(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_22 (Sun Microsystems Inc.) Main-Class: AProVERec01
public class AProVERec01 {
public static void main(String[] args){
List a = new List(args[0].length(), null);
rec(args[1].length(), a);
}

public static void rec(int y, List res){
int x = 3 * y;
if(x < 100000){
rec(x+1, res);
}
x = x*2;
res.add(x);
}
}

class List {
int val = 0;
List next = null;

List (int v,List n){
val = v;
next = n;
}

public void add(int newVal){
if (next == null) {
next = new List(newVal, null);
} else {
next.add(newVal);
}
}
}


(1) JBC2FIG (SOUND transformation)

Constructed FIGraph.

(2) Obligation:

FIGraph based on JBC Program:
AProVERec01.main([Ljava/lang/String;)V: Graph of 143 nodes with 0 SCCs.

AProVERec01.rec(ILList;)V: Graph of 45 nodes with 0 SCCs.

List.add(I)V: Graph of 42 nodes with 0 SCCs.


(3) FIGtoITRSProof (SOUND transformation)

Transformed FIGraph SCCs to IDPs. Logs:


Log for SCC 0:

Generated 12 rules for P and 30 rules for R.


Combined rules. Obtained 1 rules for P and 2 rules for R.


Filtered ground terms:


1213_0_add_FieldAccess(x1, x2, x3, x4) → 1213_0_add_FieldAccess(x2, x3, x4)
List(x1, x2) → List(x2)
1339_0_add_Return(x1) → 1339_0_add_Return
1276_0_add_Return(x1) → 1276_0_add_Return

Filtered duplicate args:


1213_0_add_FieldAccess(x1, x2, x3) → 1213_0_add_FieldAccess(x2, x3)

Filtered unneeded arguments:


1236_1_add_InvokeMethod(x1, x2, x3) → 1236_1_add_InvokeMethod(x1, x2)

Finished conversion. Obtained 1 rules for P and 2 rules for R. System has no predefined symbols.




Log for SCC 1:

Generated 15 rules for P and 77 rules for R.


Combined rules. Obtained 1 rules for P and 7 rules for R.


Filtered ground terms:


951_0_rec_Load(x1, x2, x3, x4) → 951_0_rec_Load(x2, x3)
Cond_951_0_rec_Load(x1, x2, x3, x4, x5) → Cond_951_0_rec_Load(x1, x3, x4)
1339_0_add_Return(x1) → 1339_0_add_Return
1276_0_add_Return(x1) → 1276_0_add_Return
List(x1) → List
1216_0_add_NONNULL(x1, x2, x3, x4) → 1216_0_add_NONNULL(x3, x4)
1131_0_rec_Return(x1) → 1131_0_rec_Return
1204_1_rec_InvokeMethod(x1, x2, x3) → 1204_1_rec_InvokeMethod(x1, x3)

Filtered duplicate args:


989_1_rec_InvokeMethod(x1, x2, x3, x4, x5) → 989_1_rec_InvokeMethod(x1, x3, x4, x5)

Filtered unneeded arguments:


989_1_rec_InvokeMethod(x1, x2, x3, x4) → 989_1_rec_InvokeMethod(x1, x2, x4)
1204_1_rec_InvokeMethod(x1, x2) → 1204_1_rec_InvokeMethod(x1)
1236_1_add_InvokeMethod(x1, x2, x3) → 1236_1_add_InvokeMethod(x1, x2)

Combined rules. Obtained 1 rules for P and 7 rules for R.


Finished conversion. Obtained 1 rules for P and 7 rules for R. System has predefined symbols.


(4) Complex Obligation (AND)

(5) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:
none


The ITRS R consists of the following rules:
1236_1_add_InvokeMethod(1276_0_add_Return, java.lang.Object(x0)) → 1339_0_add_Return
1236_1_add_InvokeMethod(1339_0_add_Return, java.lang.Object(x0)) → 1339_0_add_Return

The integer pair graph contains the following rules and edges:
(0): 1213_0_ADD_FIELDACCESS(x1[0], java.lang.Object(List(java.lang.Object(x0[0])))) → 1213_0_ADD_FIELDACCESS(x1[0], java.lang.Object(x0[0]))

(0) -> (0), if ((x1[0]* x1[0]')∧(java.lang.Object(x0[0]) →* java.lang.Object(List(java.lang.Object(x0[0]')))))



The set Q consists of the following terms:
1236_1_add_InvokeMethod(1276_0_add_Return, java.lang.Object(x0))
1236_1_add_InvokeMethod(1339_0_add_Return, java.lang.Object(x0))

(6) IDPtoQDPProof (SOUND transformation)

Represented integers and predefined function symbols by Terms

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

1213_0_ADD_FIELDACCESS(x1[0], java.lang.Object(List(java.lang.Object(x0[0])))) → 1213_0_ADD_FIELDACCESS(x1[0], java.lang.Object(x0[0]))

The TRS R consists of the following rules:

1236_1_add_InvokeMethod(1276_0_add_Return, java.lang.Object(x0)) → 1339_0_add_Return
1236_1_add_InvokeMethod(1339_0_add_Return, java.lang.Object(x0)) → 1339_0_add_Return

The set Q consists of the following terms:

1236_1_add_InvokeMethod(1276_0_add_Return, java.lang.Object(x0))
1236_1_add_InvokeMethod(1339_0_add_Return, java.lang.Object(x0))

We have to consider all minimal (P,Q,R)-chains.

(8) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

1213_0_ADD_FIELDACCESS(x1[0], java.lang.Object(List(java.lang.Object(x0[0])))) → 1213_0_ADD_FIELDACCESS(x1[0], java.lang.Object(x0[0]))

R is empty.
The set Q consists of the following terms:

1236_1_add_InvokeMethod(1276_0_add_Return, java.lang.Object(x0))
1236_1_add_InvokeMethod(1339_0_add_Return, java.lang.Object(x0))

We have to consider all minimal (P,Q,R)-chains.

(10) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

1236_1_add_InvokeMethod(1276_0_add_Return, java.lang.Object(x0))
1236_1_add_InvokeMethod(1339_0_add_Return, java.lang.Object(x0))

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

1213_0_ADD_FIELDACCESS(x1[0], java.lang.Object(List(java.lang.Object(x0[0])))) → 1213_0_ADD_FIELDACCESS(x1[0], java.lang.Object(x0[0]))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • 1213_0_ADD_FIELDACCESS(x1[0], java.lang.Object(List(java.lang.Object(x0[0])))) → 1213_0_ADD_FIELDACCESS(x1[0], java.lang.Object(x0[0]))
    The graph contains the following edges 1 >= 1, 2 > 2

(13) YES

(14) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


The ITRS R consists of the following rules:
989_1_rec_InvokeMethod(1131_0_rec_Return, x1, java.lang.Object(x0)) → 1204_1_rec_InvokeMethod(1216_0_add_NONNULL(x1 * 2, x3))
1204_1_rec_InvokeMethod(1276_0_add_Return) → 1131_0_rec_Return
1204_1_rec_InvokeMethod(1339_0_add_Return) → 1131_0_rec_Return
1216_0_add_NONNULL(x0, NULL) → 1276_0_add_Return
1216_0_add_NONNULL(x0, java.lang.Object(x1)) → 1236_1_add_InvokeMethod(1216_0_add_NONNULL(x0, x2), java.lang.Object(List))
1236_1_add_InvokeMethod(1276_0_add_Return, java.lang.Object(x0)) → 1339_0_add_Return
1236_1_add_InvokeMethod(1339_0_add_Return, java.lang.Object(x0)) → 1339_0_add_Return

The integer pair graph contains the following rules and edges:
(0): 951_0_REC_LOAD(x0[0], java.lang.Object(x1[0])) → COND_951_0_REC_LOAD(100000 > 3 * x0[0] && 0 <= 3 * x0[0], x0[0], java.lang.Object(x1[0]))
(1): COND_951_0_REC_LOAD(TRUE, x0[1], java.lang.Object(x1[1])) → 951_0_REC_LOAD(3 * x0[1] + 1, java.lang.Object(x1[1]))

(0) -> (1), if ((100000 > 3 * x0[0] && 0 <= 3 * x0[0]* TRUE)∧(x0[0]* x0[1])∧(java.lang.Object(x1[0]) →* java.lang.Object(x1[1])))


(1) -> (0), if ((3 * x0[1] + 1* x0[0])∧(java.lang.Object(x1[1]) →* java.lang.Object(x1[0])))



The set Q consists of the following terms:
989_1_rec_InvokeMethod(1131_0_rec_Return, x0, java.lang.Object(x1))
1204_1_rec_InvokeMethod(1276_0_add_Return)
1204_1_rec_InvokeMethod(1339_0_add_Return)
1216_0_add_NONNULL(x0, NULL)
1216_0_add_NONNULL(x0, java.lang.Object(x1))
1236_1_add_InvokeMethod(1276_0_add_Return, java.lang.Object(x0))
1236_1_add_InvokeMethod(1339_0_add_Return, java.lang.Object(x0))

(15) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 951_0_REC_LOAD(x0, java.lang.Object(x1)) → COND_951_0_REC_LOAD(&&(>(100000, *(3, x0)), <=(0, *(3, x0))), x0, java.lang.Object(x1)) the following chains were created:
  • We consider the chain 951_0_REC_LOAD(x0[0], java.lang.Object(x1[0])) → COND_951_0_REC_LOAD(&&(>(100000, *(3, x0[0])), <=(0, *(3, x0[0]))), x0[0], java.lang.Object(x1[0])), COND_951_0_REC_LOAD(TRUE, x0[1], java.lang.Object(x1[1])) → 951_0_REC_LOAD(+(*(3, x0[1]), 1), java.lang.Object(x1[1])) which results in the following constraint:

    (1)    (&&(>(100000, *(3, x0[0])), <=(0, *(3, x0[0])))=TRUEx0[0]=x0[1]java.lang.Object(x1[0])=java.lang.Object(x1[1]) ⇒ 951_0_REC_LOAD(x0[0], java.lang.Object(x1[0]))≥NonInfC∧951_0_REC_LOAD(x0[0], java.lang.Object(x1[0]))≥COND_951_0_REC_LOAD(&&(>(100000, *(3, x0[0])), <=(0, *(3, x0[0]))), x0[0], java.lang.Object(x1[0]))∧(UIncreasing(COND_951_0_REC_LOAD(&&(>(100000, *(3, x0[0])), <=(0, *(3, x0[0]))), x0[0], java.lang.Object(x1[0]))), ≥))



    We simplified constraint (1) using rules (I), (II), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (>(100000, *(3, x0[0]))=TRUE<=(0, *(3, x0[0]))=TRUE951_0_REC_LOAD(x0[0], java.lang.Object(x1[0]))≥NonInfC∧951_0_REC_LOAD(x0[0], java.lang.Object(x1[0]))≥COND_951_0_REC_LOAD(&&(>(100000, *(3, x0[0])), <=(0, *(3, x0[0]))), x0[0], java.lang.Object(x1[0]))∧(UIncreasing(COND_951_0_REC_LOAD(&&(>(100000, *(3, x0[0])), <=(0, *(3, x0[0]))), x0[0], java.lang.Object(x1[0]))), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    ([99999] + [-3]x0[0] ≥ 0∧[3]x0[0] ≥ 0 ⇒ (UIncreasing(COND_951_0_REC_LOAD(&&(>(100000, *(3, x0[0])), <=(0, *(3, x0[0]))), x0[0], java.lang.Object(x1[0]))), ≥)∧[(-1)Bound*bni_32] + [(-1)bni_32]x0[0] ≥ 0∧[(-1)bso_33] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    ([99999] + [-3]x0[0] ≥ 0∧[3]x0[0] ≥ 0 ⇒ (UIncreasing(COND_951_0_REC_LOAD(&&(>(100000, *(3, x0[0])), <=(0, *(3, x0[0]))), x0[0], java.lang.Object(x1[0]))), ≥)∧[(-1)Bound*bni_32] + [(-1)bni_32]x0[0] ≥ 0∧[(-1)bso_33] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    ([99999] + [-3]x0[0] ≥ 0∧[3]x0[0] ≥ 0 ⇒ (UIncreasing(COND_951_0_REC_LOAD(&&(>(100000, *(3, x0[0])), <=(0, *(3, x0[0]))), x0[0], java.lang.Object(x1[0]))), ≥)∧[(-1)Bound*bni_32] + [(-1)bni_32]x0[0] ≥ 0∧[(-1)bso_33] ≥ 0)



    We simplified constraint (5) using rules (IDP_UNRESTRICTED_VARS), (IDP_POLY_GCD) which results in the following new constraint:

    (6)    ([33333] + [-1]x0[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_951_0_REC_LOAD(&&(>(100000, *(3, x0[0])), <=(0, *(3, x0[0]))), x0[0], java.lang.Object(x1[0]))), ≥)∧0 = 0∧[(-1)Bound*bni_32] + [(-1)bni_32]x0[0] ≥ 0∧0 = 0∧[(-1)bso_33] ≥ 0)







For Pair COND_951_0_REC_LOAD(TRUE, x0, java.lang.Object(x1)) → 951_0_REC_LOAD(+(*(3, x0), 1), java.lang.Object(x1)) the following chains were created:
  • We consider the chain 951_0_REC_LOAD(x0[0], java.lang.Object(x1[0])) → COND_951_0_REC_LOAD(&&(>(100000, *(3, x0[0])), <=(0, *(3, x0[0]))), x0[0], java.lang.Object(x1[0])), COND_951_0_REC_LOAD(TRUE, x0[1], java.lang.Object(x1[1])) → 951_0_REC_LOAD(+(*(3, x0[1]), 1), java.lang.Object(x1[1])), 951_0_REC_LOAD(x0[0], java.lang.Object(x1[0])) → COND_951_0_REC_LOAD(&&(>(100000, *(3, x0[0])), <=(0, *(3, x0[0]))), x0[0], java.lang.Object(x1[0])) which results in the following constraint:

    (7)    (&&(>(100000, *(3, x0[0])), <=(0, *(3, x0[0])))=TRUEx0[0]=x0[1]java.lang.Object(x1[0])=java.lang.Object(x1[1])∧+(*(3, x0[1]), 1)=x0[0]1java.lang.Object(x1[1])=java.lang.Object(x1[0]1) ⇒ COND_951_0_REC_LOAD(TRUE, x0[1], java.lang.Object(x1[1]))≥NonInfC∧COND_951_0_REC_LOAD(TRUE, x0[1], java.lang.Object(x1[1]))≥951_0_REC_LOAD(+(*(3, x0[1]), 1), java.lang.Object(x1[1]))∧(UIncreasing(951_0_REC_LOAD(+(*(3, x0[1]), 1), java.lang.Object(x1[1]))), ≥))



    We simplified constraint (7) using rules (I), (II), (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (8)    (>(100000, *(3, x0[0]))=TRUE<=(0, *(3, x0[0]))=TRUECOND_951_0_REC_LOAD(TRUE, x0[0], java.lang.Object(x1[0]))≥NonInfC∧COND_951_0_REC_LOAD(TRUE, x0[0], java.lang.Object(x1[0]))≥951_0_REC_LOAD(+(*(3, x0[0]), 1), java.lang.Object(x1[0]))∧(UIncreasing(951_0_REC_LOAD(+(*(3, x0[1]), 1), java.lang.Object(x1[1]))), ≥))



    We simplified constraint (8) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (9)    ([99999] + [-3]x0[0] ≥ 0∧[3]x0[0] ≥ 0 ⇒ (UIncreasing(951_0_REC_LOAD(+(*(3, x0[1]), 1), java.lang.Object(x1[1]))), ≥)∧[(-1)Bound*bni_34] + [(-1)bni_34]x0[0] ≥ 0∧[1 + (-1)bso_35] + [2]x0[0] ≥ 0)



    We simplified constraint (9) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (10)    ([99999] + [-3]x0[0] ≥ 0∧[3]x0[0] ≥ 0 ⇒ (UIncreasing(951_0_REC_LOAD(+(*(3, x0[1]), 1), java.lang.Object(x1[1]))), ≥)∧[(-1)Bound*bni_34] + [(-1)bni_34]x0[0] ≥ 0∧[1 + (-1)bso_35] + [2]x0[0] ≥ 0)



    We simplified constraint (10) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (11)    ([99999] + [-3]x0[0] ≥ 0∧[3]x0[0] ≥ 0 ⇒ (UIncreasing(951_0_REC_LOAD(+(*(3, x0[1]), 1), java.lang.Object(x1[1]))), ≥)∧[(-1)Bound*bni_34] + [(-1)bni_34]x0[0] ≥ 0∧[1 + (-1)bso_35] + [2]x0[0] ≥ 0)



    We simplified constraint (11) using rules (IDP_UNRESTRICTED_VARS), (IDP_POLY_GCD) which results in the following new constraint:

    (12)    ([33333] + [-1]x0[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(951_0_REC_LOAD(+(*(3, x0[1]), 1), java.lang.Object(x1[1]))), ≥)∧0 = 0∧[(-1)Bound*bni_34] + [(-1)bni_34]x0[0] ≥ 0∧0 = 0∧[1 + (-1)bso_35] + [2]x0[0] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 951_0_REC_LOAD(x0, java.lang.Object(x1)) → COND_951_0_REC_LOAD(&&(>(100000, *(3, x0)), <=(0, *(3, x0))), x0, java.lang.Object(x1))
    • ([33333] + [-1]x0[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_951_0_REC_LOAD(&&(>(100000, *(3, x0[0])), <=(0, *(3, x0[0]))), x0[0], java.lang.Object(x1[0]))), ≥)∧0 = 0∧[(-1)Bound*bni_32] + [(-1)bni_32]x0[0] ≥ 0∧0 = 0∧[(-1)bso_33] ≥ 0)

  • COND_951_0_REC_LOAD(TRUE, x0, java.lang.Object(x1)) → 951_0_REC_LOAD(+(*(3, x0), 1), java.lang.Object(x1))
    • ([33333] + [-1]x0[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(951_0_REC_LOAD(+(*(3, x0[1]), 1), java.lang.Object(x1[1]))), ≥)∧0 = 0∧[(-1)Bound*bni_34] + [(-1)bni_34]x0[0] ≥ 0∧0 = 0∧[1 + (-1)bso_35] + [2]x0[0] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(989_1_rec_InvokeMethod(x1, x2, x3)) = [-1] + [-1]x3 + [-1]x2 + [-1]x1   
POL(1131_0_rec_Return) = [-1]   
POL(java.lang.Object(x1)) = [-1]   
POL(1204_1_rec_InvokeMethod(x1)) = [-1] + [-1]x1   
POL(1216_0_add_NONNULL(x1, x2)) = [-1] + [-1]x2 + [-1]x1   
POL(*(x1, x2)) = x1·x2   
POL(2) = [2]   
POL(1276_0_add_Return) = [-1]   
POL(1339_0_add_Return) = [-1]   
POL(NULL) = [-1]   
POL(1236_1_add_InvokeMethod(x1, x2)) = [-1] + [-1]x2 + [-1]x1   
POL(List) = [-1]   
POL(951_0_REC_LOAD(x1, x2)) = [-1] + [-1]x2 + [-1]x1   
POL(COND_951_0_REC_LOAD(x1, x2, x3)) = [-1] + [-1]x3 + [-1]x2 + [-1]x1   
POL(&&(x1, x2)) = 0   
POL(>(x1, x2)) = [-1]   
POL(100000) = [100000]   
POL(3) = [3]   
POL(<=(x1, x2)) = [-1]   
POL(0) = 0   
POL(+(x1, x2)) = x1 + x2   
POL(1) = [1]   

The following pairs are in P>:

COND_951_0_REC_LOAD(TRUE, x0[1], java.lang.Object(x1[1])) → 951_0_REC_LOAD(+(*(3, x0[1]), 1), java.lang.Object(x1[1]))

The following pairs are in Pbound:

951_0_REC_LOAD(x0[0], java.lang.Object(x1[0])) → COND_951_0_REC_LOAD(&&(>(100000, *(3, x0[0])), <=(0, *(3, x0[0]))), x0[0], java.lang.Object(x1[0]))
COND_951_0_REC_LOAD(TRUE, x0[1], java.lang.Object(x1[1])) → 951_0_REC_LOAD(+(*(3, x0[1]), 1), java.lang.Object(x1[1]))

The following pairs are in P:

951_0_REC_LOAD(x0[0], java.lang.Object(x1[0])) → COND_951_0_REC_LOAD(&&(>(100000, *(3, x0[0])), <=(0, *(3, x0[0]))), x0[0], java.lang.Object(x1[0]))

At least the following rules have been oriented under context sensitive arithmetic replacement:

TRUE1&&(TRUE, TRUE)1
&&(TRUE, FALSE)1FALSE1
FALSE1&&(FALSE, TRUE)1
FALSE1&&(FALSE, FALSE)1

(16) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


The ITRS R consists of the following rules:
989_1_rec_InvokeMethod(1131_0_rec_Return, x1, java.lang.Object(x0)) → 1204_1_rec_InvokeMethod(1216_0_add_NONNULL(x1 * 2, x3))
1204_1_rec_InvokeMethod(1276_0_add_Return) → 1131_0_rec_Return
1204_1_rec_InvokeMethod(1339_0_add_Return) → 1131_0_rec_Return
1216_0_add_NONNULL(x0, NULL) → 1276_0_add_Return
1216_0_add_NONNULL(x0, java.lang.Object(x1)) → 1236_1_add_InvokeMethod(1216_0_add_NONNULL(x0, x2), java.lang.Object(List))
1236_1_add_InvokeMethod(1276_0_add_Return, java.lang.Object(x0)) → 1339_0_add_Return
1236_1_add_InvokeMethod(1339_0_add_Return, java.lang.Object(x0)) → 1339_0_add_Return

The integer pair graph contains the following rules and edges:
(0): 951_0_REC_LOAD(x0[0], java.lang.Object(x1[0])) → COND_951_0_REC_LOAD(100000 > 3 * x0[0] && 0 <= 3 * x0[0], x0[0], java.lang.Object(x1[0]))


The set Q consists of the following terms:
989_1_rec_InvokeMethod(1131_0_rec_Return, x0, java.lang.Object(x1))
1204_1_rec_InvokeMethod(1276_0_add_Return)
1204_1_rec_InvokeMethod(1339_0_add_Return)
1216_0_add_NONNULL(x0, NULL)
1216_0_add_NONNULL(x0, java.lang.Object(x1))
1236_1_add_InvokeMethod(1276_0_add_Return, java.lang.Object(x0))
1236_1_add_InvokeMethod(1339_0_add_Return, java.lang.Object(x0))

(17) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(18) TRUE