lang.Object(
ConvertRec.List(
x3,
java.lang.Object(
ConvertRec.List(
x0,
java.lang.Object(
ConvertRec.List(
x1,
x2)))))),
java.lang.Object(
ConvertRec.List(
x0,
java.lang.Object(
ConvertRec.List(
x1,
x2)))))
2252_1_convert_InvokeMethod(
3418_0_convert_Return,
java.lang.Object(
ConvertRec.List(
x0,
java.lang.Object(
ConvertRec.List(
x1,
x2)))),
java.lang.Object(
ConvertRec.List(
x1,
x2)))
2252_1_convert_InvokeMethod(
3660_0_convert_Return(
java.lang.Object(
ConvertRec.List(
x0,
java.lang.Object(
ConvertRec.List(
x1,
x2))))),
java.lang.Object(
ConvertRec.List(
x3,
java.lang.Object(
ConvertRec.List(
x0,
java.lang.Object(
ConvertRec.List(
x1,
x2)))))),
java.lang.Object(
ConvertRec.List(
x0,
java.lang.Object(
ConvertRec.List(
x1,
x2)))))
2929_1_convert_InvokeMethod(
2344_0_convert_Return(
java.lang.Object(
ConvertRec.List(
0,
NULL))),
java.lang.Object(
ConvertRec.List(
0,
NULL)))
2929_1_convert_InvokeMethod(
3411_0_convert_Return(
java.lang.Object(
ConvertRec.List(
0,
java.lang.Object(
ConvertRec.List(
x0,
x1))))),
java.lang.Object(
ConvertRec.List(
0,
java.lang.Object(
ConvertRec.List(
x0,
x1)))))
2929_1_convert_InvokeMethod(
3418_0_convert_Return,
java.lang.Object(
ConvertRec.List(
x0,
x1)))
2929_1_convert_InvokeMethod(
3660_0_convert_Return(
java.lang.Object(
ConvertRec.List(
0,
java.lang.Object(
ConvertRec.List(
x0,
x1))))),
java.lang.Object(
ConvertRec.List(
0,
java.lang.Object(
ConvertRec.List(
x0,
x1)))))
(10) IDependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(11) TRUE
(12) Obligation:
IDP problem:
The following function symbols are pre-defined:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
| ~ | Bwxor: (Integer, Integer) -> Integer |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
The following domains are used:
Integer
The ITRS R consists of the following rules:
666_0_createList_GT(
0) →
715_0_createList_Return1080_1_createList_InvokeMethod(
715_0_createList_Return,
0) →
1904_0_createList_Return1080_1_createList_InvokeMethod(
954_0_createList_Return,
x1) →
2865_0_createList_Return1080_1_createList_InvokeMethod(
1221_0_createList_InvokeMethod(
x0),
x0) →
1812_0_createList_InvokeMethod(
x0)
1080_1_createList_InvokeMethod(
1353_0_createList_InvokeMethod(
x1),
x3) →
1812_0_createList_InvokeMethod(
x3)
1080_1_createList_InvokeMethod(
1365_0_createList_InvokeMethod(
x0,
x1),
x3) →
1812_0_createList_InvokeMethod(
x3)
1080_1_createList_InvokeMethod(
1627_0_createList_InvokeMethod(
x1),
x3) →
1812_0_createList_InvokeMethod(
x3)
1080_1_createList_InvokeMethod(
1812_0_createList_InvokeMethod(
x1),
x3) →
1812_0_createList_InvokeMethod(
x3)
1080_1_createList_InvokeMethod(
1904_0_createList_Return,
x1) →
2865_0_createList_Return1080_1_createList_InvokeMethod(
2865_0_createList_Return,
x1) →
2865_0_createList_Return825_1_createList_InvokeMethod(
715_0_createList_Return,
0) →
954_0_createList_Return825_1_createList_InvokeMethod(
954_0_createList_Return,
x1) →
2865_0_createList_Return825_1_createList_InvokeMethod(
1221_0_createList_InvokeMethod(
x0),
x0) →
1812_0_createList_InvokeMethod(
x0)
825_1_createList_InvokeMethod(
1353_0_createList_InvokeMethod(
x1),
x3) →
1812_0_createList_InvokeMethod(
x3)
825_1_createList_InvokeMethod(
1365_0_createList_InvokeMethod(
x0,
x1),
x3) →
1812_0_createList_InvokeMethod(
x3)
825_1_createList_InvokeMethod(
1627_0_createList_InvokeMethod(
x1),
x3) →
1812_0_createList_InvokeMethod(
x3)
825_1_createList_InvokeMethod(
1812_0_createList_InvokeMethod(
x1),
x3) →
1812_0_createList_InvokeMethod(
x3)
825_1_createList_InvokeMethod(
1904_0_createList_Return,
x1) →
2865_0_createList_Return825_1_createList_InvokeMethod(
2865_0_createList_Return,
x1) →
2865_0_createList_ReturnThe integer pair graph contains the following rules and edges:
(0):
666_0_CREATELIST_GT(
x0[0]) →
COND_666_0_CREATELIST_GT(
x0[0] > 0,
x0[0])
(1):
COND_666_0_CREATELIST_GT(
TRUE,
x0[1]) →
666_0_CREATELIST_GT(
x0[1] - 1)
(0) -> (1), if ((x0[0] > 0 →* TRUE)∧(x0[0] →* x0[1]))
(1) -> (0), if ((x0[1] - 1 →* x0[0]))
The set Q consists of the following terms:
666_0_createList_GT(
0)
1080_1_createList_InvokeMethod(
715_0_createList_Return,
0)
1080_1_createList_InvokeMethod(
954_0_createList_Return,
x0)
1080_1_createList_InvokeMethod(
1221_0_createList_InvokeMethod(
x0),
x0)
1080_1_createList_InvokeMethod(
1353_0_createList_InvokeMethod(
x0),
x1)
1080_1_createList_InvokeMethod(
1365_0_createList_InvokeMethod(
x0,
x1),
x2)
1080_1_createList_InvokeMethod(
1627_0_createList_InvokeMethod(
x0),
x1)
1080_1_createList_InvokeMethod(
1812_0_createList_InvokeMethod(
x0),
x1)
1080_1_createList_InvokeMethod(
1904_0_createList_Return,
x0)
1080_1_createList_InvokeMethod(
2865_0_createList_Return,
x0)
825_1_createList_InvokeMethod(
715_0_createList_Return,
0)
825_1_createList_InvokeMethod(
954_0_createList_Return,
x0)
825_1_createList_InvokeMethod(
1221_0_createList_InvokeMethod(
x0),
x0)
825_1_createList_InvokeMethod(
1353_0_createList_InvokeMethod(
x0),
x1)
825_1_createList_InvokeMethod(
1365_0_createList_InvokeMethod(
x0,
x1),
x2)
825_1_createList_InvokeMethod(
1627_0_createList_InvokeMethod(
x0),
x1)
825_1_createList_InvokeMethod(
1812_0_createList_InvokeMethod(
x0),
x1)
825_1_createList_InvokeMethod(
1904_0_createList_Return,
x0)
825_1_createList_InvokeMethod(
2865_0_createList_Return,
x0)
(13) IDPNonInfProof (SOUND transformation)
The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that
final constraints are written in
bold face.
For Pair
666_0_CREATELIST_GT(
x0) →
COND_666_0_CREATELIST_GT(
>(
x0,
0),
x0) the following chains were created:
- We consider the chain 666_0_CREATELIST_GT(x0[0]) → COND_666_0_CREATELIST_GT(>(x0[0], 0), x0[0]), COND_666_0_CREATELIST_GT(TRUE, x0[1]) → 666_0_CREATELIST_GT(-(x0[1], 1)) which results in the following constraint:
(1) (>(x0[0], 0)=TRUE∧x0[0]=x0[1] ⇒ 666_0_CREATELIST_GT(x0[0])≥NonInfC∧666_0_CREATELIST_GT(x0[0])≥COND_666_0_CREATELIST_GT(>(x0[0], 0), x0[0])∧(UIncreasing(COND_666_0_CREATELIST_GT(>(x0[0], 0), x0[0])), ≥))
We simplified constraint (1) using rule (IV) which results in the following new constraint:
(2) (>(x0[0], 0)=TRUE ⇒ 666_0_CREATELIST_GT(x0[0])≥NonInfC∧666_0_CREATELIST_GT(x0[0])≥COND_666_0_CREATELIST_GT(>(x0[0], 0), x0[0])∧(UIncreasing(COND_666_0_CREATELIST_GT(>(x0[0], 0), x0[0])), ≥))
We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(3) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_666_0_CREATELIST_GT(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_20] + [(2)bni_20]x0[0] ≥ 0∧[(-1)bso_21] ≥ 0)
We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(4) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_666_0_CREATELIST_GT(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_20] + [(2)bni_20]x0[0] ≥ 0∧[(-1)bso_21] ≥ 0)
We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(5) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_666_0_CREATELIST_GT(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_20] + [(2)bni_20]x0[0] ≥ 0∧[(-1)bso_21] ≥ 0)
We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:
(6) (x0[0] ≥ 0 ⇒ (UIncreasing(COND_666_0_CREATELIST_GT(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_20 + (2)bni_20] + [(2)bni_20]x0[0] ≥ 0∧[(-1)bso_21] ≥ 0)
For Pair
COND_666_0_CREATELIST_GT(
TRUE,
x0) →
666_0_CREATELIST_GT(
-(
x0,
1)) the following chains were created:
- We consider the chain COND_666_0_CREATELIST_GT(TRUE, x0[1]) → 666_0_CREATELIST_GT(-(x0[1], 1)) which results in the following constraint:
(7) (COND_666_0_CREATELIST_GT(TRUE, x0[1])≥NonInfC∧COND_666_0_CREATELIST_GT(TRUE, x0[1])≥666_0_CREATELIST_GT(-(x0[1], 1))∧(UIncreasing(666_0_CREATELIST_GT(-(x0[1], 1))), ≥))
We simplified constraint (7) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(8) ((UIncreasing(666_0_CREATELIST_GT(-(x0[1], 1))), ≥)∧[2 + (-1)bso_23] ≥ 0)
We simplified constraint (8) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(9) ((UIncreasing(666_0_CREATELIST_GT(-(x0[1], 1))), ≥)∧[2 + (-1)bso_23] ≥ 0)
We simplified constraint (9) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(10) ((UIncreasing(666_0_CREATELIST_GT(-(x0[1], 1))), ≥)∧[2 + (-1)bso_23] ≥ 0)
We simplified constraint (10) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:
(11) ((UIncreasing(666_0_CREATELIST_GT(-(x0[1], 1))), ≥)∧0 = 0∧[2 + (-1)bso_23] ≥ 0)
To summarize, we get the following constraints P
≥ for the following pairs.
- 666_0_CREATELIST_GT(x0) → COND_666_0_CREATELIST_GT(>(x0, 0), x0)
- (x0[0] ≥ 0 ⇒ (UIncreasing(COND_666_0_CREATELIST_GT(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_20 + (2)bni_20] + [(2)bni_20]x0[0] ≥ 0∧[(-1)bso_21] ≥ 0)
- COND_666_0_CREATELIST_GT(TRUE, x0) → 666_0_CREATELIST_GT(-(x0, 1))
- ((UIncreasing(666_0_CREATELIST_GT(-(x0[1], 1))), ≥)∧0 = 0∧[2 + (-1)bso_23] ≥ 0)
The constraints for P
> respective P
bound are constructed from P
≥ where we just replace every occurence of "t ≥ s" in P
≥ by "t > s" respective "t ≥
c". Here
c stands for the fresh constant used for P
bound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:
POL(TRUE) = 0
POL(FALSE) = 0
POL(666_0_createList_GT(x1)) = [-1]
POL(0) = 0
POL(715_0_createList_Return) = [-1]
POL(1080_1_createList_InvokeMethod(x1, x2)) = [-1]
POL(1904_0_createList_Return) = [-1]
POL(954_0_createList_Return) = [-1]
POL(2865_0_createList_Return) = [-1]
POL(1221_0_createList_InvokeMethod(x1)) = [-1]
POL(1812_0_createList_InvokeMethod(x1)) = [-1]
POL(1353_0_createList_InvokeMethod(x1)) = [-1]
POL(1365_0_createList_InvokeMethod(x1, x2)) = [-1]
POL(1627_0_createList_InvokeMethod(x1)) = [-1]
POL(825_1_createList_InvokeMethod(x1, x2)) = [-1]
POL(666_0_CREATELIST_GT(x1)) = [2]x1
POL(COND_666_0_CREATELIST_GT(x1, x2)) = [2]x2
POL(>(x1, x2)) = [-1]
POL(-(x1, x2)) = x1 + [-1]x2
POL(1) = [1]
The following pairs are in P
>:
COND_666_0_CREATELIST_GT(TRUE, x0[1]) → 666_0_CREATELIST_GT(-(x0[1], 1))
The following pairs are in P
bound:
666_0_CREATELIST_GT(x0[0]) → COND_666_0_CREATELIST_GT(>(x0[0], 0), x0[0])
The following pairs are in P
≥:
666_0_CREATELIST_GT(x0[0]) → COND_666_0_CREATELIST_GT(>(x0[0], 0), x0[0])
There are no usable rules.
(14) Complex Obligation (AND)
(15) Obligation:
IDP problem:
The following function symbols are pre-defined:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
| ~ | Bwxor: (Integer, Integer) -> Integer |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
The following domains are used:
Integer
The ITRS R consists of the following rules:
666_0_createList_GT(
0) →
715_0_createList_Return1080_1_createList_InvokeMethod(
715_0_createList_Return,
0) →
1904_0_createList_Return1080_1_createList_InvokeMethod(
954_0_createList_Return,
x1) →
2865_0_createList_Return1080_1_createList_InvokeMethod(
1221_0_createList_InvokeMethod(
x0),
x0) →
1812_0_createList_InvokeMethod(
x0)
1080_1_createList_InvokeMethod(
1353_0_createList_InvokeMethod(
x1),
x3) →
1812_0_createList_InvokeMethod(
x3)
1080_1_createList_InvokeMethod(
1365_0_createList_InvokeMethod(
x0,
x1),
x3) →
1812_0_createList_InvokeMethod(
x3)
1080_1_createList_InvokeMethod(
1627_0_createList_InvokeMethod(
x1),
x3) →
1812_0_createList_InvokeMethod(
x3)
1080_1_createList_InvokeMethod(
1812_0_createList_InvokeMethod(
x1),
x3) →
1812_0_createList_InvokeMethod(
x3)
1080_1_createList_InvokeMethod(
1904_0_createList_Return,
x1) →
2865_0_createList_Return1080_1_createList_InvokeMethod(
2865_0_createList_Return,
x1) →
2865_0_createList_Return825_1_createList_InvokeMethod(
715_0_createList_Return,
0) →
954_0_createList_Return825_1_createList_InvokeMethod(
954_0_createList_Return,
x1) →
2865_0_createList_Return825_1_createList_InvokeMethod(
1221_0_createList_InvokeMethod(
x0),
x0) →
1812_0_createList_InvokeMethod(
x0)
825_1_createList_InvokeMethod(
1353_0_createList_InvokeMethod(
x1),
x3) →
1812_0_createList_InvokeMethod(
x3)
825_1_createList_InvokeMethod(
1365_0_createList_InvokeMethod(
x0,
x1),
x3) →
1812_0_createList_InvokeMethod(
x3)
825_1_createList_InvokeMethod(
1627_0_createList_InvokeMethod(
x1),
x3) →
1812_0_createList_InvokeMethod(
x3)
825_1_createList_InvokeMethod(
1812_0_createList_InvokeMethod(
x1),
x3) →
1812_0_createList_InvokeMethod(
x3)
825_1_createList_InvokeMethod(
1904_0_createList_Return,
x1) →
2865_0_createList_Return825_1_createList_InvokeMethod(
2865_0_createList_Return,
x1) →
2865_0_createList_ReturnThe integer pair graph contains the following rules and edges:
(0):
666_0_CREATELIST_GT(
x0[0]) →
COND_666_0_CREATELIST_GT(
x0[0] > 0,
x0[0])
The set Q consists of the following terms:
666_0_createList_GT(
0)
1080_1_createList_InvokeMethod(
715_0_createList_Return,
0)
1080_1_createList_InvokeMethod(
954_0_createList_Return,
x0)
1080_1_createList_InvokeMethod(
1221_0_createList_InvokeMethod(
x0),
x0)
1080_1_createList_InvokeMethod(
1353_0_createList_InvokeMethod(
x0),
x1)
1080_1_createList_InvokeMethod(
1365_0_createList_InvokeMethod(
x0,
x1),
x2)
1080_1_createList_InvokeMethod(
1627_0_createList_InvokeMethod(
x0),
x1)
1080_1_createList_InvokeMethod(
1812_0_createList_InvokeMethod(
x0),
x1)
1080_1_createList_InvokeMethod(
1904_0_createList_Return,
x0)
1080_1_createList_InvokeMethod(
2865_0_createList_Return,
x0)
825_1_createList_InvokeMethod(
715_0_createList_Return,
0)
825_1_createList_InvokeMethod(
954_0_createList_Return,
x0)
825_1_createList_InvokeMethod(
1221_0_createList_InvokeMethod(
x0),
x0)
825_1_createList_InvokeMethod(
1353_0_createList_InvokeMethod(
x0),
x1)
825_1_createList_InvokeMethod(
1365_0_createList_InvokeMethod(
x0,
x1),
x2)
825_1_createList_InvokeMethod(
1627_0_createList_InvokeMethod(
x0),
x1)
825_1_createList_InvokeMethod(
1812_0_createList_InvokeMethod(
x0),
x1)
825_1_createList_InvokeMethod(
1904_0_createList_Return,
x0)
825_1_createList_InvokeMethod(
2865_0_createList_Return,
x0)
(16) IDependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(17) TRUE
(18) Obligation:
IDP problem:
The following function symbols are pre-defined:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
| ~ | Bwxor: (Integer, Integer) -> Integer |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
The following domains are used:
Integer
The ITRS R consists of the following rules:
666_0_createList_GT(
0) →
715_0_createList_Return1080_1_createList_InvokeMethod(
715_0_createList_Return,
0) →
1904_0_createList_Return1080_1_createList_InvokeMethod(
954_0_createList_Return,
x1) →
2865_0_createList_Return1080_1_createList_InvokeMethod(
1221_0_createList_InvokeMethod(
x0),
x0) →
1812_0_createList_InvokeMethod(
x0)
1080_1_createList_InvokeMethod(
1353_0_createList_InvokeMethod(
x1),
x3) →
1812_0_createList_InvokeMethod(
x3)
1080_1_createList_InvokeMethod(
1365_0_createList_InvokeMethod(
x0,
x1),
x3) →
1812_0_createList_InvokeMethod(
x3)
1080_1_createList_InvokeMethod(
1627_0_createList_InvokeMethod(
x1),
x3) →
1812_0_createList_InvokeMethod(
x3)
1080_1_createList_InvokeMethod(
1812_0_createList_InvokeMethod(
x1),
x3) →
1812_0_createList_InvokeMethod(
x3)
1080_1_createList_InvokeMethod(
1904_0_createList_Return,
x1) →
2865_0_createList_Return1080_1_createList_InvokeMethod(
2865_0_createList_Return,
x1) →
2865_0_createList_Return825_1_createList_InvokeMethod(
715_0_createList_Return,
0) →
954_0_createList_Return825_1_createList_InvokeMethod(
954_0_createList_Return,
x1) →
2865_0_createList_Return825_1_createList_InvokeMethod(
1221_0_createList_InvokeMethod(
x0),
x0) →
1812_0_createList_InvokeMethod(
x0)
825_1_createList_InvokeMethod(
1353_0_createList_InvokeMethod(
x1),
x3) →
1812_0_createList_InvokeMethod(
x3)
825_1_createList_InvokeMethod(
1365_0_createList_InvokeMethod(
x0,
x1),
x3) →
1812_0_createList_InvokeMethod(
x3)
825_1_createList_InvokeMethod(
1627_0_createList_InvokeMethod(
x1),
x3) →
1812_0_createList_InvokeMethod(
x3)
825_1_createList_InvokeMethod(
1812_0_createList_InvokeMethod(
x1),
x3) →
1812_0_createList_InvokeMethod(
x3)
825_1_createList_InvokeMethod(
1904_0_createList_Return,
x1) →
2865_0_createList_Return825_1_createList_InvokeMethod(
2865_0_createList_Return,
x1) →
2865_0_createList_ReturnThe integer pair graph contains the following rules and edges:
(1):
COND_666_0_CREATELIST_GT(
TRUE,
x0[1]) →
666_0_CREATELIST_GT(
x0[1] - 1)
The set Q consists of the following terms:
666_0_createList_GT(
0)
1080_1_createList_InvokeMethod(
715_0_createList_Return,
0)
1080_1_createList_InvokeMethod(
954_0_createList_Return,
x0)
1080_1_createList_InvokeMethod(
1221_0_createList_InvokeMethod(
x0),
x0)
1080_1_createList_InvokeMethod(
1353_0_createList_InvokeMethod(
x0),
x1)
1080_1_createList_InvokeMethod(
1365_0_createList_InvokeMethod(
x0,
x1),
x2)
1080_1_createList_InvokeMethod(
1627_0_createList_InvokeMethod(
x0),
x1)
1080_1_createList_InvokeMethod(
1812_0_createList_InvokeMethod(
x0),
x1)
1080_1_createList_InvokeMethod(
1904_0_createList_Return,
x0)
1080_1_createList_InvokeMethod(
2865_0_createList_Return,
x0)
825_1_createList_InvokeMethod(
715_0_createList_Return,
0)
825_1_createList_InvokeMethod(
954_0_createList_Return,
x0)
825_1_createList_InvokeMethod(
1221_0_createList_InvokeMethod(
x0),
x0)
825_1_createList_InvokeMethod(
1353_0_createList_InvokeMethod(
x0),
x1)
825_1_createList_InvokeMethod(
1365_0_createList_InvokeMethod(
x0,
x1),
x2)
825_1_createList_InvokeMethod(
1627_0_createList_InvokeMethod(
x0),
x1)
825_1_createList_InvokeMethod(
1812_0_createList_InvokeMethod(
x0),
x1)
825_1_createList_InvokeMethod(
1904_0_createList_Return,
x0)
825_1_createList_InvokeMethod(
2865_0_createList_Return,
x0)
(19) IDependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(20) TRUE