(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_22 (Sun Microsystems Inc.) Main-Class: CAppE
public class CAppE {
CAppE next;

public static void main(String[] args) {
Random.args = args;
CAppE list = createList();
cappE(Random.random());
}

public static void cappE(int j) {
CAppE a = new CAppE();
if (j > 0) {
a.appE(j);
while (a.next == null) {}
}
}

public void appE(int i) {
if (next == null) {
if (i <= 0) {
return;
} else {
next = new CAppE();
}
i--;
}
next.appE(i);
}

public static CAppE createList() {
CAppE result = null;
int length = Random.random();
while (length > 0) {
result = new CAppE(result);
length--;
}
return result;
}

public CAppE() {
this.next = null;
}

public CAppE(CAppE n) {
this.next = n;
}
}

class Random {
static String[] args;
static int index = 0;

public static int random() {
String string = args[index];
index++;
return string.length();
}
}


(1) JBC2FIG (SOUND transformation)

Constructed FIGraph.

(2) Obligation:

FIGraph based on JBC Program:
CAppE.main([Ljava/lang/String;)V: Graph of 118 nodes with 0 SCCs.

CAppE.createList()LCAppE;: Graph of 91 nodes with 1 SCC.

CAppE.appE(I)V: Graph of 35 nodes with 0 SCCs.


(3) FIGtoITRSProof (SOUND transformation)

Transformed FIGraph SCCs to IDPs. Logs:


Log for SCC 0:

Generated 25 rules for P and 9 rules for R.


Combined rules. Obtained 1 rules for P and 3 rules for R.


Filtered ground terms:


757_0_appE_FieldAccess(x1, x2) → 757_0_appE_FieldAccess(x2)
Cond_757_0_appE_FieldAccess(x1, x2, x3) → Cond_757_0_appE_FieldAccess(x1, x3)
874_0_appE_Return(x1) → 874_0_appE_Return
821_0_appE_Return(x1) → 821_0_appE_Return
768_0_appE_Return(x1, x2) → 768_0_appE_Return

Combined rules. Obtained 1 rules for P and 3 rules for R.


Finished conversion. Obtained 1 rules for P and 3 rules for R. System has predefined symbols.




Log for SCC 1:

Generated 17 rules for P and 3 rules for R.


Combined rules. Obtained 1 rules for P and 1 rules for R.


Filtered ground terms:


366_0_createList_LE(x1, x2, x3) → 366_0_createList_LE(x2, x3)
Cond_366_0_createList_LE(x1, x2, x3, x4) → Cond_366_0_createList_LE(x1, x3, x4)
395_0_createList_Return(x1) → 395_0_createList_Return

Filtered duplicate args:


366_0_createList_LE(x1, x2) → 366_0_createList_LE(x2)
Cond_366_0_createList_LE(x1, x2, x3) → Cond_366_0_createList_LE(x1, x3)

Combined rules. Obtained 1 rules for P and 1 rules for R.


Finished conversion. Obtained 1 rules for P and 1 rules for R. System has predefined symbols.


(4) Complex Obligation (AND)

(5) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


The ITRS R consists of the following rules:
807_1_appE_InvokeMethod(768_0_appE_Return, 0) → 821_0_appE_Return
807_1_appE_InvokeMethod(821_0_appE_Return, x0) → 874_0_appE_Return
807_1_appE_InvokeMethod(874_0_appE_Return, x0) → 874_0_appE_Return

The integer pair graph contains the following rules and edges:
(0): 757_0_APPE_FIELDACCESS(x0[0]) → COND_757_0_APPE_FIELDACCESS(x0[0] > 0, x0[0])
(1): COND_757_0_APPE_FIELDACCESS(TRUE, x0[1]) → 757_0_APPE_FIELDACCESS(x0[1] + -1)

(0) -> (1), if ((x0[0] > 0* TRUE)∧(x0[0]* x0[1]))


(1) -> (0), if ((x0[1] + -1* x0[0]))



The set Q consists of the following terms:
807_1_appE_InvokeMethod(768_0_appE_Return, 0)
807_1_appE_InvokeMethod(821_0_appE_Return, x0)
807_1_appE_InvokeMethod(874_0_appE_Return, x0)

(6) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 757_0_APPE_FIELDACCESS(x0) → COND_757_0_APPE_FIELDACCESS(>(x0, 0), x0) the following chains were created:
  • We consider the chain 757_0_APPE_FIELDACCESS(x0[0]) → COND_757_0_APPE_FIELDACCESS(>(x0[0], 0), x0[0]), COND_757_0_APPE_FIELDACCESS(TRUE, x0[1]) → 757_0_APPE_FIELDACCESS(+(x0[1], -1)) which results in the following constraint:

    (1)    (>(x0[0], 0)=TRUEx0[0]=x0[1]757_0_APPE_FIELDACCESS(x0[0])≥NonInfC∧757_0_APPE_FIELDACCESS(x0[0])≥COND_757_0_APPE_FIELDACCESS(>(x0[0], 0), x0[0])∧(UIncreasing(COND_757_0_APPE_FIELDACCESS(>(x0[0], 0), x0[0])), ≥))



    We simplified constraint (1) using rule (IV) which results in the following new constraint:

    (2)    (>(x0[0], 0)=TRUE757_0_APPE_FIELDACCESS(x0[0])≥NonInfC∧757_0_APPE_FIELDACCESS(x0[0])≥COND_757_0_APPE_FIELDACCESS(>(x0[0], 0), x0[0])∧(UIncreasing(COND_757_0_APPE_FIELDACCESS(>(x0[0], 0), x0[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_757_0_APPE_FIELDACCESS(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_12] + [(2)bni_12]x0[0] ≥ 0∧[(-1)bso_13] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_757_0_APPE_FIELDACCESS(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_12] + [(2)bni_12]x0[0] ≥ 0∧[(-1)bso_13] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_757_0_APPE_FIELDACCESS(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_12] + [(2)bni_12]x0[0] ≥ 0∧[(-1)bso_13] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (x0[0] ≥ 0 ⇒ (UIncreasing(COND_757_0_APPE_FIELDACCESS(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_12 + (2)bni_12] + [(2)bni_12]x0[0] ≥ 0∧[(-1)bso_13] ≥ 0)







For Pair COND_757_0_APPE_FIELDACCESS(TRUE, x0) → 757_0_APPE_FIELDACCESS(+(x0, -1)) the following chains were created:
  • We consider the chain COND_757_0_APPE_FIELDACCESS(TRUE, x0[1]) → 757_0_APPE_FIELDACCESS(+(x0[1], -1)) which results in the following constraint:

    (7)    (COND_757_0_APPE_FIELDACCESS(TRUE, x0[1])≥NonInfC∧COND_757_0_APPE_FIELDACCESS(TRUE, x0[1])≥757_0_APPE_FIELDACCESS(+(x0[1], -1))∧(UIncreasing(757_0_APPE_FIELDACCESS(+(x0[1], -1))), ≥))



    We simplified constraint (7) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (8)    ((UIncreasing(757_0_APPE_FIELDACCESS(+(x0[1], -1))), ≥)∧[2 + (-1)bso_15] ≥ 0)



    We simplified constraint (8) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (9)    ((UIncreasing(757_0_APPE_FIELDACCESS(+(x0[1], -1))), ≥)∧[2 + (-1)bso_15] ≥ 0)



    We simplified constraint (9) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (10)    ((UIncreasing(757_0_APPE_FIELDACCESS(+(x0[1], -1))), ≥)∧[2 + (-1)bso_15] ≥ 0)



    We simplified constraint (10) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (11)    ((UIncreasing(757_0_APPE_FIELDACCESS(+(x0[1], -1))), ≥)∧0 = 0∧[2 + (-1)bso_15] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 757_0_APPE_FIELDACCESS(x0) → COND_757_0_APPE_FIELDACCESS(>(x0, 0), x0)
    • (x0[0] ≥ 0 ⇒ (UIncreasing(COND_757_0_APPE_FIELDACCESS(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_12 + (2)bni_12] + [(2)bni_12]x0[0] ≥ 0∧[(-1)bso_13] ≥ 0)

  • COND_757_0_APPE_FIELDACCESS(TRUE, x0) → 757_0_APPE_FIELDACCESS(+(x0, -1))
    • ((UIncreasing(757_0_APPE_FIELDACCESS(+(x0[1], -1))), ≥)∧0 = 0∧[2 + (-1)bso_15] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(807_1_appE_InvokeMethod(x1, x2)) = [-1]   
POL(768_0_appE_Return) = [-1]   
POL(0) = 0   
POL(821_0_appE_Return) = [-1]   
POL(874_0_appE_Return) = [-1]   
POL(757_0_APPE_FIELDACCESS(x1)) = [2]x1   
POL(COND_757_0_APPE_FIELDACCESS(x1, x2)) = [2]x2   
POL(>(x1, x2)) = [-1]   
POL(+(x1, x2)) = x1 + x2   
POL(-1) = [-1]   

The following pairs are in P>:

COND_757_0_APPE_FIELDACCESS(TRUE, x0[1]) → 757_0_APPE_FIELDACCESS(+(x0[1], -1))

The following pairs are in Pbound:

757_0_APPE_FIELDACCESS(x0[0]) → COND_757_0_APPE_FIELDACCESS(>(x0[0], 0), x0[0])

The following pairs are in P:

757_0_APPE_FIELDACCESS(x0[0]) → COND_757_0_APPE_FIELDACCESS(>(x0[0], 0), x0[0])

There are no usable rules.

(7) Complex Obligation (AND)

(8) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


The ITRS R consists of the following rules:
807_1_appE_InvokeMethod(768_0_appE_Return, 0) → 821_0_appE_Return
807_1_appE_InvokeMethod(821_0_appE_Return, x0) → 874_0_appE_Return
807_1_appE_InvokeMethod(874_0_appE_Return, x0) → 874_0_appE_Return

The integer pair graph contains the following rules and edges:
(0): 757_0_APPE_FIELDACCESS(x0[0]) → COND_757_0_APPE_FIELDACCESS(x0[0] > 0, x0[0])


The set Q consists of the following terms:
807_1_appE_InvokeMethod(768_0_appE_Return, 0)
807_1_appE_InvokeMethod(821_0_appE_Return, x0)
807_1_appE_InvokeMethod(874_0_appE_Return, x0)

(9) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(10) TRUE

(11) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


The ITRS R consists of the following rules:
807_1_appE_InvokeMethod(768_0_appE_Return, 0) → 821_0_appE_Return
807_1_appE_InvokeMethod(821_0_appE_Return, x0) → 874_0_appE_Return
807_1_appE_InvokeMethod(874_0_appE_Return, x0) → 874_0_appE_Return

The integer pair graph contains the following rules and edges:
(1): COND_757_0_APPE_FIELDACCESS(TRUE, x0[1]) → 757_0_APPE_FIELDACCESS(x0[1] + -1)


The set Q consists of the following terms:
807_1_appE_InvokeMethod(768_0_appE_Return, 0)
807_1_appE_InvokeMethod(821_0_appE_Return, x0)
807_1_appE_InvokeMethod(874_0_appE_Return, x0)

(12) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(13) TRUE

(14) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


The ITRS R consists of the following rules:
366_0_createList_LE(0) → 395_0_createList_Return

The integer pair graph contains the following rules and edges:
(0): 366_0_CREATELIST_LE(x0[0]) → COND_366_0_CREATELIST_LE(x0[0] > 0, x0[0])
(1): COND_366_0_CREATELIST_LE(TRUE, x0[1]) → 366_0_CREATELIST_LE(x0[1] + -1)

(0) -> (1), if ((x0[0] > 0* TRUE)∧(x0[0]* x0[1]))


(1) -> (0), if ((x0[1] + -1* x0[0]))



The set Q consists of the following terms:
366_0_createList_LE(0)

(15) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 366_0_CREATELIST_LE(x0) → COND_366_0_CREATELIST_LE(>(x0, 0), x0) the following chains were created:
  • We consider the chain 366_0_CREATELIST_LE(x0[0]) → COND_366_0_CREATELIST_LE(>(x0[0], 0), x0[0]), COND_366_0_CREATELIST_LE(TRUE, x0[1]) → 366_0_CREATELIST_LE(+(x0[1], -1)) which results in the following constraint:

    (1)    (>(x0[0], 0)=TRUEx0[0]=x0[1]366_0_CREATELIST_LE(x0[0])≥NonInfC∧366_0_CREATELIST_LE(x0[0])≥COND_366_0_CREATELIST_LE(>(x0[0], 0), x0[0])∧(UIncreasing(COND_366_0_CREATELIST_LE(>(x0[0], 0), x0[0])), ≥))



    We simplified constraint (1) using rule (IV) which results in the following new constraint:

    (2)    (>(x0[0], 0)=TRUE366_0_CREATELIST_LE(x0[0])≥NonInfC∧366_0_CREATELIST_LE(x0[0])≥COND_366_0_CREATELIST_LE(>(x0[0], 0), x0[0])∧(UIncreasing(COND_366_0_CREATELIST_LE(>(x0[0], 0), x0[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_366_0_CREATELIST_LE(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_10] + [(2)bni_10]x0[0] ≥ 0∧[(-1)bso_11] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_366_0_CREATELIST_LE(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_10] + [(2)bni_10]x0[0] ≥ 0∧[(-1)bso_11] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_366_0_CREATELIST_LE(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_10] + [(2)bni_10]x0[0] ≥ 0∧[(-1)bso_11] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (x0[0] ≥ 0 ⇒ (UIncreasing(COND_366_0_CREATELIST_LE(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_10 + (2)bni_10] + [(2)bni_10]x0[0] ≥ 0∧[(-1)bso_11] ≥ 0)







For Pair COND_366_0_CREATELIST_LE(TRUE, x0) → 366_0_CREATELIST_LE(+(x0, -1)) the following chains were created:
  • We consider the chain COND_366_0_CREATELIST_LE(TRUE, x0[1]) → 366_0_CREATELIST_LE(+(x0[1], -1)) which results in the following constraint:

    (7)    (COND_366_0_CREATELIST_LE(TRUE, x0[1])≥NonInfC∧COND_366_0_CREATELIST_LE(TRUE, x0[1])≥366_0_CREATELIST_LE(+(x0[1], -1))∧(UIncreasing(366_0_CREATELIST_LE(+(x0[1], -1))), ≥))



    We simplified constraint (7) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (8)    ((UIncreasing(366_0_CREATELIST_LE(+(x0[1], -1))), ≥)∧[2 + (-1)bso_13] ≥ 0)



    We simplified constraint (8) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (9)    ((UIncreasing(366_0_CREATELIST_LE(+(x0[1], -1))), ≥)∧[2 + (-1)bso_13] ≥ 0)



    We simplified constraint (9) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (10)    ((UIncreasing(366_0_CREATELIST_LE(+(x0[1], -1))), ≥)∧[2 + (-1)bso_13] ≥ 0)



    We simplified constraint (10) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (11)    ((UIncreasing(366_0_CREATELIST_LE(+(x0[1], -1))), ≥)∧0 = 0∧[2 + (-1)bso_13] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 366_0_CREATELIST_LE(x0) → COND_366_0_CREATELIST_LE(>(x0, 0), x0)
    • (x0[0] ≥ 0 ⇒ (UIncreasing(COND_366_0_CREATELIST_LE(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_10 + (2)bni_10] + [(2)bni_10]x0[0] ≥ 0∧[(-1)bso_11] ≥ 0)

  • COND_366_0_CREATELIST_LE(TRUE, x0) → 366_0_CREATELIST_LE(+(x0, -1))
    • ((UIncreasing(366_0_CREATELIST_LE(+(x0[1], -1))), ≥)∧0 = 0∧[2 + (-1)bso_13] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(366_0_createList_LE(x1)) = [-1]   
POL(0) = 0   
POL(395_0_createList_Return) = [-1]   
POL(366_0_CREATELIST_LE(x1)) = [2]x1   
POL(COND_366_0_CREATELIST_LE(x1, x2)) = [2]x2   
POL(>(x1, x2)) = [-1]   
POL(+(x1, x2)) = x1 + x2   
POL(-1) = [-1]   

The following pairs are in P>:

COND_366_0_CREATELIST_LE(TRUE, x0[1]) → 366_0_CREATELIST_LE(+(x0[1], -1))

The following pairs are in Pbound:

366_0_CREATELIST_LE(x0[0]) → COND_366_0_CREATELIST_LE(>(x0[0], 0), x0[0])

The following pairs are in P:

366_0_CREATELIST_LE(x0[0]) → COND_366_0_CREATELIST_LE(>(x0[0], 0), x0[0])

There are no usable rules.

(16) Complex Obligation (AND)

(17) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


The ITRS R consists of the following rules:
366_0_createList_LE(0) → 395_0_createList_Return

The integer pair graph contains the following rules and edges:
(0): 366_0_CREATELIST_LE(x0[0]) → COND_366_0_CREATELIST_LE(x0[0] > 0, x0[0])


The set Q consists of the following terms:
366_0_createList_LE(0)

(18) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(19) TRUE

(20) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


The ITRS R consists of the following rules:
366_0_createList_LE(0) → 395_0_createList_Return

The integer pair graph contains the following rules and edges:
(1): COND_366_0_CREATELIST_LE(TRUE, x0[1]) → 366_0_CREATELIST_LE(x0[1] + -1)


The set Q consists of the following terms:
366_0_createList_LE(0)

(21) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(22) TRUE