(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_14 (Sun Microsystems Inc.) Main-Class: AProVEMathRecursive
public class AProVEMathRecursive {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
power(x, y);
}

public static int power(int base, int exponent) {
if (exponent <= 0) {
return 1;
} else if (exponent == 1) {
return base;
} else if (base == 2) {
return base << (exponent-1);
} else if (exponent % 2 == 1) {
return base * power(base, exponent-1);
} else {
int halfPower = power(base, exponent/2);
return halfPower * halfPower;
}
}
}


public class Random {
static String[] args;
static int index = 0;

public static int random() {
if (args.length <= index) {
return 0;
}
String string = args[index];
index++;
if (string == null) {
return 0;
}
return string.length();
}
}


(1) JBC2FIG (SOUND transformation)

Constructed FIGraph.

(2) Obligation:

FIGraph based on JBC Program:
AProVEMathRecursive.main([Ljava/lang/String;)V: Graph of 138 nodes with 0 SCCs.

AProVEMathRecursive.power(II)I: Graph of 139 nodes with 0 SCCs.


(3) FIGtoITRSProof (SOUND transformation)

Transformed FIGraph SCCs to IDPs. Logs:


Log for SCC 0:

Generated 65 rules for P and 80 rules for R.


Combined rules. Obtained 6 rules for P and 13 rules for R.


Filtered ground terms:


574_0_power_GT(x1, x2, x3, x4) → 574_0_power_GT(x2, x3, x4)
Cond_574_0_power_GT5(x1, x2, x3, x4, x5) → Cond_574_0_power_GT5(x1, x3, x4, x5)
Cond_574_0_power_GT4(x1, x2, x3, x4, x5) → Cond_574_0_power_GT4(x1, x3, x4, x5)
Cond_574_0_power_GT3(x1, x2, x3, x4, x5) → Cond_574_0_power_GT3(x1, x3, x4, x5)
Cond_574_0_power_GT2(x1, x2, x3, x4, x5) → Cond_574_0_power_GT2(x1, x3, x4, x5)
Cond_574_0_power_GT1(x1, x2, x3, x4, x5) → Cond_574_0_power_GT1(x1, x3, x4, x5)
Cond_574_0_power_GT(x1, x2, x3, x4, x5) → Cond_574_0_power_GT(x1, x3, x4, x5)
895_0_power_Return(x1, x2, x3) → 895_0_power_Return(x2, x3)
Cond_868_1_power_InvokeMethod2(x1, x2, x3, x4, x5, x6, x7) → Cond_868_1_power_InvokeMethod2(x1, x3, x4, x5, x6, x7)
951_0_power_Return(x1) → 951_0_power_Return
Cond_868_1_power_InvokeMethod(x1, x2, x3, x4, x5, x6, x7) → Cond_868_1_power_InvokeMethod(x1, x2, x3, x4, x5, x6)
644_0_power_Return(x1, x2, x3, x4) → 644_0_power_Return(x2, x4)
Cond_840_1_power_InvokeMethod(x1, x2, x3, x4) → Cond_840_1_power_InvokeMethod(x1, x2, x3)
969_0_power_Return(x1, x2, x3) → 969_0_power_Return(x2, x3)
Cond_855_1_power_InvokeMethod2(x1, x2, x3, x4, x5, x6, x7) → Cond_855_1_power_InvokeMethod2(x1, x3, x4, x5, x6, x7)
1056_0_power_Return(x1) → 1056_0_power_Return
Cond_855_1_power_InvokeMethod(x1, x2, x3, x4, x5, x6, x7) → Cond_855_1_power_InvokeMethod(x1, x2, x3, x4, x5, x6)
587_0_power_Return(x1, x2, x3) → 587_0_power_Return(x2)

Filtered duplicate args:


574_0_power_GT(x1, x2, x3) → 574_0_power_GT(x1, x3)
Cond_574_0_power_GT5(x1, x2, x3, x4) → Cond_574_0_power_GT5(x1, x2, x4)
868_1_power_InvokeMethod(x1, x2, x3, x4, x5, x6) → 868_1_power_InvokeMethod(x1, x3, x5, x6)
Cond_574_0_power_GT4(x1, x2, x3, x4) → Cond_574_0_power_GT4(x1, x2, x4)
Cond_574_0_power_GT3(x1, x2, x3, x4) → Cond_574_0_power_GT3(x1, x2, x4)
Cond_574_0_power_GT2(x1, x2, x3, x4) → Cond_574_0_power_GT2(x1, x2, x4)
855_1_power_InvokeMethod(x1, x2, x3, x4, x5, x6) → 855_1_power_InvokeMethod(x1, x3, x5, x6)
Cond_574_0_power_GT1(x1, x2, x3, x4) → Cond_574_0_power_GT1(x1, x2, x4)
Cond_574_0_power_GT(x1, x2, x3, x4) → Cond_574_0_power_GT(x1, x2, x4)
Cond_868_1_power_InvokeMethod2(x1, x2, x3, x4, x5, x6) → Cond_868_1_power_InvokeMethod2(x1, x3, x5, x6)
Cond_868_1_power_InvokeMethod1(x1, x2, x3, x4, x5, x6, x7) → Cond_868_1_power_InvokeMethod1(x1, x2, x4, x6, x7)
Cond_868_1_power_InvokeMethod(x1, x2, x3, x4, x5, x6) → Cond_868_1_power_InvokeMethod(x1, x2, x4, x6)
644_0_power_Return(x1, x2) → 644_0_power_Return(x2)
Cond_855_1_power_InvokeMethod2(x1, x2, x3, x4, x5, x6) → Cond_855_1_power_InvokeMethod2(x1, x3, x5, x6)
Cond_855_1_power_InvokeMethod1(x1, x2, x3, x4, x5, x6, x7) → Cond_855_1_power_InvokeMethod1(x1, x2, x4, x6, x7)
Cond_855_1_power_InvokeMethod(x1, x2, x3, x4, x5, x6) → Cond_855_1_power_InvokeMethod(x1, x2, x4, x6)

Filtered unneeded arguments:


Cond_855_1_power_InvokeMethod2(x1, x2, x3, x4) → Cond_855_1_power_InvokeMethod2(x1, x2, x3)
Cond_868_1_power_InvokeMethod2(x1, x2, x3, x4) → Cond_868_1_power_InvokeMethod2(x1, x2, x3)

Combined rules. Obtained 6 rules for P and 13 rules for R.


Finished conversion. Obtained 6 rules for P and 13 rules for R. System has predefined symbols.


(4) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


The ITRS R consists of the following rules:
574_0_power_GT(x0, 0) → 587_0_power_Return(x0)
827_1_power_InvokeMethod(644_0_power_Return(x0), x0, 1) → 1056_0_power_Return
827_1_power_InvokeMethod(969_0_power_Return(x0, x1), x0, x1) → 1056_0_power_Return
827_1_power_InvokeMethod(1056_0_power_Return, x0, x1) → 1056_0_power_Return
855_1_power_InvokeMethod(644_0_power_Return(x0), x2, x0, 1) → Cond_855_1_power_InvokeMethod(x0 <= 1, 644_0_power_Return(x0), x2, x0, 1)
Cond_855_1_power_InvokeMethod(TRUE, 644_0_power_Return(x0), x2, x0, 1) → 969_0_power_Return(x0, x2)
855_1_power_InvokeMethod(969_0_power_Return(x0, x1), x2, x0, x1) → Cond_855_1_power_InvokeMethod1(x0 <= 1, 969_0_power_Return(x0, x1), x2, x0, x1)
Cond_855_1_power_InvokeMethod1(TRUE, 969_0_power_Return(x0, x1), x2, x0, x1) → 969_0_power_Return(x0, x2)
855_1_power_InvokeMethod(1056_0_power_Return, x1, x0, x2) → Cond_855_1_power_InvokeMethod2(x0 <= 1, 1056_0_power_Return, x1, x0, x2)
Cond_855_1_power_InvokeMethod2(TRUE, 1056_0_power_Return, x1, x0, x2) → 969_0_power_Return(x0, x1)
840_1_power_InvokeMethod(644_0_power_Return(x0), x0, 1) → Cond_840_1_power_InvokeMethod(x0 > 1, 644_0_power_Return(x0), x0, 1)
Cond_840_1_power_InvokeMethod(TRUE, 644_0_power_Return(x0), x0, 1) → 951_0_power_Return
840_1_power_InvokeMethod(895_0_power_Return(x0, x1), x0, x1) → 951_0_power_Return
840_1_power_InvokeMethod(951_0_power_Return, x0, x1) → 951_0_power_Return
868_1_power_InvokeMethod(644_0_power_Return(x0), x2, x0, 1) → Cond_868_1_power_InvokeMethod(x0 > 1, 644_0_power_Return(x0), x2, x0, 1)
Cond_868_1_power_InvokeMethod(TRUE, 644_0_power_Return(x0), x2, x0, 1) → 895_0_power_Return(x0, x2)
868_1_power_InvokeMethod(895_0_power_Return(x0, x1), x2, x0, x1) → Cond_868_1_power_InvokeMethod1(x0 > 1, 895_0_power_Return(x0, x1), x2, x0, x1)
Cond_868_1_power_InvokeMethod1(TRUE, 895_0_power_Return(x0, x1), x2, x0, x1) → 895_0_power_Return(x0, x2)
868_1_power_InvokeMethod(951_0_power_Return, x1, x0, x2) → Cond_868_1_power_InvokeMethod2(x0 > 1, 951_0_power_Return, x1, x0, x2)
Cond_868_1_power_InvokeMethod2(TRUE, 951_0_power_Return, x1, x0, x2) → 895_0_power_Return(x0, x1)

The integer pair graph contains the following rules and edges:
(0): 574_0_POWER_GT(x0[0], x1[0]) → COND_574_0_POWER_GT(x1[0] > 1 && !(x0[0] = 2) && 0 = x1[0] % 2, x0[0], x1[0])
(1): COND_574_0_POWER_GT(TRUE, x0[1], x1[1]) → 574_0_POWER_GT(x0[1], x1[1] / 2)
(2): 574_0_POWER_GT(x0[2], x1[2]) → COND_574_0_POWER_GT1(x1[2] > 0 && !(x1[2] = 1) && !(x0[2] = 2) && 1 = x1[2] % 2, x0[2], x1[2])
(3): COND_574_0_POWER_GT1(TRUE, x0[3], x1[3]) → 574_0_POWER_GT(x0[3], x1[3] - 1)
(4): 574_0_POWER_GT(x0[4], x1[4]) → COND_574_0_POWER_GT(x1[4] > 1 && !(x0[4] = 2) && !(x1[4] % 2 = 1), x0[4], x1[4])
(5): 574_0_POWER_GT(x0[5], x1[5]) → COND_574_0_POWER_GT3(x1[5] > 1 && !(x0[5] = 2) && 0 = x1[5] % 2, x0[5], x1[5])
(6): COND_574_0_POWER_GT3(TRUE, x0[6], x1[6]) → 574_0_POWER_GT(x0[6], x1[6] / 2)
(7): 574_0_POWER_GT(x0[7], x1[7]) → COND_574_0_POWER_GT4(x1[7] > 0 && !(x1[7] = 1) && !(x0[7] = 2) && 1 = x1[7] % 2, x0[7], x1[7])
(8): COND_574_0_POWER_GT4(TRUE, x0[8], x1[8]) → 574_0_POWER_GT(x0[8], x1[8] - 1)
(9): 574_0_POWER_GT(x0[9], x1[9]) → COND_574_0_POWER_GT3(x1[9] > 1 && !(x0[9] = 2) && !(x1[9] % 2 = 1), x0[9], x1[9])

(0) -> (1), if ((x1[0] > 1 && !(x0[0] = 2) && 0 = x1[0] % 2* TRUE)∧(x0[0]* x0[1])∧(x1[0]* x1[1]))


(1) -> (0), if ((x0[1]* x0[0])∧(x1[1] / 2* x1[0]))


(1) -> (2), if ((x0[1]* x0[2])∧(x1[1] / 2* x1[2]))


(1) -> (4), if ((x0[1]* x0[4])∧(x1[1] / 2* x1[4]))


(1) -> (5), if ((x0[1]* x0[5])∧(x1[1] / 2* x1[5]))


(1) -> (7), if ((x0[1]* x0[7])∧(x1[1] / 2* x1[7]))


(1) -> (9), if ((x0[1]* x0[9])∧(x1[1] / 2* x1[9]))


(2) -> (3), if ((x1[2] > 0 && !(x1[2] = 1) && !(x0[2] = 2) && 1 = x1[2] % 2* TRUE)∧(x0[2]* x0[3])∧(x1[2]* x1[3]))


(3) -> (0), if ((x0[3]* x0[0])∧(x1[3] - 1* x1[0]))


(3) -> (2), if ((x0[3]* x0[2])∧(x1[3] - 1* x1[2]))


(3) -> (4), if ((x0[3]* x0[4])∧(x1[3] - 1* x1[4]))


(3) -> (5), if ((x0[3]* x0[5])∧(x1[3] - 1* x1[5]))


(3) -> (7), if ((x0[3]* x0[7])∧(x1[3] - 1* x1[7]))


(3) -> (9), if ((x0[3]* x0[9])∧(x1[3] - 1* x1[9]))


(4) -> (1), if ((x1[4] > 1 && !(x0[4] = 2) && !(x1[4] % 2 = 1) →* TRUE)∧(x0[4]* x0[1])∧(x1[4]* x1[1]))


(5) -> (6), if ((x1[5] > 1 && !(x0[5] = 2) && 0 = x1[5] % 2* TRUE)∧(x0[5]* x0[6])∧(x1[5]* x1[6]))


(6) -> (0), if ((x0[6]* x0[0])∧(x1[6] / 2* x1[0]))


(6) -> (2), if ((x0[6]* x0[2])∧(x1[6] / 2* x1[2]))


(6) -> (4), if ((x0[6]* x0[4])∧(x1[6] / 2* x1[4]))


(6) -> (5), if ((x0[6]* x0[5])∧(x1[6] / 2* x1[5]))


(6) -> (7), if ((x0[6]* x0[7])∧(x1[6] / 2* x1[7]))


(6) -> (9), if ((x0[6]* x0[9])∧(x1[6] / 2* x1[9]))


(7) -> (8), if ((x1[7] > 0 && !(x1[7] = 1) && !(x0[7] = 2) && 1 = x1[7] % 2* TRUE)∧(x0[7]* x0[8])∧(x1[7]* x1[8]))


(8) -> (0), if ((x0[8]* x0[0])∧(x1[8] - 1* x1[0]))


(8) -> (2), if ((x0[8]* x0[2])∧(x1[8] - 1* x1[2]))


(8) -> (4), if ((x0[8]* x0[4])∧(x1[8] - 1* x1[4]))


(8) -> (5), if ((x0[8]* x0[5])∧(x1[8] - 1* x1[5]))


(8) -> (7), if ((x0[8]* x0[7])∧(x1[8] - 1* x1[7]))


(8) -> (9), if ((x0[8]* x0[9])∧(x1[8] - 1* x1[9]))


(9) -> (6), if ((x1[9] > 1 && !(x0[9] = 2) && !(x1[9] % 2 = 1) →* TRUE)∧(x0[9]* x0[6])∧(x1[9]* x1[6]))



The set Q consists of the following terms:
574_0_power_GT(x0, 0)
827_1_power_InvokeMethod(644_0_power_Return(x0), x0, 1)
827_1_power_InvokeMethod(969_0_power_Return(x0, x1), x0, x1)
827_1_power_InvokeMethod(1056_0_power_Return, x0, x1)
855_1_power_InvokeMethod(644_0_power_Return(x0), x1, x0, 1)
Cond_855_1_power_InvokeMethod(TRUE, 644_0_power_Return(x0), x1, x0, 1)
855_1_power_InvokeMethod(969_0_power_Return(x0, x1), x2, x0, x1)
Cond_855_1_power_InvokeMethod1(TRUE, 969_0_power_Return(x0, x1), x2, x0, x1)
855_1_power_InvokeMethod(1056_0_power_Return, x0, x1, x2)
Cond_855_1_power_InvokeMethod2(TRUE, 1056_0_power_Return, x0, x1, x2)
840_1_power_InvokeMethod(644_0_power_Return(x0), x0, 1)
Cond_840_1_power_InvokeMethod(TRUE, 644_0_power_Return(x0), x0, 1)
840_1_power_InvokeMethod(895_0_power_Return(x0, x1), x0, x1)
840_1_power_InvokeMethod(951_0_power_Return, x0, x1)
868_1_power_InvokeMethod(644_0_power_Return(x0), x1, x0, 1)
Cond_868_1_power_InvokeMethod(TRUE, 644_0_power_Return(x0), x1, x0, 1)
868_1_power_InvokeMethod(895_0_power_Return(x0, x1), x2, x0, x1)
Cond_868_1_power_InvokeMethod1(TRUE, 895_0_power_Return(x0, x1), x2, x0, x1)
868_1_power_InvokeMethod(951_0_power_Return, x0, x1, x2)
Cond_868_1_power_InvokeMethod2(TRUE, 951_0_power_Return, x0, x1, x2)

(5) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 574_0_POWER_GT(x0, x1) → COND_574_0_POWER_GT(&&(&&(>(x1, 1), !(=(x0, 2))), =(0, %(x1, 2))), x0, x1) the following chains were created:
  • We consider the chain 574_0_POWER_GT(x0[0], x1[0]) → COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0]), COND_574_0_POWER_GT(TRUE, x0[1], x1[1]) → 574_0_POWER_GT(x0[1], /(x1[1], 2)) which results in the following constraint:

    (1)    (&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2)))=TRUEx0[0]=x0[1]x1[0]=x1[1]574_0_POWER_GT(x0[0], x1[0])≥NonInfC∧574_0_POWER_GT(x0[0], x1[0])≥COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])∧(UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥))



    We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraints:

    (2)    (>(x1[0], 1)=TRUE>=(0, %(x1[0], 2))=TRUE<=(0, %(x1[0], 2))=TRUE<(x0[0], 2)=TRUE574_0_POWER_GT(x0[0], x1[0])≥NonInfC∧574_0_POWER_GT(x0[0], x1[0])≥COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])∧(UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥))


    (3)    (>(x1[0], 1)=TRUE>=(0, %(x1[0], 2))=TRUE<=(0, %(x1[0], 2))=TRUE>(x0[0], 2)=TRUE574_0_POWER_GT(x0[0], x1[0])≥NonInfC∧574_0_POWER_GT(x0[0], x1[0])≥COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])∧(UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (4)    (x1[0] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧[1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_101] + [bni_101]x1[0] ≥ 0∧[(-1)bso_102] ≥ 0)



    We simplified constraint (3) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (5)    (x1[0] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧x0[0] + [-3] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_101] + [bni_101]x1[0] ≥ 0∧[(-1)bso_102] ≥ 0)



    We simplified constraint (4) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (6)    (x1[0] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧[1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_101] + [bni_101]x1[0] ≥ 0∧[(-1)bso_102] ≥ 0)



    We simplified constraint (5) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (7)    (x1[0] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧x0[0] + [-3] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_101] + [bni_101]x1[0] ≥ 0∧[(-1)bso_102] ≥ 0)



    We simplified constraint (6) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (8)    (x1[0] + [-2] ≥ 0∧[1] + [-1]x0[0] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_101] + [bni_101]x1[0] ≥ 0∧[(-1)bso_102] ≥ 0)



    We simplified constraint (7) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (9)    (x1[0] + [-2] ≥ 0∧x0[0] + [-3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_101] + [bni_101]x1[0] ≥ 0∧[(-1)bso_102] ≥ 0)



    We simplified constraint (8) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (10)    (x1[0] ≥ 0∧[1] + [-1]x0[0] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_101 + (2)bni_101] + [bni_101]x1[0] ≥ 0∧[(-1)bso_102] ≥ 0)



    We simplified constraint (9) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (11)    (x1[0] ≥ 0∧x0[0] + [-3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_101 + (2)bni_101] + [bni_101]x1[0] ≥ 0∧[(-1)bso_102] ≥ 0)



    We simplified constraint (10) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (12)    (x1[0] ≥ 0∧[1] + [-1]x0[0] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_101 + (2)bni_101] + [bni_101]x1[0] ≥ 0∧[(-1)bso_102] ≥ 0)


    (13)    (x1[0] ≥ 0∧[1] + x0[0] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_101 + (2)bni_101] + [bni_101]x1[0] ≥ 0∧[(-1)bso_102] ≥ 0)



    We simplified constraint (12) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (14)    (x1[0] ≥ 0∧[1] + [-1]x0[0] ≥ 0∧x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_101 + (2)bni_101] + [bni_101]x1[0] ≥ 0∧[(-1)bso_102] ≥ 0)



    We simplified constraint (13) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (15)    (x1[0] ≥ 0∧[1] + x0[0] ≥ 0∧x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_101 + (2)bni_101] + [bni_101]x1[0] ≥ 0∧[(-1)bso_102] ≥ 0)



    We simplified constraint (11) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (16)    (x1[0] ≥ 0∧x0[0] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_101 + (2)bni_101] + [bni_101]x1[0] ≥ 0∧[(-1)bso_102] ≥ 0)



    We simplified constraint (16) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (17)    (x1[0] ≥ 0∧x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_101 + (2)bni_101] + [bni_101]x1[0] ≥ 0∧[(-1)bso_102] ≥ 0)







For Pair COND_574_0_POWER_GT(TRUE, x0, x1) → 574_0_POWER_GT(x0, /(x1, 2)) the following chains were created:
  • We consider the chain 574_0_POWER_GT(x0[0], x1[0]) → COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0]), COND_574_0_POWER_GT(TRUE, x0[1], x1[1]) → 574_0_POWER_GT(x0[1], /(x1[1], 2)) which results in the following constraint:

    (18)    (&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2)))=TRUEx0[0]=x0[1]x1[0]=x1[1]COND_574_0_POWER_GT(TRUE, x0[1], x1[1])≥NonInfC∧COND_574_0_POWER_GT(TRUE, x0[1], x1[1])≥574_0_POWER_GT(x0[1], /(x1[1], 2))∧(UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥))



    We simplified constraint (18) using rules (III), (IDP_BOOLEAN) which results in the following new constraints:

    (19)    (>(x1[0], 1)=TRUE>=(0, %(x1[0], 2))=TRUE<=(0, %(x1[0], 2))=TRUE<(x0[0], 2)=TRUECOND_574_0_POWER_GT(TRUE, x0[0], x1[0])≥NonInfC∧COND_574_0_POWER_GT(TRUE, x0[0], x1[0])≥574_0_POWER_GT(x0[0], /(x1[0], 2))∧(UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥))


    (20)    (>(x1[0], 1)=TRUE>=(0, %(x1[0], 2))=TRUE<=(0, %(x1[0], 2))=TRUE>(x0[0], 2)=TRUECOND_574_0_POWER_GT(TRUE, x0[0], x1[0])≥NonInfC∧COND_574_0_POWER_GT(TRUE, x0[0], x1[0])≥574_0_POWER_GT(x0[0], /(x1[0], 2))∧(UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥))



    We simplified constraint (19) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (21)    (x1[0] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧[1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_103 + (-1)Bound*bni_103] + [bni_103]x1[0] ≥ 0∧[(-1)bso_107] + x1[0] + [-1]max{x1[0], [-1]x1[0]} ≥ 0)



    We simplified constraint (20) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (22)    (x1[0] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧x0[0] + [-3] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_103 + (-1)Bound*bni_103] + [bni_103]x1[0] ≥ 0∧[(-1)bso_107] + x1[0] + [-1]max{x1[0], [-1]x1[0]} ≥ 0)



    We simplified constraint (21) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (23)    (x1[0] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧[1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_103 + (-1)Bound*bni_103] + [bni_103]x1[0] ≥ 0∧[(-1)bso_107] + x1[0] + [-1]max{x1[0], [-1]x1[0]} ≥ 0)



    We simplified constraint (22) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (24)    (x1[0] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧x0[0] + [-3] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_103 + (-1)Bound*bni_103] + [bni_103]x1[0] ≥ 0∧[(-1)bso_107] + x1[0] + [-1]max{x1[0], [-1]x1[0]} ≥ 0)



    We simplified constraint (23) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (25)    (x1[0] + [-2] ≥ 0∧[1] + [-1]x0[0] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[2]x1[0] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_103 + (-1)Bound*bni_103] + [bni_103]x1[0] ≥ 0∧[(-1)bso_107] ≥ 0)



    We simplified constraint (24) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (26)    (x1[0] + [-2] ≥ 0∧x0[0] + [-3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[2]x1[0] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_103 + (-1)Bound*bni_103] + [bni_103]x1[0] ≥ 0∧[(-1)bso_107] ≥ 0)



    We simplified constraint (25) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (27)    (x1[0] ≥ 0∧[1] + [-1]x0[0] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[0] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[0] ≥ 0∧[(-1)bso_107] ≥ 0)



    We simplified constraint (26) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (28)    (x1[0] ≥ 0∧x0[0] + [-3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[0] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[0] ≥ 0∧[(-1)bso_107] ≥ 0)



    We simplified constraint (27) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (29)    (x1[0] ≥ 0∧[1] + [-1]x0[0] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[0] ≥ 0∧[(-1)bso_107] ≥ 0)


    (30)    (x1[0] ≥ 0∧[1] + x0[0] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[0] ≥ 0∧[(-1)bso_107] ≥ 0)



    We simplified constraint (29) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (31)    (x1[0] ≥ 0∧[1] + [-1]x0[0] ≥ 0∧x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x1[0] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[0] ≥ 0∧[(-1)bso_107] ≥ 0)



    We simplified constraint (30) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (32)    (x1[0] ≥ 0∧[1] + x0[0] ≥ 0∧x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x1[0] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[0] ≥ 0∧[(-1)bso_107] ≥ 0)



    We simplified constraint (28) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (33)    (x1[0] ≥ 0∧x0[0] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[0] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[0] ≥ 0∧[(-1)bso_107] ≥ 0)



    We simplified constraint (33) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (34)    (x1[0] ≥ 0∧x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x1[0] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[0] ≥ 0∧[(-1)bso_107] ≥ 0)



  • We consider the chain 574_0_POWER_GT(x0[4], x1[4]) → COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4]), COND_574_0_POWER_GT(TRUE, x0[1], x1[1]) → 574_0_POWER_GT(x0[1], /(x1[1], 2)) which results in the following constraint:

    (35)    (&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1)))=TRUEx0[4]=x0[1]x1[4]=x1[1]COND_574_0_POWER_GT(TRUE, x0[1], x1[1])≥NonInfC∧COND_574_0_POWER_GT(TRUE, x0[1], x1[1])≥574_0_POWER_GT(x0[1], /(x1[1], 2))∧(UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥))



    We simplified constraint (35) using rules (III), (IDP_BOOLEAN) which results in the following new constraints:

    (36)    (>(x1[4], 1)=TRUE<(%(x1[4], 2), 1)=TRUE<(x0[4], 2)=TRUECOND_574_0_POWER_GT(TRUE, x0[4], x1[4])≥NonInfC∧COND_574_0_POWER_GT(TRUE, x0[4], x1[4])≥574_0_POWER_GT(x0[4], /(x1[4], 2))∧(UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥))


    (37)    (>(x1[4], 1)=TRUE<(%(x1[4], 2), 1)=TRUE>(x0[4], 2)=TRUECOND_574_0_POWER_GT(TRUE, x0[4], x1[4])≥NonInfC∧COND_574_0_POWER_GT(TRUE, x0[4], x1[4])≥574_0_POWER_GT(x0[4], /(x1[4], 2))∧(UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥))



    We simplified constraint (36) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (38)    (x1[4] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧[1] + [-1]x0[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] + x1[4] + [-1]max{x1[4], [-1]x1[4]} ≥ 0)



    We simplified constraint (37) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (39)    (x1[4] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧x0[4] + [-3] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] + x1[4] + [-1]max{x1[4], [-1]x1[4]} ≥ 0)



    We simplified constraint (38) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (40)    (x1[4] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧[1] + [-1]x0[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] + x1[4] + [-1]max{x1[4], [-1]x1[4]} ≥ 0)



    We simplified constraint (39) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (41)    (x1[4] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧x0[4] + [-3] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] + x1[4] + [-1]max{x1[4], [-1]x1[4]} ≥ 0)



    We simplified constraint (42) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (43)    (x1[4] + [-2] ≥ 0∧max{[2], [-2]} + [-2] ≥ 0∧[1] + [-1]x0[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] + x1[4] + [-1]max{x1[4], [-1]x1[4]} ≥ 0)



    We simplified constraint (44) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (45)    (x1[4] + [-2] ≥ 0∧max{[2], [-2]} + [-2] ≥ 0∧x0[4] + [-3] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] + x1[4] + [-1]max{x1[4], [-1]x1[4]} ≥ 0)



    We simplified constraint (40) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (46)    (x1[4] + [-2] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2]x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] ≥ 0)



    We simplified constraint (41) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (47)    (x1[4] + [-2] ≥ 0∧x0[4] + [-3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2]x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] ≥ 0)



    We simplified constraint (43) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (48)    (x1[4] + [-2] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧[2]x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] ≥ 0)



    We simplified constraint (45) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (49)    (x1[4] + [-2] ≥ 0∧x0[4] + [-3] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧[2]x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] ≥ 0)



    We simplified constraint (46) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (50)    (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] ≥ 0)



    We simplified constraint (47) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (51)    (x1[4] ≥ 0∧x0[4] + [-3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] ≥ 0)



    We simplified constraint (48) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (52)    (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧[4] + [2]x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] ≥ 0)



    We simplified constraint (49) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (53)    (x1[4] ≥ 0∧x0[4] + [-3] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧[4] + [2]x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] ≥ 0)



    We simplified constraint (50) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (54)    (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[4] ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] ≥ 0)


    (55)    (x1[4] ≥ 0∧[1] + x0[4] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[4] ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] ≥ 0)



    We simplified constraint (54) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (56)    (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] ≥ 0)



    We simplified constraint (55) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (57)    (x1[4] ≥ 0∧[1] + x0[4] ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] ≥ 0)



    We simplified constraint (51) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (58)    (x1[4] ≥ 0∧x0[4] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] ≥ 0)



    We simplified constraint (58) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (59)    (x1[4] ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] ≥ 0)



    We simplified constraint (52) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (60)    (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧[4] + [2]x1[4] ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] ≥ 0)


    (61)    (x1[4] ≥ 0∧[1] + x0[4] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧[4] + [2]x1[4] ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] ≥ 0)



    We simplified constraint (60) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (62)    (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧0 ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0∧[2] + x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] ≥ 0)



    We simplified constraint (61) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (63)    (x1[4] ≥ 0∧[1] + x0[4] ≥ 0∧0 ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0∧[2] + x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] ≥ 0)



    We simplified constraint (53) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (64)    (x1[4] ≥ 0∧x0[4] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧[4] + [2]x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] ≥ 0)



    We simplified constraint (64) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (65)    (x1[4] ≥ 0∧x0[4] ≥ 0∧0 ≥ 0∧[1] ≥ 0∧[2] + x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] ≥ 0)







For Pair 574_0_POWER_GT(x0, x1) → COND_574_0_POWER_GT1(&&(&&(&&(>(x1, 0), !(=(x1, 1))), !(=(x0, 2))), =(1, %(x1, 2))), x0, x1) the following chains were created:
  • We consider the chain 574_0_POWER_GT(x0[2], x1[2]) → COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2]), COND_574_0_POWER_GT1(TRUE, x0[3], x1[3]) → 574_0_POWER_GT(x0[3], -(x1[3], 1)) which results in the following constraint:

    (66)    (&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2)))=TRUEx0[2]=x0[3]x1[2]=x1[3]574_0_POWER_GT(x0[2], x1[2])≥NonInfC∧574_0_POWER_GT(x0[2], x1[2])≥COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])∧(UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥))



    We simplified constraint (66) using rules (IV), (IDP_BOOLEAN) which results in the following new constraints:

    (67)    (>=(1, %(x1[2], 2))=TRUE<=(1, %(x1[2], 2))=TRUE>(x1[2], 0)=TRUE<(x0[2], 2)=TRUE<(x1[2], 1)=TRUE574_0_POWER_GT(x0[2], x1[2])≥NonInfC∧574_0_POWER_GT(x0[2], x1[2])≥COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])∧(UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥))


    (68)    (>=(1, %(x1[2], 2))=TRUE<=(1, %(x1[2], 2))=TRUE>(x1[2], 0)=TRUE<(x0[2], 2)=TRUE>(x1[2], 1)=TRUE574_0_POWER_GT(x0[2], x1[2])≥NonInfC∧574_0_POWER_GT(x0[2], x1[2])≥COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])∧(UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥))



    We simplified constraint (67) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (69)    ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧[-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)Bound*bni_108] + [bni_108]x1[2] ≥ 0∧[(-1)bso_109] ≥ 0)



    We simplified constraint (68) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (70)    ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)Bound*bni_108] + [bni_108]x1[2] ≥ 0∧[(-1)bso_109] ≥ 0)



    We simplified constraint (69) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (71)    ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧[-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)Bound*bni_108] + [bni_108]x1[2] ≥ 0∧[(-1)bso_109] ≥ 0)



    We simplified constraint (70) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (72)    ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)Bound*bni_108] + [bni_108]x1[2] ≥ 0∧[(-1)bso_109] ≥ 0)



    We simplified constraint (73) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (74)    ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧x0[2] + [-3] ≥ 0∧[-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)Bound*bni_108] + [bni_108]x1[2] ≥ 0∧[(-1)bso_109] ≥ 0)



    We simplified constraint (75) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (76)    ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧x0[2] + [-3] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)Bound*bni_108] + [bni_108]x1[2] ≥ 0∧[(-1)bso_109] ≥ 0)



    We solved constraint (71) using rule (POLY_REMOVE_MIN_MAX).We simplified constraint (72) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (77)    (x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] + [-2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)Bound*bni_108] + [bni_108]x1[2] ≥ 0∧[(-1)bso_109] ≥ 0)



    We solved constraint (74) using rule (POLY_REMOVE_MIN_MAX).We simplified constraint (76) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (78)    (x1[2] + [-1] ≥ 0∧x0[2] + [-3] ≥ 0∧x1[2] + [-2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)Bound*bni_108] + [bni_108]x1[2] ≥ 0∧[(-1)bso_109] ≥ 0)



    We simplified constraint (77) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (79)    (x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧[-1] + x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)Bound*bni_108 + bni_108] + [bni_108]x1[2] ≥ 0∧[(-1)bso_109] ≥ 0)



    We simplified constraint (78) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (80)    (x1[2] ≥ 0∧x0[2] + [-3] ≥ 0∧[-1] + x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)Bound*bni_108 + bni_108] + [bni_108]x1[2] ≥ 0∧[(-1)bso_109] ≥ 0)



    We simplified constraint (79) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (81)    ([1] + x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)Bound*bni_108 + (2)bni_108] + [bni_108]x1[2] ≥ 0∧[(-1)bso_109] ≥ 0)



    We simplified constraint (81) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (82)    ([1] + x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)Bound*bni_108 + (2)bni_108] + [bni_108]x1[2] ≥ 0∧[(-1)bso_109] ≥ 0)


    (83)    ([1] + x1[2] ≥ 0∧[1] + x0[2] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)Bound*bni_108 + (2)bni_108] + [bni_108]x1[2] ≥ 0∧[(-1)bso_109] ≥ 0)



    We simplified constraint (82) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (84)    ([1] + x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)Bound*bni_108 + (2)bni_108] + [bni_108]x1[2] ≥ 0∧[(-1)bso_109] ≥ 0)



    We simplified constraint (83) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (85)    ([1] + x1[2] ≥ 0∧[1] + x0[2] ≥ 0∧x1[2] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)Bound*bni_108 + (2)bni_108] + [bni_108]x1[2] ≥ 0∧[(-1)bso_109] ≥ 0)



    We simplified constraint (80) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (86)    ([1] + x1[2] ≥ 0∧x0[2] + [-3] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)Bound*bni_108 + (2)bni_108] + [bni_108]x1[2] ≥ 0∧[(-1)bso_109] ≥ 0)



    We simplified constraint (86) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (87)    ([1] + x1[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)Bound*bni_108 + (2)bni_108] + [bni_108]x1[2] ≥ 0∧[(-1)bso_109] ≥ 0)



    We simplified constraint (87) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (88)    ([1] + x1[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)Bound*bni_108 + (2)bni_108] + [bni_108]x1[2] ≥ 0∧[(-1)bso_109] ≥ 0)







For Pair COND_574_0_POWER_GT1(TRUE, x0, x1) → 574_0_POWER_GT(x0, -(x1, 1)) the following chains were created:
  • We consider the chain 574_0_POWER_GT(x0[2], x1[2]) → COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2]), COND_574_0_POWER_GT1(TRUE, x0[3], x1[3]) → 574_0_POWER_GT(x0[3], -(x1[3], 1)) which results in the following constraint:

    (89)    (&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2)))=TRUEx0[2]=x0[3]x1[2]=x1[3]COND_574_0_POWER_GT1(TRUE, x0[3], x1[3])≥NonInfC∧COND_574_0_POWER_GT1(TRUE, x0[3], x1[3])≥574_0_POWER_GT(x0[3], -(x1[3], 1))∧(UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥))



    We simplified constraint (89) using rules (III), (IDP_BOOLEAN) which results in the following new constraints:

    (90)    (>=(1, %(x1[2], 2))=TRUE<=(1, %(x1[2], 2))=TRUE>(x1[2], 0)=TRUE<(x0[2], 2)=TRUE<(x1[2], 1)=TRUECOND_574_0_POWER_GT1(TRUE, x0[2], x1[2])≥NonInfC∧COND_574_0_POWER_GT1(TRUE, x0[2], x1[2])≥574_0_POWER_GT(x0[2], -(x1[2], 1))∧(UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥))


    (91)    (>=(1, %(x1[2], 2))=TRUE<=(1, %(x1[2], 2))=TRUE>(x1[2], 0)=TRUE<(x0[2], 2)=TRUE>(x1[2], 1)=TRUECOND_574_0_POWER_GT1(TRUE, x0[2], x1[2])≥NonInfC∧COND_574_0_POWER_GT1(TRUE, x0[2], x1[2])≥574_0_POWER_GT(x0[2], -(x1[2], 1))∧(UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥))



    We simplified constraint (90) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (92)    ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧[-1]x1[2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_110 + (-1)Bound*bni_110] + [bni_110]x1[2] ≥ 0∧[(-1)bso_111] ≥ 0)



    We simplified constraint (91) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (93)    ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_110 + (-1)Bound*bni_110] + [bni_110]x1[2] ≥ 0∧[(-1)bso_111] ≥ 0)



    We simplified constraint (92) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (94)    ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧[-1]x1[2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_110 + (-1)Bound*bni_110] + [bni_110]x1[2] ≥ 0∧[(-1)bso_111] ≥ 0)



    We simplified constraint (93) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (95)    ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_110 + (-1)Bound*bni_110] + [bni_110]x1[2] ≥ 0∧[(-1)bso_111] ≥ 0)



    We simplified constraint (96) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (97)    ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧x0[2] + [-3] ≥ 0∧[-1]x1[2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_110 + (-1)Bound*bni_110] + [bni_110]x1[2] ≥ 0∧[(-1)bso_111] ≥ 0)



    We simplified constraint (98) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (99)    ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧x0[2] + [-3] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_110 + (-1)Bound*bni_110] + [bni_110]x1[2] ≥ 0∧[(-1)bso_111] ≥ 0)



    We solved constraint (94) using rule (POLY_REMOVE_MIN_MAX).We simplified constraint (95) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (100)    (x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] + [-2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_110 + (-1)Bound*bni_110] + [bni_110]x1[2] ≥ 0∧[(-1)bso_111] ≥ 0)



    We solved constraint (97) using rule (POLY_REMOVE_MIN_MAX).We simplified constraint (99) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (101)    (x1[2] + [-1] ≥ 0∧x0[2] + [-3] ≥ 0∧x1[2] + [-2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_110 + (-1)Bound*bni_110] + [bni_110]x1[2] ≥ 0∧[(-1)bso_111] ≥ 0)



    We simplified constraint (100) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (102)    (x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧[-1] + x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)Bound*bni_110] + [bni_110]x1[2] ≥ 0∧[(-1)bso_111] ≥ 0)



    We simplified constraint (101) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (103)    (x1[2] ≥ 0∧x0[2] + [-3] ≥ 0∧[-1] + x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)Bound*bni_110] + [bni_110]x1[2] ≥ 0∧[(-1)bso_111] ≥ 0)



    We simplified constraint (102) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (104)    ([1] + x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_110 + (-1)Bound*bni_110] + [bni_110]x1[2] ≥ 0∧[(-1)bso_111] ≥ 0)



    We simplified constraint (104) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (105)    ([1] + x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_110 + (-1)Bound*bni_110] + [bni_110]x1[2] ≥ 0∧[(-1)bso_111] ≥ 0)


    (106)    ([1] + x1[2] ≥ 0∧[1] + x0[2] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_110 + (-1)Bound*bni_110] + [bni_110]x1[2] ≥ 0∧[(-1)bso_111] ≥ 0)



    We simplified constraint (105) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (107)    ([1] + x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_110 + (-1)Bound*bni_110] + [bni_110]x1[2] ≥ 0∧[(-1)bso_111] ≥ 0)



    We simplified constraint (106) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (108)    ([1] + x1[2] ≥ 0∧[1] + x0[2] ≥ 0∧x1[2] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_110 + (-1)Bound*bni_110] + [bni_110]x1[2] ≥ 0∧[(-1)bso_111] ≥ 0)



    We simplified constraint (103) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (109)    ([1] + x1[2] ≥ 0∧x0[2] + [-3] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_110 + (-1)Bound*bni_110] + [bni_110]x1[2] ≥ 0∧[(-1)bso_111] ≥ 0)



    We simplified constraint (109) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (110)    ([1] + x1[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_110 + (-1)Bound*bni_110] + [bni_110]x1[2] ≥ 0∧[(-1)bso_111] ≥ 0)



    We simplified constraint (110) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (111)    ([1] + x1[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_110 + (-1)Bound*bni_110] + [bni_110]x1[2] ≥ 0∧[(-1)bso_111] ≥ 0)







For Pair 574_0_POWER_GT(x0, x1) → COND_574_0_POWER_GT(&&(&&(>(x1, 1), !(=(x0, 2))), !(=(%(x1, 2), 1))), x0, x1) the following chains were created:
  • We consider the chain 574_0_POWER_GT(x0[4], x1[4]) → COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4]), COND_574_0_POWER_GT(TRUE, x0[1], x1[1]) → 574_0_POWER_GT(x0[1], /(x1[1], 2)) which results in the following constraint:

    (112)    (&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1)))=TRUEx0[4]=x0[1]x1[4]=x1[1]574_0_POWER_GT(x0[4], x1[4])≥NonInfC∧574_0_POWER_GT(x0[4], x1[4])≥COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])∧(UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥))



    We simplified constraint (112) using rules (IV), (IDP_BOOLEAN) which results in the following new constraints:

    (113)    (>(x1[4], 1)=TRUE<(%(x1[4], 2), 1)=TRUE<(x0[4], 2)=TRUE574_0_POWER_GT(x0[4], x1[4])≥NonInfC∧574_0_POWER_GT(x0[4], x1[4])≥COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])∧(UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥))


    (114)    (>(x1[4], 1)=TRUE<(%(x1[4], 2), 1)=TRUE>(x0[4], 2)=TRUE574_0_POWER_GT(x0[4], x1[4])≥NonInfC∧574_0_POWER_GT(x0[4], x1[4])≥COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])∧(UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥))



    We simplified constraint (113) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (115)    (x1[4] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧[1] + [-1]x0[4] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)



    We simplified constraint (114) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (116)    (x1[4] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧x0[4] + [-3] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)



    We simplified constraint (115) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (117)    (x1[4] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧[1] + [-1]x0[4] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)



    We simplified constraint (116) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (118)    (x1[4] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧x0[4] + [-3] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)



    We simplified constraint (119) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (120)    (x1[4] + [-2] ≥ 0∧max{[2], [-2]} + [-2] ≥ 0∧[1] + [-1]x0[4] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)



    We simplified constraint (121) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (122)    (x1[4] + [-2] ≥ 0∧max{[2], [-2]} + [-2] ≥ 0∧x0[4] + [-3] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)



    We simplified constraint (117) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (123)    (x1[4] + [-2] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧[4] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)



    We simplified constraint (118) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (124)    (x1[4] + [-2] ≥ 0∧x0[4] + [-3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)



    We simplified constraint (120) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (125)    (x1[4] + [-2] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧[4] ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)



    We simplified constraint (122) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (126)    (x1[4] + [-2] ≥ 0∧x0[4] + [-3] ≥ 0∧[4] ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)



    We simplified constraint (123) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (127)    (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧[4] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112 + (2)bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)



    We simplified constraint (124) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (128)    (x1[4] ≥ 0∧x0[4] + [-3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112 + (2)bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)



    We simplified constraint (125) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (129)    (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧[4] ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112 + (2)bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)



    We simplified constraint (126) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (130)    (x1[4] ≥ 0∧x0[4] + [-3] ≥ 0∧[4] ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112 + (2)bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)



    We simplified constraint (127) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (131)    (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112 + (2)bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)


    (132)    (x1[4] ≥ 0∧[1] + x0[4] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112 + (2)bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)



    We simplified constraint (131) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (133)    (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112 + (2)bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)



    We simplified constraint (132) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (134)    (x1[4] ≥ 0∧[1] + x0[4] ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112 + (2)bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)



    We simplified constraint (128) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (135)    (x1[4] ≥ 0∧x0[4] ≥ 0∧[4] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112 + (2)bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)



    We simplified constraint (135) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (136)    (x1[4] ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112 + (2)bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)



    We simplified constraint (129) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (137)    (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112 + (2)bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)


    (138)    (x1[4] ≥ 0∧[1] + x0[4] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112 + (2)bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)



    We simplified constraint (137) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (139)    (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧0 ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112 + (2)bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)



    We simplified constraint (138) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (140)    (x1[4] ≥ 0∧[1] + x0[4] ≥ 0∧0 ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112 + (2)bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)



    We simplified constraint (130) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (141)    (x1[4] ≥ 0∧x0[4] ≥ 0∧[4] ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112 + (2)bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)



    We simplified constraint (141) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (142)    (x1[4] ≥ 0∧x0[4] ≥ 0∧0 ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112 + (2)bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)







For Pair 574_0_POWER_GT(x0, x1) → COND_574_0_POWER_GT3(&&(&&(>(x1, 1), !(=(x0, 2))), =(0, %(x1, 2))), x0, x1) the following chains were created:
  • We consider the chain 574_0_POWER_GT(x0[5], x1[5]) → COND_574_0_POWER_GT3(&&(&&(>(x1[5], 1), !(=(x0[5], 2))), =(0, %(x1[5], 2))), x0[5], x1[5]), COND_574_0_POWER_GT3(TRUE, x0[6], x1[6]) → 574_0_POWER_GT(x0[6], /(x1[6], 2)) which results in the following constraint:

    (143)    (&&(&&(>(x1[5], 1), !(=(x0[5], 2))), =(0, %(x1[5], 2)))=TRUEx0[5]=x0[6]x1[5]=x1[6]574_0_POWER_GT(x0[5], x1[5])≥NonInfC∧574_0_POWER_GT(x0[5], x1[5])≥COND_574_0_POWER_GT3(&&(&&(>(x1[5], 1), !(=(x0[5], 2))), =(0, %(x1[5], 2))), x0[5], x1[5])∧(UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[5], 1), !(=(x0[5], 2))), =(0, %(x1[5], 2))), x0[5], x1[5])), ≥))



    We simplified constraint (143) using rules (IV), (IDP_BOOLEAN) which results in the following new constraints:

    (144)    (>(x1[5], 1)=TRUE>=(0, %(x1[5], 2))=TRUE<=(0, %(x1[5], 2))=TRUE<(x0[5], 2)=TRUE574_0_POWER_GT(x0[5], x1[5])≥NonInfC∧574_0_POWER_GT(x0[5], x1[5])≥COND_574_0_POWER_GT3(&&(&&(>(x1[5], 1), !(=(x0[5], 2))), =(0, %(x1[5], 2))), x0[5], x1[5])∧(UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[5], 1), !(=(x0[5], 2))), =(0, %(x1[5], 2))), x0[5], x1[5])), ≥))


    (145)    (>(x1[5], 1)=TRUE>=(0, %(x1[5], 2))=TRUE<=(0, %(x1[5], 2))=TRUE>(x0[5], 2)=TRUE574_0_POWER_GT(x0[5], x1[5])≥NonInfC∧574_0_POWER_GT(x0[5], x1[5])≥COND_574_0_POWER_GT3(&&(&&(>(x1[5], 1), !(=(x0[5], 2))), =(0, %(x1[5], 2))), x0[5], x1[5])∧(UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[5], 1), !(=(x0[5], 2))), =(0, %(x1[5], 2))), x0[5], x1[5])), ≥))



    We simplified constraint (144) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (146)    (x1[5] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧[1] + [-1]x0[5] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[5], 1), !(=(x0[5], 2))), =(0, %(x1[5], 2))), x0[5], x1[5])), ≥)∧[(-1)Bound*bni_114] + [bni_114]x1[5] ≥ 0∧[1 + (-1)bso_115] ≥ 0)



    We simplified constraint (145) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (147)    (x1[5] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧x0[5] + [-3] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[5], 1), !(=(x0[5], 2))), =(0, %(x1[5], 2))), x0[5], x1[5])), ≥)∧[(-1)Bound*bni_114] + [bni_114]x1[5] ≥ 0∧[1 + (-1)bso_115] ≥ 0)



    We simplified constraint (146) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (148)    (x1[5] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧[1] + [-1]x0[5] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[5], 1), !(=(x0[5], 2))), =(0, %(x1[5], 2))), x0[5], x1[5])), ≥)∧[(-1)Bound*bni_114] + [bni_114]x1[5] ≥ 0∧[1 + (-1)bso_115] ≥ 0)



    We simplified constraint (147) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (149)    (x1[5] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧x0[5] + [-3] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[5], 1), !(=(x0[5], 2))), =(0, %(x1[5], 2))), x0[5], x1[5])), ≥)∧[(-1)Bound*bni_114] + [bni_114]x1[5] ≥ 0∧[1 + (-1)bso_115] ≥ 0)



    We simplified constraint (148) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (150)    (x1[5] + [-2] ≥ 0∧[1] + [-1]x0[5] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[5], 1), !(=(x0[5], 2))), =(0, %(x1[5], 2))), x0[5], x1[5])), ≥)∧[(-1)Bound*bni_114] + [bni_114]x1[5] ≥ 0∧[1 + (-1)bso_115] ≥ 0)



    We simplified constraint (149) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (151)    (x1[5] + [-2] ≥ 0∧x0[5] + [-3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[5], 1), !(=(x0[5], 2))), =(0, %(x1[5], 2))), x0[5], x1[5])), ≥)∧[(-1)Bound*bni_114] + [bni_114]x1[5] ≥ 0∧[1 + (-1)bso_115] ≥ 0)



    We simplified constraint (150) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (152)    (x1[5] ≥ 0∧[1] + [-1]x0[5] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[5], 1), !(=(x0[5], 2))), =(0, %(x1[5], 2))), x0[5], x1[5])), ≥)∧[(-1)Bound*bni_114 + (2)bni_114] + [bni_114]x1[5] ≥ 0∧[1 + (-1)bso_115] ≥ 0)



    We simplified constraint (151) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (153)    (x1[5] ≥ 0∧x0[5] + [-3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[5], 1), !(=(x0[5], 2))), =(0, %(x1[5], 2))), x0[5], x1[5])), ≥)∧[(-1)Bound*bni_114 + (2)bni_114] + [bni_114]x1[5] ≥ 0∧[1 + (-1)bso_115] ≥ 0)



    We simplified constraint (152) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (154)    (x1[5] ≥ 0∧[1] + [-1]x0[5] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧x0[5] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[5], 1), !(=(x0[5], 2))), =(0, %(x1[5], 2))), x0[5], x1[5])), ≥)∧[(-1)Bound*bni_114 + (2)bni_114] + [bni_114]x1[5] ≥ 0∧[1 + (-1)bso_115] ≥ 0)


    (155)    (x1[5] ≥ 0∧[1] + x0[5] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧x0[5] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[5], 1), !(=(x0[5], 2))), =(0, %(x1[5], 2))), x0[5], x1[5])), ≥)∧[(-1)Bound*bni_114 + (2)bni_114] + [bni_114]x1[5] ≥ 0∧[1 + (-1)bso_115] ≥ 0)



    We simplified constraint (154) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (156)    (x1[5] ≥ 0∧[1] + [-1]x0[5] ≥ 0∧x0[5] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[5], 1), !(=(x0[5], 2))), =(0, %(x1[5], 2))), x0[5], x1[5])), ≥)∧[(-1)Bound*bni_114 + (2)bni_114] + [bni_114]x1[5] ≥ 0∧[1 + (-1)bso_115] ≥ 0)



    We simplified constraint (155) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (157)    (x1[5] ≥ 0∧[1] + x0[5] ≥ 0∧x0[5] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[5], 1), !(=(x0[5], 2))), =(0, %(x1[5], 2))), x0[5], x1[5])), ≥)∧[(-1)Bound*bni_114 + (2)bni_114] + [bni_114]x1[5] ≥ 0∧[1 + (-1)bso_115] ≥ 0)



    We simplified constraint (153) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (158)    (x1[5] ≥ 0∧x0[5] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[5], 1), !(=(x0[5], 2))), =(0, %(x1[5], 2))), x0[5], x1[5])), ≥)∧[(-1)Bound*bni_114 + (2)bni_114] + [bni_114]x1[5] ≥ 0∧[1 + (-1)bso_115] ≥ 0)



    We simplified constraint (158) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (159)    (x1[5] ≥ 0∧x0[5] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[5], 1), !(=(x0[5], 2))), =(0, %(x1[5], 2))), x0[5], x1[5])), ≥)∧[(-1)Bound*bni_114 + (2)bni_114] + [bni_114]x1[5] ≥ 0∧[1 + (-1)bso_115] ≥ 0)







For Pair COND_574_0_POWER_GT3(TRUE, x0, x1) → 574_0_POWER_GT(x0, /(x1, 2)) the following chains were created:
  • We consider the chain 574_0_POWER_GT(x0[5], x1[5]) → COND_574_0_POWER_GT3(&&(&&(>(x1[5], 1), !(=(x0[5], 2))), =(0, %(x1[5], 2))), x0[5], x1[5]), COND_574_0_POWER_GT3(TRUE, x0[6], x1[6]) → 574_0_POWER_GT(x0[6], /(x1[6], 2)) which results in the following constraint:

    (160)    (&&(&&(>(x1[5], 1), !(=(x0[5], 2))), =(0, %(x1[5], 2)))=TRUEx0[5]=x0[6]x1[5]=x1[6]COND_574_0_POWER_GT3(TRUE, x0[6], x1[6])≥NonInfC∧COND_574_0_POWER_GT3(TRUE, x0[6], x1[6])≥574_0_POWER_GT(x0[6], /(x1[6], 2))∧(UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥))



    We simplified constraint (160) using rules (III), (IDP_BOOLEAN) which results in the following new constraints:

    (161)    (>(x1[5], 1)=TRUE>=(0, %(x1[5], 2))=TRUE<=(0, %(x1[5], 2))=TRUE<(x0[5], 2)=TRUECOND_574_0_POWER_GT3(TRUE, x0[5], x1[5])≥NonInfC∧COND_574_0_POWER_GT3(TRUE, x0[5], x1[5])≥574_0_POWER_GT(x0[5], /(x1[5], 2))∧(UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥))


    (162)    (>(x1[5], 1)=TRUE>=(0, %(x1[5], 2))=TRUE<=(0, %(x1[5], 2))=TRUE>(x0[5], 2)=TRUECOND_574_0_POWER_GT3(TRUE, x0[5], x1[5])≥NonInfC∧COND_574_0_POWER_GT3(TRUE, x0[5], x1[5])≥574_0_POWER_GT(x0[5], /(x1[5], 2))∧(UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥))



    We simplified constraint (161) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (163)    (x1[5] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧[1] + [-1]x0[5] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[(-1)bni_116 + (-1)Bound*bni_116] + [bni_116]x1[5] ≥ 0∧[(-1)bso_117] + x1[5] + [-1]max{x1[5], [-1]x1[5]} ≥ 0)



    We simplified constraint (162) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (164)    (x1[5] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧x0[5] + [-3] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[(-1)bni_116 + (-1)Bound*bni_116] + [bni_116]x1[5] ≥ 0∧[(-1)bso_117] + x1[5] + [-1]max{x1[5], [-1]x1[5]} ≥ 0)



    We simplified constraint (163) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (165)    (x1[5] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧[1] + [-1]x0[5] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[(-1)bni_116 + (-1)Bound*bni_116] + [bni_116]x1[5] ≥ 0∧[(-1)bso_117] + x1[5] + [-1]max{x1[5], [-1]x1[5]} ≥ 0)



    We simplified constraint (164) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (166)    (x1[5] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧x0[5] + [-3] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[(-1)bni_116 + (-1)Bound*bni_116] + [bni_116]x1[5] ≥ 0∧[(-1)bso_117] + x1[5] + [-1]max{x1[5], [-1]x1[5]} ≥ 0)



    We simplified constraint (165) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (167)    (x1[5] + [-2] ≥ 0∧[1] + [-1]x0[5] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[2]x1[5] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[(-1)bni_116 + (-1)Bound*bni_116] + [bni_116]x1[5] ≥ 0∧[(-1)bso_117] ≥ 0)



    We simplified constraint (166) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (168)    (x1[5] + [-2] ≥ 0∧x0[5] + [-3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[2]x1[5] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[(-1)bni_116 + (-1)Bound*bni_116] + [bni_116]x1[5] ≥ 0∧[(-1)bso_117] ≥ 0)



    We simplified constraint (167) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (169)    (x1[5] ≥ 0∧[1] + [-1]x0[5] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[5] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[5] ≥ 0∧[(-1)bso_117] ≥ 0)



    We simplified constraint (168) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (170)    (x1[5] ≥ 0∧x0[5] + [-3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[5] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[5] ≥ 0∧[(-1)bso_117] ≥ 0)



    We simplified constraint (169) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (171)    (x1[5] ≥ 0∧[1] + [-1]x0[5] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[5] ≥ 0∧x0[5] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[5] ≥ 0∧[(-1)bso_117] ≥ 0)


    (172)    (x1[5] ≥ 0∧[1] + x0[5] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[5] ≥ 0∧x0[5] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[5] ≥ 0∧[(-1)bso_117] ≥ 0)



    We simplified constraint (171) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (173)    (x1[5] ≥ 0∧[1] + [-1]x0[5] ≥ 0∧x0[5] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x1[5] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[5] ≥ 0∧[(-1)bso_117] ≥ 0)



    We simplified constraint (172) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (174)    (x1[5] ≥ 0∧[1] + x0[5] ≥ 0∧x0[5] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x1[5] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[5] ≥ 0∧[(-1)bso_117] ≥ 0)



    We simplified constraint (170) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (175)    (x1[5] ≥ 0∧x0[5] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[5] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[5] ≥ 0∧[(-1)bso_117] ≥ 0)



    We simplified constraint (175) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (176)    (x1[5] ≥ 0∧x0[5] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x1[5] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[5] ≥ 0∧[(-1)bso_117] ≥ 0)



  • We consider the chain 574_0_POWER_GT(x0[9], x1[9]) → COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9]), COND_574_0_POWER_GT3(TRUE, x0[6], x1[6]) → 574_0_POWER_GT(x0[6], /(x1[6], 2)) which results in the following constraint:

    (177)    (&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1)))=TRUEx0[9]=x0[6]x1[9]=x1[6]COND_574_0_POWER_GT3(TRUE, x0[6], x1[6])≥NonInfC∧COND_574_0_POWER_GT3(TRUE, x0[6], x1[6])≥574_0_POWER_GT(x0[6], /(x1[6], 2))∧(UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥))



    We simplified constraint (177) using rules (III), (IDP_BOOLEAN) which results in the following new constraints:

    (178)    (>(x1[9], 1)=TRUE<(%(x1[9], 2), 1)=TRUE<(x0[9], 2)=TRUECOND_574_0_POWER_GT3(TRUE, x0[9], x1[9])≥NonInfC∧COND_574_0_POWER_GT3(TRUE, x0[9], x1[9])≥574_0_POWER_GT(x0[9], /(x1[9], 2))∧(UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥))


    (179)    (>(x1[9], 1)=TRUE<(%(x1[9], 2), 1)=TRUE>(x0[9], 2)=TRUECOND_574_0_POWER_GT3(TRUE, x0[9], x1[9])≥NonInfC∧COND_574_0_POWER_GT3(TRUE, x0[9], x1[9])≥574_0_POWER_GT(x0[9], /(x1[9], 2))∧(UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥))



    We simplified constraint (178) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (180)    (x1[9] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧[1] + [-1]x0[9] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[(-1)bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] + x1[9] + [-1]max{x1[9], [-1]x1[9]} ≥ 0)



    We simplified constraint (179) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (181)    (x1[9] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧x0[9] + [-3] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[(-1)bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] + x1[9] + [-1]max{x1[9], [-1]x1[9]} ≥ 0)



    We simplified constraint (180) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (182)    (x1[9] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧[1] + [-1]x0[9] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[(-1)bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] + x1[9] + [-1]max{x1[9], [-1]x1[9]} ≥ 0)



    We simplified constraint (181) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (183)    (x1[9] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧x0[9] + [-3] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[(-1)bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] + x1[9] + [-1]max{x1[9], [-1]x1[9]} ≥ 0)



    We simplified constraint (184) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (185)    (x1[9] + [-2] ≥ 0∧max{[2], [-2]} + [-2] ≥ 0∧[1] + [-1]x0[9] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[(-1)bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] + x1[9] + [-1]max{x1[9], [-1]x1[9]} ≥ 0)



    We simplified constraint (186) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (187)    (x1[9] + [-2] ≥ 0∧max{[2], [-2]} + [-2] ≥ 0∧x0[9] + [-3] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[(-1)bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] + x1[9] + [-1]max{x1[9], [-1]x1[9]} ≥ 0)



    We simplified constraint (182) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (188)    (x1[9] + [-2] ≥ 0∧[1] + [-1]x0[9] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2]x1[9] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[(-1)bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] ≥ 0)



    We simplified constraint (183) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (189)    (x1[9] + [-2] ≥ 0∧x0[9] + [-3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2]x1[9] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[(-1)bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] ≥ 0)



    We simplified constraint (185) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (190)    (x1[9] + [-2] ≥ 0∧[1] + [-1]x0[9] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧[2]x1[9] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[(-1)bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] ≥ 0)



    We simplified constraint (187) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (191)    (x1[9] + [-2] ≥ 0∧x0[9] + [-3] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧[2]x1[9] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[(-1)bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] ≥ 0)



    We simplified constraint (188) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (192)    (x1[9] ≥ 0∧[1] + [-1]x0[9] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[9] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] ≥ 0)



    We simplified constraint (189) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (193)    (x1[9] ≥ 0∧x0[9] + [-3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[9] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] ≥ 0)



    We simplified constraint (190) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (194)    (x1[9] ≥ 0∧[1] + [-1]x0[9] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧[4] + [2]x1[9] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] ≥ 0)



    We simplified constraint (191) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (195)    (x1[9] ≥ 0∧x0[9] + [-3] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧[4] + [2]x1[9] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] ≥ 0)



    We simplified constraint (192) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (196)    (x1[9] ≥ 0∧[1] + [-1]x0[9] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[9] ≥ 0∧x0[9] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] ≥ 0)


    (197)    (x1[9] ≥ 0∧[1] + x0[9] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[9] ≥ 0∧x0[9] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] ≥ 0)



    We simplified constraint (196) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (198)    (x1[9] ≥ 0∧[1] + [-1]x0[9] ≥ 0∧x0[9] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x1[9] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] ≥ 0)



    We simplified constraint (197) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (199)    (x1[9] ≥ 0∧[1] + x0[9] ≥ 0∧x0[9] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x1[9] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] ≥ 0)



    We simplified constraint (193) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (200)    (x1[9] ≥ 0∧x0[9] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[9] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] ≥ 0)



    We simplified constraint (200) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (201)    (x1[9] ≥ 0∧x0[9] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x1[9] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] ≥ 0)



    We simplified constraint (194) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (202)    (x1[9] ≥ 0∧[1] + [-1]x0[9] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧[4] + [2]x1[9] ≥ 0∧x0[9] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] ≥ 0)


    (203)    (x1[9] ≥ 0∧[1] + x0[9] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧[4] + [2]x1[9] ≥ 0∧x0[9] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] ≥ 0)



    We simplified constraint (202) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (204)    (x1[9] ≥ 0∧[1] + [-1]x0[9] ≥ 0∧0 ≥ 0∧x0[9] ≥ 0∧[1] ≥ 0∧[2] + x1[9] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] ≥ 0)



    We simplified constraint (203) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (205)    (x1[9] ≥ 0∧[1] + x0[9] ≥ 0∧0 ≥ 0∧x0[9] ≥ 0∧[1] ≥ 0∧[2] + x1[9] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] ≥ 0)



    We simplified constraint (195) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (206)    (x1[9] ≥ 0∧x0[9] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧[4] + [2]x1[9] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] ≥ 0)



    We simplified constraint (206) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (207)    (x1[9] ≥ 0∧x0[9] ≥ 0∧0 ≥ 0∧[1] ≥ 0∧[2] + x1[9] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] ≥ 0)







For Pair 574_0_POWER_GT(x0, x1) → COND_574_0_POWER_GT4(&&(&&(&&(>(x1, 0), !(=(x1, 1))), !(=(x0, 2))), =(1, %(x1, 2))), x0, x1) the following chains were created:
  • We consider the chain 574_0_POWER_GT(x0[7], x1[7]) → COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7]), COND_574_0_POWER_GT4(TRUE, x0[8], x1[8]) → 574_0_POWER_GT(x0[8], -(x1[8], 1)) which results in the following constraint:

    (208)    (&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2)))=TRUEx0[7]=x0[8]x1[7]=x1[8]574_0_POWER_GT(x0[7], x1[7])≥NonInfC∧574_0_POWER_GT(x0[7], x1[7])≥COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])∧(UIncreasing(COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])), ≥))



    We simplified constraint (208) using rules (IV), (IDP_BOOLEAN) which results in the following new constraints:

    (209)    (>=(1, %(x1[7], 2))=TRUE<=(1, %(x1[7], 2))=TRUE>(x1[7], 0)=TRUE<(x0[7], 2)=TRUE<(x1[7], 1)=TRUE574_0_POWER_GT(x0[7], x1[7])≥NonInfC∧574_0_POWER_GT(x0[7], x1[7])≥COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])∧(UIncreasing(COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])), ≥))


    (210)    (>=(1, %(x1[7], 2))=TRUE<=(1, %(x1[7], 2))=TRUE>(x1[7], 0)=TRUE<(x0[7], 2)=TRUE>(x1[7], 1)=TRUE574_0_POWER_GT(x0[7], x1[7])≥NonInfC∧574_0_POWER_GT(x0[7], x1[7])≥COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])∧(UIncreasing(COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])), ≥))



    We simplified constraint (209) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (211)    ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[7] + [-1] ≥ 0∧[1] + [-1]x0[7] ≥ 0∧[-1]x1[7] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])), ≥)∧[(-1)Bound*bni_118] + [bni_118]x1[7] ≥ 0∧[1 + (-1)bso_119] ≥ 0)



    We simplified constraint (210) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (212)    ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[7] + [-1] ≥ 0∧[1] + [-1]x0[7] ≥ 0∧x1[7] + [-2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])), ≥)∧[(-1)Bound*bni_118] + [bni_118]x1[7] ≥ 0∧[1 + (-1)bso_119] ≥ 0)



    We simplified constraint (211) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (213)    ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[7] + [-1] ≥ 0∧[1] + [-1]x0[7] ≥ 0∧[-1]x1[7] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])), ≥)∧[(-1)Bound*bni_118] + [bni_118]x1[7] ≥ 0∧[1 + (-1)bso_119] ≥ 0)



    We simplified constraint (212) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (214)    ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[7] + [-1] ≥ 0∧[1] + [-1]x0[7] ≥ 0∧x1[7] + [-2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])), ≥)∧[(-1)Bound*bni_118] + [bni_118]x1[7] ≥ 0∧[1 + (-1)bso_119] ≥ 0)



    We simplified constraint (215) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (216)    ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[7] + [-1] ≥ 0∧x0[7] + [-3] ≥ 0∧[-1]x1[7] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])), ≥)∧[(-1)Bound*bni_118] + [bni_118]x1[7] ≥ 0∧[1 + (-1)bso_119] ≥ 0)



    We simplified constraint (217) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (218)    ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[7] + [-1] ≥ 0∧x0[7] + [-3] ≥ 0∧x1[7] + [-2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])), ≥)∧[(-1)Bound*bni_118] + [bni_118]x1[7] ≥ 0∧[1 + (-1)bso_119] ≥ 0)



    We solved constraint (213) using rule (POLY_REMOVE_MIN_MAX).We simplified constraint (214) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (219)    (x1[7] + [-1] ≥ 0∧[1] + [-1]x0[7] ≥ 0∧x1[7] + [-2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])), ≥)∧[(-1)Bound*bni_118] + [bni_118]x1[7] ≥ 0∧[1 + (-1)bso_119] ≥ 0)



    We solved constraint (216) using rule (POLY_REMOVE_MIN_MAX).We simplified constraint (218) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (220)    (x1[7] + [-1] ≥ 0∧x0[7] + [-3] ≥ 0∧x1[7] + [-2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])), ≥)∧[(-1)Bound*bni_118] + [bni_118]x1[7] ≥ 0∧[1 + (-1)bso_119] ≥ 0)



    We simplified constraint (219) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (221)    (x1[7] ≥ 0∧[1] + [-1]x0[7] ≥ 0∧[-1] + x1[7] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])), ≥)∧[(-1)Bound*bni_118 + bni_118] + [bni_118]x1[7] ≥ 0∧[1 + (-1)bso_119] ≥ 0)



    We simplified constraint (220) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (222)    (x1[7] ≥ 0∧x0[7] + [-3] ≥ 0∧[-1] + x1[7] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])), ≥)∧[(-1)Bound*bni_118 + bni_118] + [bni_118]x1[7] ≥ 0∧[1 + (-1)bso_119] ≥ 0)



    We simplified constraint (221) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (223)    ([1] + x1[7] ≥ 0∧[1] + [-1]x0[7] ≥ 0∧x1[7] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])), ≥)∧[(-1)Bound*bni_118 + (2)bni_118] + [bni_118]x1[7] ≥ 0∧[1 + (-1)bso_119] ≥ 0)



    We simplified constraint (223) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (224)    ([1] + x1[7] ≥ 0∧[1] + [-1]x0[7] ≥ 0∧x1[7] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0∧x0[7] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])), ≥)∧[(-1)Bound*bni_118 + (2)bni_118] + [bni_118]x1[7] ≥ 0∧[1 + (-1)bso_119] ≥ 0)


    (225)    ([1] + x1[7] ≥ 0∧[1] + x0[7] ≥ 0∧x1[7] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0∧x0[7] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])), ≥)∧[(-1)Bound*bni_118 + (2)bni_118] + [bni_118]x1[7] ≥ 0∧[1 + (-1)bso_119] ≥ 0)



    We simplified constraint (224) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (226)    ([1] + x1[7] ≥ 0∧[1] + [-1]x0[7] ≥ 0∧x1[7] ≥ 0∧[1] ≥ 0∧x0[7] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])), ≥)∧[(-1)Bound*bni_118 + (2)bni_118] + [bni_118]x1[7] ≥ 0∧[1 + (-1)bso_119] ≥ 0)



    We simplified constraint (225) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (227)    ([1] + x1[7] ≥ 0∧[1] + x0[7] ≥ 0∧x1[7] ≥ 0∧[1] ≥ 0∧x0[7] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])), ≥)∧[(-1)Bound*bni_118 + (2)bni_118] + [bni_118]x1[7] ≥ 0∧[1 + (-1)bso_119] ≥ 0)



    We simplified constraint (222) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (228)    ([1] + x1[7] ≥ 0∧x0[7] + [-3] ≥ 0∧x1[7] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])), ≥)∧[(-1)Bound*bni_118 + (2)bni_118] + [bni_118]x1[7] ≥ 0∧[1 + (-1)bso_119] ≥ 0)



    We simplified constraint (228) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (229)    ([1] + x1[7] ≥ 0∧x0[7] ≥ 0∧x1[7] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])), ≥)∧[(-1)Bound*bni_118 + (2)bni_118] + [bni_118]x1[7] ≥ 0∧[1 + (-1)bso_119] ≥ 0)



    We simplified constraint (229) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (230)    ([1] + x1[7] ≥ 0∧x0[7] ≥ 0∧x1[7] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])), ≥)∧[(-1)Bound*bni_118 + (2)bni_118] + [bni_118]x1[7] ≥ 0∧[1 + (-1)bso_119] ≥ 0)







For Pair COND_574_0_POWER_GT4(TRUE, x0, x1) → 574_0_POWER_GT(x0, -(x1, 1)) the following chains were created:
  • We consider the chain 574_0_POWER_GT(x0[7], x1[7]) → COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7]), COND_574_0_POWER_GT4(TRUE, x0[8], x1[8]) → 574_0_POWER_GT(x0[8], -(x1[8], 1)) which results in the following constraint:

    (231)    (&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2)))=TRUEx0[7]=x0[8]x1[7]=x1[8]COND_574_0_POWER_GT4(TRUE, x0[8], x1[8])≥NonInfC∧COND_574_0_POWER_GT4(TRUE, x0[8], x1[8])≥574_0_POWER_GT(x0[8], -(x1[8], 1))∧(UIncreasing(574_0_POWER_GT(x0[8], -(x1[8], 1))), ≥))



    We simplified constraint (231) using rules (III), (IDP_BOOLEAN) which results in the following new constraints:

    (232)    (>=(1, %(x1[7], 2))=TRUE<=(1, %(x1[7], 2))=TRUE>(x1[7], 0)=TRUE<(x0[7], 2)=TRUE<(x1[7], 1)=TRUECOND_574_0_POWER_GT4(TRUE, x0[7], x1[7])≥NonInfC∧COND_574_0_POWER_GT4(TRUE, x0[7], x1[7])≥574_0_POWER_GT(x0[7], -(x1[7], 1))∧(UIncreasing(574_0_POWER_GT(x0[8], -(x1[8], 1))), ≥))


    (233)    (>=(1, %(x1[7], 2))=TRUE<=(1, %(x1[7], 2))=TRUE>(x1[7], 0)=TRUE<(x0[7], 2)=TRUE>(x1[7], 1)=TRUECOND_574_0_POWER_GT4(TRUE, x0[7], x1[7])≥NonInfC∧COND_574_0_POWER_GT4(TRUE, x0[7], x1[7])≥574_0_POWER_GT(x0[7], -(x1[7], 1))∧(UIncreasing(574_0_POWER_GT(x0[8], -(x1[8], 1))), ≥))



    We simplified constraint (232) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (234)    ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[7] + [-1] ≥ 0∧[1] + [-1]x0[7] ≥ 0∧[-1]x1[7] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[8], -(x1[8], 1))), ≥)∧[(-1)bni_120 + (-1)Bound*bni_120] + [bni_120]x1[7] ≥ 0∧[(-1)bso_121] ≥ 0)



    We simplified constraint (233) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (235)    ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[7] + [-1] ≥ 0∧[1] + [-1]x0[7] ≥ 0∧x1[7] + [-2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[8], -(x1[8], 1))), ≥)∧[(-1)bni_120 + (-1)Bound*bni_120] + [bni_120]x1[7] ≥ 0∧[(-1)bso_121] ≥ 0)



    We simplified constraint (234) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (236)    ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[7] + [-1] ≥ 0∧[1] + [-1]x0[7] ≥ 0∧[-1]x1[7] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[8], -(x1[8], 1))), ≥)∧[(-1)bni_120 + (-1)Bound*bni_120] + [bni_120]x1[7] ≥ 0∧[(-1)bso_121] ≥ 0)



    We simplified constraint (235) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (237)    ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[7] + [-1] ≥ 0∧[1] + [-1]x0[7] ≥ 0∧x1[7] + [-2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[8], -(x1[8], 1))), ≥)∧[(-1)bni_120 + (-1)Bound*bni_120] + [bni_120]x1[7] ≥ 0∧[(-1)bso_121] ≥ 0)



    We simplified constraint (238) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (239)    ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[7] + [-1] ≥ 0∧x0[7] + [-3] ≥ 0∧[-1]x1[7] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[8], -(x1[8], 1))), ≥)∧[(-1)bni_120 + (-1)Bound*bni_120] + [bni_120]x1[7] ≥ 0∧[(-1)bso_121] ≥ 0)



    We simplified constraint (240) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (241)    ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[7] + [-1] ≥ 0∧x0[7] + [-3] ≥ 0∧x1[7] + [-2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[8], -(x1[8], 1))), ≥)∧[(-1)bni_120 + (-1)Bound*bni_120] + [bni_120]x1[7] ≥ 0∧[(-1)bso_121] ≥ 0)



    We solved constraint (236) using rule (POLY_REMOVE_MIN_MAX).We simplified constraint (237) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (242)    (x1[7] + [-1] ≥ 0∧[1] + [-1]x0[7] ≥ 0∧x1[7] + [-2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[8], -(x1[8], 1))), ≥)∧[(-1)bni_120 + (-1)Bound*bni_120] + [bni_120]x1[7] ≥ 0∧[(-1)bso_121] ≥ 0)



    We solved constraint (239) using rule (POLY_REMOVE_MIN_MAX).We simplified constraint (241) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (243)    (x1[7] + [-1] ≥ 0∧x0[7] + [-3] ≥ 0∧x1[7] + [-2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[8], -(x1[8], 1))), ≥)∧[(-1)bni_120 + (-1)Bound*bni_120] + [bni_120]x1[7] ≥ 0∧[(-1)bso_121] ≥ 0)



    We simplified constraint (242) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (244)    (x1[7] ≥ 0∧[1] + [-1]x0[7] ≥ 0∧[-1] + x1[7] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[8], -(x1[8], 1))), ≥)∧[(-1)Bound*bni_120] + [bni_120]x1[7] ≥ 0∧[(-1)bso_121] ≥ 0)



    We simplified constraint (243) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (245)    (x1[7] ≥ 0∧x0[7] + [-3] ≥ 0∧[-1] + x1[7] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[8], -(x1[8], 1))), ≥)∧[(-1)Bound*bni_120] + [bni_120]x1[7] ≥ 0∧[(-1)bso_121] ≥ 0)



    We simplified constraint (244) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (246)    ([1] + x1[7] ≥ 0∧[1] + [-1]x0[7] ≥ 0∧x1[7] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[8], -(x1[8], 1))), ≥)∧[bni_120 + (-1)Bound*bni_120] + [bni_120]x1[7] ≥ 0∧[(-1)bso_121] ≥ 0)



    We simplified constraint (246) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (247)    ([1] + x1[7] ≥ 0∧[1] + [-1]x0[7] ≥ 0∧x1[7] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0∧x0[7] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[8], -(x1[8], 1))), ≥)∧[bni_120 + (-1)Bound*bni_120] + [bni_120]x1[7] ≥ 0∧[(-1)bso_121] ≥ 0)


    (248)    ([1] + x1[7] ≥ 0∧[1] + x0[7] ≥ 0∧x1[7] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0∧x0[7] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[8], -(x1[8], 1))), ≥)∧[bni_120 + (-1)Bound*bni_120] + [bni_120]x1[7] ≥ 0∧[(-1)bso_121] ≥ 0)



    We simplified constraint (247) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (249)    ([1] + x1[7] ≥ 0∧[1] + [-1]x0[7] ≥ 0∧x1[7] ≥ 0∧[1] ≥ 0∧x0[7] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[8], -(x1[8], 1))), ≥)∧[bni_120 + (-1)Bound*bni_120] + [bni_120]x1[7] ≥ 0∧[(-1)bso_121] ≥ 0)



    We simplified constraint (248) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (250)    ([1] + x1[7] ≥ 0∧[1] + x0[7] ≥ 0∧x1[7] ≥ 0∧[1] ≥ 0∧x0[7] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[8], -(x1[8], 1))), ≥)∧[bni_120 + (-1)Bound*bni_120] + [bni_120]x1[7] ≥ 0∧[(-1)bso_121] ≥ 0)



    We simplified constraint (245) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (251)    ([1] + x1[7] ≥ 0∧x0[7] + [-3] ≥ 0∧x1[7] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[8], -(x1[8], 1))), ≥)∧[bni_120 + (-1)Bound*bni_120] + [bni_120]x1[7] ≥ 0∧[(-1)bso_121] ≥ 0)



    We simplified constraint (251) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (252)    ([1] + x1[7] ≥ 0∧x0[7] ≥ 0∧x1[7] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[8], -(x1[8], 1))), ≥)∧[bni_120 + (-1)Bound*bni_120] + [bni_120]x1[7] ≥ 0∧[(-1)bso_121] ≥ 0)



    We simplified constraint (252) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (253)    ([1] + x1[7] ≥ 0∧x0[7] ≥ 0∧x1[7] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[8], -(x1[8], 1))), ≥)∧[bni_120 + (-1)Bound*bni_120] + [bni_120]x1[7] ≥ 0∧[(-1)bso_121] ≥ 0)







For Pair 574_0_POWER_GT(x0, x1) → COND_574_0_POWER_GT3(&&(&&(>(x1, 1), !(=(x0, 2))), !(=(%(x1, 2), 1))), x0, x1) the following chains were created:
  • We consider the chain 574_0_POWER_GT(x0[9], x1[9]) → COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9]), COND_574_0_POWER_GT3(TRUE, x0[6], x1[6]) → 574_0_POWER_GT(x0[6], /(x1[6], 2)) which results in the following constraint:

    (254)    (&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1)))=TRUEx0[9]=x0[6]x1[9]=x1[6]574_0_POWER_GT(x0[9], x1[9])≥NonInfC∧574_0_POWER_GT(x0[9], x1[9])≥COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])∧(UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥))



    We simplified constraint (254) using rules (IV), (IDP_BOOLEAN) which results in the following new constraints:

    (255)    (>(x1[9], 1)=TRUE<(%(x1[9], 2), 1)=TRUE<(x0[9], 2)=TRUE574_0_POWER_GT(x0[9], x1[9])≥NonInfC∧574_0_POWER_GT(x0[9], x1[9])≥COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])∧(UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥))


    (256)    (>(x1[9], 1)=TRUE<(%(x1[9], 2), 1)=TRUE>(x0[9], 2)=TRUE574_0_POWER_GT(x0[9], x1[9])≥NonInfC∧574_0_POWER_GT(x0[9], x1[9])≥COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])∧(UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥))



    We simplified constraint (255) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (257)    (x1[9] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧[1] + [-1]x0[9] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)



    We simplified constraint (256) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (258)    (x1[9] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧x0[9] + [-3] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)



    We simplified constraint (257) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (259)    (x1[9] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧[1] + [-1]x0[9] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)



    We simplified constraint (258) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (260)    (x1[9] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧x0[9] + [-3] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)



    We simplified constraint (261) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (262)    (x1[9] + [-2] ≥ 0∧max{[2], [-2]} + [-2] ≥ 0∧[1] + [-1]x0[9] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)



    We simplified constraint (263) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (264)    (x1[9] + [-2] ≥ 0∧max{[2], [-2]} + [-2] ≥ 0∧x0[9] + [-3] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)



    We simplified constraint (259) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (265)    (x1[9] + [-2] ≥ 0∧[1] + [-1]x0[9] ≥ 0∧[4] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)



    We simplified constraint (260) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (266)    (x1[9] + [-2] ≥ 0∧x0[9] + [-3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)



    We simplified constraint (262) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (267)    (x1[9] + [-2] ≥ 0∧[1] + [-1]x0[9] ≥ 0∧[4] ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)



    We simplified constraint (264) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (268)    (x1[9] + [-2] ≥ 0∧x0[9] + [-3] ≥ 0∧[4] ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)



    We simplified constraint (265) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (269)    (x1[9] ≥ 0∧[1] + [-1]x0[9] ≥ 0∧[4] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122 + (2)bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)



    We simplified constraint (266) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (270)    (x1[9] ≥ 0∧x0[9] + [-3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122 + (2)bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)



    We simplified constraint (267) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (271)    (x1[9] ≥ 0∧[1] + [-1]x0[9] ≥ 0∧[4] ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122 + (2)bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)



    We simplified constraint (268) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (272)    (x1[9] ≥ 0∧x0[9] + [-3] ≥ 0∧[4] ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122 + (2)bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)



    We simplified constraint (269) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (273)    (x1[9] ≥ 0∧[1] + [-1]x0[9] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧x0[9] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122 + (2)bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)


    (274)    (x1[9] ≥ 0∧[1] + x0[9] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧x0[9] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122 + (2)bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)



    We simplified constraint (273) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (275)    (x1[9] ≥ 0∧[1] + [-1]x0[9] ≥ 0∧x0[9] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122 + (2)bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)



    We simplified constraint (274) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (276)    (x1[9] ≥ 0∧[1] + x0[9] ≥ 0∧x0[9] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122 + (2)bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)



    We simplified constraint (270) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (277)    (x1[9] ≥ 0∧x0[9] ≥ 0∧[4] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122 + (2)bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)



    We simplified constraint (277) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (278)    (x1[9] ≥ 0∧x0[9] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122 + (2)bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)



    We simplified constraint (271) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (279)    (x1[9] ≥ 0∧[1] + [-1]x0[9] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧x0[9] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122 + (2)bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)


    (280)    (x1[9] ≥ 0∧[1] + x0[9] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧x0[9] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122 + (2)bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)



    We simplified constraint (279) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (281)    (x1[9] ≥ 0∧[1] + [-1]x0[9] ≥ 0∧0 ≥ 0∧x0[9] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122 + (2)bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)



    We simplified constraint (280) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (282)    (x1[9] ≥ 0∧[1] + x0[9] ≥ 0∧0 ≥ 0∧x0[9] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122 + (2)bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)



    We simplified constraint (272) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (283)    (x1[9] ≥ 0∧x0[9] ≥ 0∧[4] ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122 + (2)bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)



    We simplified constraint (283) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (284)    (x1[9] ≥ 0∧x0[9] ≥ 0∧0 ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122 + (2)bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 574_0_POWER_GT(x0, x1) → COND_574_0_POWER_GT(&&(&&(>(x1, 1), !(=(x0, 2))), =(0, %(x1, 2))), x0, x1)
    • (x1[0] ≥ 0∧[1] + [-1]x0[0] ≥ 0∧x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_101 + (2)bni_101] + [bni_101]x1[0] ≥ 0∧[(-1)bso_102] ≥ 0)
    • (x1[0] ≥ 0∧[1] + x0[0] ≥ 0∧x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_101 + (2)bni_101] + [bni_101]x1[0] ≥ 0∧[(-1)bso_102] ≥ 0)
    • (x1[0] ≥ 0∧x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_101 + (2)bni_101] + [bni_101]x1[0] ≥ 0∧[(-1)bso_102] ≥ 0)

  • COND_574_0_POWER_GT(TRUE, x0, x1) → 574_0_POWER_GT(x0, /(x1, 2))
    • (x1[0] ≥ 0∧[1] + [-1]x0[0] ≥ 0∧x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x1[0] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[0] ≥ 0∧[(-1)bso_107] ≥ 0)
    • (x1[0] ≥ 0∧[1] + x0[0] ≥ 0∧x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x1[0] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[0] ≥ 0∧[(-1)bso_107] ≥ 0)
    • (x1[0] ≥ 0∧x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x1[0] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[0] ≥ 0∧[(-1)bso_107] ≥ 0)
    • (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] ≥ 0)
    • (x1[4] ≥ 0∧[1] + x0[4] ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] ≥ 0)
    • (x1[4] ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] ≥ 0)
    • (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧0 ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0∧[2] + x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] ≥ 0)
    • (x1[4] ≥ 0∧[1] + x0[4] ≥ 0∧0 ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0∧[2] + x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] ≥ 0)
    • (x1[4] ≥ 0∧x0[4] ≥ 0∧0 ≥ 0∧[1] ≥ 0∧[2] + x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_103 + (-1)Bound*bni_103] + [bni_103]x1[4] ≥ 0∧[(-1)bso_107] ≥ 0)

  • 574_0_POWER_GT(x0, x1) → COND_574_0_POWER_GT1(&&(&&(&&(>(x1, 0), !(=(x1, 1))), !(=(x0, 2))), =(1, %(x1, 2))), x0, x1)
    • ([1] + x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)Bound*bni_108 + (2)bni_108] + [bni_108]x1[2] ≥ 0∧[(-1)bso_109] ≥ 0)
    • ([1] + x1[2] ≥ 0∧[1] + x0[2] ≥ 0∧x1[2] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)Bound*bni_108 + (2)bni_108] + [bni_108]x1[2] ≥ 0∧[(-1)bso_109] ≥ 0)
    • ([1] + x1[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)Bound*bni_108 + (2)bni_108] + [bni_108]x1[2] ≥ 0∧[(-1)bso_109] ≥ 0)

  • COND_574_0_POWER_GT1(TRUE, x0, x1) → 574_0_POWER_GT(x0, -(x1, 1))
    • ([1] + x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_110 + (-1)Bound*bni_110] + [bni_110]x1[2] ≥ 0∧[(-1)bso_111] ≥ 0)
    • ([1] + x1[2] ≥ 0∧[1] + x0[2] ≥ 0∧x1[2] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_110 + (-1)Bound*bni_110] + [bni_110]x1[2] ≥ 0∧[(-1)bso_111] ≥ 0)
    • ([1] + x1[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_110 + (-1)Bound*bni_110] + [bni_110]x1[2] ≥ 0∧[(-1)bso_111] ≥ 0)

  • 574_0_POWER_GT(x0, x1) → COND_574_0_POWER_GT(&&(&&(>(x1, 1), !(=(x0, 2))), !(=(%(x1, 2), 1))), x0, x1)
    • (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112 + (2)bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)
    • (x1[4] ≥ 0∧[1] + x0[4] ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112 + (2)bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)
    • (x1[4] ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112 + (2)bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)
    • (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧0 ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112 + (2)bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)
    • (x1[4] ≥ 0∧[1] + x0[4] ≥ 0∧0 ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112 + (2)bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)
    • (x1[4] ≥ 0∧x0[4] ≥ 0∧0 ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)Bound*bni_112 + (2)bni_112] + [bni_112]x1[4] ≥ 0∧[(-1)bso_113] ≥ 0)

  • 574_0_POWER_GT(x0, x1) → COND_574_0_POWER_GT3(&&(&&(>(x1, 1), !(=(x0, 2))), =(0, %(x1, 2))), x0, x1)
    • (x1[5] ≥ 0∧[1] + [-1]x0[5] ≥ 0∧x0[5] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[5], 1), !(=(x0[5], 2))), =(0, %(x1[5], 2))), x0[5], x1[5])), ≥)∧[(-1)Bound*bni_114 + (2)bni_114] + [bni_114]x1[5] ≥ 0∧[1 + (-1)bso_115] ≥ 0)
    • (x1[5] ≥ 0∧[1] + x0[5] ≥ 0∧x0[5] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[5], 1), !(=(x0[5], 2))), =(0, %(x1[5], 2))), x0[5], x1[5])), ≥)∧[(-1)Bound*bni_114 + (2)bni_114] + [bni_114]x1[5] ≥ 0∧[1 + (-1)bso_115] ≥ 0)
    • (x1[5] ≥ 0∧x0[5] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[5], 1), !(=(x0[5], 2))), =(0, %(x1[5], 2))), x0[5], x1[5])), ≥)∧[(-1)Bound*bni_114 + (2)bni_114] + [bni_114]x1[5] ≥ 0∧[1 + (-1)bso_115] ≥ 0)

  • COND_574_0_POWER_GT3(TRUE, x0, x1) → 574_0_POWER_GT(x0, /(x1, 2))
    • (x1[5] ≥ 0∧[1] + [-1]x0[5] ≥ 0∧x0[5] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x1[5] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[5] ≥ 0∧[(-1)bso_117] ≥ 0)
    • (x1[5] ≥ 0∧[1] + x0[5] ≥ 0∧x0[5] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x1[5] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[5] ≥ 0∧[(-1)bso_117] ≥ 0)
    • (x1[5] ≥ 0∧x0[5] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x1[5] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[5] ≥ 0∧[(-1)bso_117] ≥ 0)
    • (x1[9] ≥ 0∧[1] + [-1]x0[9] ≥ 0∧x0[9] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x1[9] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] ≥ 0)
    • (x1[9] ≥ 0∧[1] + x0[9] ≥ 0∧x0[9] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x1[9] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] ≥ 0)
    • (x1[9] ≥ 0∧x0[9] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x1[9] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] ≥ 0)
    • (x1[9] ≥ 0∧[1] + [-1]x0[9] ≥ 0∧0 ≥ 0∧x0[9] ≥ 0∧[1] ≥ 0∧[2] + x1[9] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] ≥ 0)
    • (x1[9] ≥ 0∧[1] + x0[9] ≥ 0∧0 ≥ 0∧x0[9] ≥ 0∧[1] ≥ 0∧[2] + x1[9] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] ≥ 0)
    • (x1[9] ≥ 0∧x0[9] ≥ 0∧0 ≥ 0∧[1] ≥ 0∧[2] + x1[9] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[6], /(x1[6], 2))), ≥)∧[bni_116 + (-1)Bound*bni_116] + [bni_116]x1[9] ≥ 0∧[(-1)bso_117] ≥ 0)

  • 574_0_POWER_GT(x0, x1) → COND_574_0_POWER_GT4(&&(&&(&&(>(x1, 0), !(=(x1, 1))), !(=(x0, 2))), =(1, %(x1, 2))), x0, x1)
    • ([1] + x1[7] ≥ 0∧[1] + [-1]x0[7] ≥ 0∧x1[7] ≥ 0∧[1] ≥ 0∧x0[7] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])), ≥)∧[(-1)Bound*bni_118 + (2)bni_118] + [bni_118]x1[7] ≥ 0∧[1 + (-1)bso_119] ≥ 0)
    • ([1] + x1[7] ≥ 0∧[1] + x0[7] ≥ 0∧x1[7] ≥ 0∧[1] ≥ 0∧x0[7] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])), ≥)∧[(-1)Bound*bni_118 + (2)bni_118] + [bni_118]x1[7] ≥ 0∧[1 + (-1)bso_119] ≥ 0)
    • ([1] + x1[7] ≥ 0∧x0[7] ≥ 0∧x1[7] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])), ≥)∧[(-1)Bound*bni_118 + (2)bni_118] + [bni_118]x1[7] ≥ 0∧[1 + (-1)bso_119] ≥ 0)

  • COND_574_0_POWER_GT4(TRUE, x0, x1) → 574_0_POWER_GT(x0, -(x1, 1))
    • ([1] + x1[7] ≥ 0∧[1] + [-1]x0[7] ≥ 0∧x1[7] ≥ 0∧[1] ≥ 0∧x0[7] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[8], -(x1[8], 1))), ≥)∧[bni_120 + (-1)Bound*bni_120] + [bni_120]x1[7] ≥ 0∧[(-1)bso_121] ≥ 0)
    • ([1] + x1[7] ≥ 0∧[1] + x0[7] ≥ 0∧x1[7] ≥ 0∧[1] ≥ 0∧x0[7] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[8], -(x1[8], 1))), ≥)∧[bni_120 + (-1)Bound*bni_120] + [bni_120]x1[7] ≥ 0∧[(-1)bso_121] ≥ 0)
    • ([1] + x1[7] ≥ 0∧x0[7] ≥ 0∧x1[7] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[8], -(x1[8], 1))), ≥)∧[bni_120 + (-1)Bound*bni_120] + [bni_120]x1[7] ≥ 0∧[(-1)bso_121] ≥ 0)

  • 574_0_POWER_GT(x0, x1) → COND_574_0_POWER_GT3(&&(&&(>(x1, 1), !(=(x0, 2))), !(=(%(x1, 2), 1))), x0, x1)
    • (x1[9] ≥ 0∧[1] + [-1]x0[9] ≥ 0∧x0[9] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122 + (2)bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)
    • (x1[9] ≥ 0∧[1] + x0[9] ≥ 0∧x0[9] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122 + (2)bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)
    • (x1[9] ≥ 0∧x0[9] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122 + (2)bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)
    • (x1[9] ≥ 0∧[1] + [-1]x0[9] ≥ 0∧0 ≥ 0∧x0[9] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122 + (2)bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)
    • (x1[9] ≥ 0∧[1] + x0[9] ≥ 0∧0 ≥ 0∧x0[9] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122 + (2)bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)
    • (x1[9] ≥ 0∧x0[9] ≥ 0∧0 ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])), ≥)∧[(-1)Bound*bni_122 + (2)bni_122] + [bni_122]x1[9] ≥ 0∧[1 + (-1)bso_123] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = [3]   
POL(574_0_power_GT(x1, x2)) = [-1] + [-1]x2 + [-1]x1   
POL(0) = 0   
POL(587_0_power_Return(x1)) = [-1] + [-1]x1   
POL(827_1_power_InvokeMethod(x1, x2, x3)) = [-1] + [-1]x3 + [-1]x2 + [-1]x1   
POL(644_0_power_Return(x1)) = [-1] + [-1]x1   
POL(1) = [1]   
POL(1056_0_power_Return) = [-1]   
POL(969_0_power_Return(x1, x2)) = [-1] + [-1]x2 + [-1]x1   
POL(855_1_power_InvokeMethod(x1, x2, x3, x4)) = [-1] + [-1]x4 + [-1]x3 + [-1]x2 + [-1]x1   
POL(Cond_855_1_power_InvokeMethod(x1, x2, x3, x4, x5)) = [-1] + [-1]x5 + [-1]x4 + [-1]x3 + [-1]x2 + [-1]x1   
POL(<=(x1, x2)) = [-1]   
POL(Cond_855_1_power_InvokeMethod1(x1, x2, x3, x4, x5)) = [-1] + [-1]x5 + [-1]x4 + [-1]x3 + [-1]x2 + [-1]x1   
POL(Cond_855_1_power_InvokeMethod2(x1, x2, x3, x4, x5)) = [-1] + [-1]x5 + [-1]x4 + [-1]x3 + [-1]x2 + [-1]x1   
POL(840_1_power_InvokeMethod(x1, x2, x3)) = [-1] + [-1]x3 + [-1]x2 + [-1]x1   
POL(Cond_840_1_power_InvokeMethod(x1, x2, x3, x4)) = [-1] + [-1]x4 + [-1]x3 + [-1]x2 + [-1]x1   
POL(>(x1, x2)) = [-1]   
POL(951_0_power_Return) = [-1]   
POL(895_0_power_Return(x1, x2)) = [-1] + [-1]x2 + [-1]x1   
POL(868_1_power_InvokeMethod(x1, x2, x3, x4)) = [-1] + [-1]x4 + [-1]x3 + [-1]x2 + [-1]x1   
POL(Cond_868_1_power_InvokeMethod(x1, x2, x3, x4, x5)) = [-1] + [-1]x5 + [-1]x4 + [-1]x3 + [-1]x2 + [-1]x1   
POL(Cond_868_1_power_InvokeMethod1(x1, x2, x3, x4, x5)) = [-1] + [-1]x5 + [-1]x4 + [-1]x3 + [-1]x2 + [-1]x1   
POL(Cond_868_1_power_InvokeMethod2(x1, x2, x3, x4, x5)) = [-1] + [-1]x5 + [-1]x4 + [-1]x3 + [-1]x2 + [-1]x1   
POL(574_0_POWER_GT(x1, x2)) = x2   
POL(COND_574_0_POWER_GT(x1, x2, x3)) = [-1] + x3 + [-1]x1   
POL(&&(x1, x2)) = [-1]   
POL(!(x1)) = [-1]   
POL(=(x1, x2)) = [-1]   
POL(2) = [2]   
POL(COND_574_0_POWER_GT1(x1, x2, x3)) = [-1] + x3 + [-1]x1   
POL(-(x1, x2)) = x1 + [-1]x2   
POL(COND_574_0_POWER_GT3(x1, x2, x3)) = [-1] + x3   
POL(COND_574_0_POWER_GT4(x1, x2, x3)) = [-1] + x3   

Polynomial Interpretations with Context Sensitive Arithemetic Replacement
POL(TermCSAR-Mode @ Context)

POL(%(x1, 2)-1 @ {}) = min{x2, [-1]x2}   
POL(%(x1, 2)1 @ {}) = max{x2, [-1]x2}   
POL(/(x1, 2)1 @ {574_0_POWER_GT_2/1}) = max{x1, [-1]x1} + [-1]   

The following pairs are in P>:

574_0_POWER_GT(x0[5], x1[5]) → COND_574_0_POWER_GT3(&&(&&(>(x1[5], 1), !(=(x0[5], 2))), =(0, %(x1[5], 2))), x0[5], x1[5])
574_0_POWER_GT(x0[7], x1[7]) → COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])
574_0_POWER_GT(x0[9], x1[9]) → COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])

The following pairs are in Pbound:

574_0_POWER_GT(x0[0], x1[0]) → COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])
COND_574_0_POWER_GT(TRUE, x0[1], x1[1]) → 574_0_POWER_GT(x0[1], /(x1[1], 2))
574_0_POWER_GT(x0[2], x1[2]) → COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])
COND_574_0_POWER_GT1(TRUE, x0[3], x1[3]) → 574_0_POWER_GT(x0[3], -(x1[3], 1))
574_0_POWER_GT(x0[4], x1[4]) → COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])
574_0_POWER_GT(x0[5], x1[5]) → COND_574_0_POWER_GT3(&&(&&(>(x1[5], 1), !(=(x0[5], 2))), =(0, %(x1[5], 2))), x0[5], x1[5])
COND_574_0_POWER_GT3(TRUE, x0[6], x1[6]) → 574_0_POWER_GT(x0[6], /(x1[6], 2))
574_0_POWER_GT(x0[7], x1[7]) → COND_574_0_POWER_GT4(&&(&&(&&(>(x1[7], 0), !(=(x1[7], 1))), !(=(x0[7], 2))), =(1, %(x1[7], 2))), x0[7], x1[7])
COND_574_0_POWER_GT4(TRUE, x0[8], x1[8]) → 574_0_POWER_GT(x0[8], -(x1[8], 1))
574_0_POWER_GT(x0[9], x1[9]) → COND_574_0_POWER_GT3(&&(&&(>(x1[9], 1), !(=(x0[9], 2))), !(=(%(x1[9], 2), 1))), x0[9], x1[9])

The following pairs are in P:

574_0_POWER_GT(x0[0], x1[0]) → COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])
COND_574_0_POWER_GT(TRUE, x0[1], x1[1]) → 574_0_POWER_GT(x0[1], /(x1[1], 2))
574_0_POWER_GT(x0[2], x1[2]) → COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])
COND_574_0_POWER_GT1(TRUE, x0[3], x1[3]) → 574_0_POWER_GT(x0[3], -(x1[3], 1))
574_0_POWER_GT(x0[4], x1[4]) → COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])
COND_574_0_POWER_GT3(TRUE, x0[6], x1[6]) → 574_0_POWER_GT(x0[6], /(x1[6], 2))
COND_574_0_POWER_GT4(TRUE, x0[8], x1[8]) → 574_0_POWER_GT(x0[8], -(x1[8], 1))

At least the following rules have been oriented under context sensitive arithmetic replacement:

TRUE1&&(TRUE, TRUE)1
FALSE1&&(TRUE, FALSE)1
FALSE1&&(FALSE, TRUE)1
FALSE1&&(FALSE, FALSE)1
/1

(6) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


The ITRS R consists of the following rules:
574_0_power_GT(x0, 0) → 587_0_power_Return(x0)
827_1_power_InvokeMethod(644_0_power_Return(x0), x0, 1) → 1056_0_power_Return
827_1_power_InvokeMethod(969_0_power_Return(x0, x1), x0, x1) → 1056_0_power_Return
827_1_power_InvokeMethod(1056_0_power_Return, x0, x1) → 1056_0_power_Return
855_1_power_InvokeMethod(644_0_power_Return(x0), x2, x0, 1) → Cond_855_1_power_InvokeMethod(x0 <= 1, 644_0_power_Return(x0), x2, x0, 1)
Cond_855_1_power_InvokeMethod(TRUE, 644_0_power_Return(x0), x2, x0, 1) → 969_0_power_Return(x0, x2)
855_1_power_InvokeMethod(969_0_power_Return(x0, x1), x2, x0, x1) → Cond_855_1_power_InvokeMethod1(x0 <= 1, 969_0_power_Return(x0, x1), x2, x0, x1)
Cond_855_1_power_InvokeMethod1(TRUE, 969_0_power_Return(x0, x1), x2, x0, x1) → 969_0_power_Return(x0, x2)
855_1_power_InvokeMethod(1056_0_power_Return, x1, x0, x2) → Cond_855_1_power_InvokeMethod2(x0 <= 1, 1056_0_power_Return, x1, x0, x2)
Cond_855_1_power_InvokeMethod2(TRUE, 1056_0_power_Return, x1, x0, x2) → 969_0_power_Return(x0, x1)
840_1_power_InvokeMethod(644_0_power_Return(x0), x0, 1) → Cond_840_1_power_InvokeMethod(x0 > 1, 644_0_power_Return(x0), x0, 1)
Cond_840_1_power_InvokeMethod(TRUE, 644_0_power_Return(x0), x0, 1) → 951_0_power_Return
840_1_power_InvokeMethod(895_0_power_Return(x0, x1), x0, x1) → 951_0_power_Return
840_1_power_InvokeMethod(951_0_power_Return, x0, x1) → 951_0_power_Return
868_1_power_InvokeMethod(644_0_power_Return(x0), x2, x0, 1) → Cond_868_1_power_InvokeMethod(x0 > 1, 644_0_power_Return(x0), x2, x0, 1)
Cond_868_1_power_InvokeMethod(TRUE, 644_0_power_Return(x0), x2, x0, 1) → 895_0_power_Return(x0, x2)
868_1_power_InvokeMethod(895_0_power_Return(x0, x1), x2, x0, x1) → Cond_868_1_power_InvokeMethod1(x0 > 1, 895_0_power_Return(x0, x1), x2, x0, x1)
Cond_868_1_power_InvokeMethod1(TRUE, 895_0_power_Return(x0, x1), x2, x0, x1) → 895_0_power_Return(x0, x2)
868_1_power_InvokeMethod(951_0_power_Return, x1, x0, x2) → Cond_868_1_power_InvokeMethod2(x0 > 1, 951_0_power_Return, x1, x0, x2)
Cond_868_1_power_InvokeMethod2(TRUE, 951_0_power_Return, x1, x0, x2) → 895_0_power_Return(x0, x1)

The integer pair graph contains the following rules and edges:
(0): 574_0_POWER_GT(x0[0], x1[0]) → COND_574_0_POWER_GT(x1[0] > 1 && !(x0[0] = 2) && 0 = x1[0] % 2, x0[0], x1[0])
(1): COND_574_0_POWER_GT(TRUE, x0[1], x1[1]) → 574_0_POWER_GT(x0[1], x1[1] / 2)
(2): 574_0_POWER_GT(x0[2], x1[2]) → COND_574_0_POWER_GT1(x1[2] > 0 && !(x1[2] = 1) && !(x0[2] = 2) && 1 = x1[2] % 2, x0[2], x1[2])
(3): COND_574_0_POWER_GT1(TRUE, x0[3], x1[3]) → 574_0_POWER_GT(x0[3], x1[3] - 1)
(4): 574_0_POWER_GT(x0[4], x1[4]) → COND_574_0_POWER_GT(x1[4] > 1 && !(x0[4] = 2) && !(x1[4] % 2 = 1), x0[4], x1[4])
(6): COND_574_0_POWER_GT3(TRUE, x0[6], x1[6]) → 574_0_POWER_GT(x0[6], x1[6] / 2)
(8): COND_574_0_POWER_GT4(TRUE, x0[8], x1[8]) → 574_0_POWER_GT(x0[8], x1[8] - 1)

(1) -> (0), if ((x0[1]* x0[0])∧(x1[1] / 2* x1[0]))


(3) -> (0), if ((x0[3]* x0[0])∧(x1[3] - 1* x1[0]))


(6) -> (0), if ((x0[6]* x0[0])∧(x1[6] / 2* x1[0]))


(8) -> (0), if ((x0[8]* x0[0])∧(x1[8] - 1* x1[0]))


(0) -> (1), if ((x1[0] > 1 && !(x0[0] = 2) && 0 = x1[0] % 2* TRUE)∧(x0[0]* x0[1])∧(x1[0]* x1[1]))


(4) -> (1), if ((x1[4] > 1 && !(x0[4] = 2) && !(x1[4] % 2 = 1) →* TRUE)∧(x0[4]* x0[1])∧(x1[4]* x1[1]))


(1) -> (2), if ((x0[1]* x0[2])∧(x1[1] / 2* x1[2]))


(3) -> (2), if ((x0[3]* x0[2])∧(x1[3] - 1* x1[2]))


(6) -> (2), if ((x0[6]* x0[2])∧(x1[6] / 2* x1[2]))


(8) -> (2), if ((x0[8]* x0[2])∧(x1[8] - 1* x1[2]))


(2) -> (3), if ((x1[2] > 0 && !(x1[2] = 1) && !(x0[2] = 2) && 1 = x1[2] % 2* TRUE)∧(x0[2]* x0[3])∧(x1[2]* x1[3]))


(1) -> (4), if ((x0[1]* x0[4])∧(x1[1] / 2* x1[4]))


(3) -> (4), if ((x0[3]* x0[4])∧(x1[3] - 1* x1[4]))


(6) -> (4), if ((x0[6]* x0[4])∧(x1[6] / 2* x1[4]))


(8) -> (4), if ((x0[8]* x0[4])∧(x1[8] - 1* x1[4]))



The set Q consists of the following terms:
574_0_power_GT(x0, 0)
827_1_power_InvokeMethod(644_0_power_Return(x0), x0, 1)
827_1_power_InvokeMethod(969_0_power_Return(x0, x1), x0, x1)
827_1_power_InvokeMethod(1056_0_power_Return, x0, x1)
855_1_power_InvokeMethod(644_0_power_Return(x0), x1, x0, 1)
Cond_855_1_power_InvokeMethod(TRUE, 644_0_power_Return(x0), x1, x0, 1)
855_1_power_InvokeMethod(969_0_power_Return(x0, x1), x2, x0, x1)
Cond_855_1_power_InvokeMethod1(TRUE, 969_0_power_Return(x0, x1), x2, x0, x1)
855_1_power_InvokeMethod(1056_0_power_Return, x0, x1, x2)
Cond_855_1_power_InvokeMethod2(TRUE, 1056_0_power_Return, x0, x1, x2)
840_1_power_InvokeMethod(644_0_power_Return(x0), x0, 1)
Cond_840_1_power_InvokeMethod(TRUE, 644_0_power_Return(x0), x0, 1)
840_1_power_InvokeMethod(895_0_power_Return(x0, x1), x0, x1)
840_1_power_InvokeMethod(951_0_power_Return, x0, x1)
868_1_power_InvokeMethod(644_0_power_Return(x0), x1, x0, 1)
Cond_868_1_power_InvokeMethod(TRUE, 644_0_power_Return(x0), x1, x0, 1)
868_1_power_InvokeMethod(895_0_power_Return(x0, x1), x2, x0, x1)
Cond_868_1_power_InvokeMethod1(TRUE, 895_0_power_Return(x0, x1), x2, x0, x1)
868_1_power_InvokeMethod(951_0_power_Return, x0, x1, x2)
Cond_868_1_power_InvokeMethod2(TRUE, 951_0_power_Return, x0, x1, x2)

(7) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.

(8) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


The ITRS R consists of the following rules:
574_0_power_GT(x0, 0) → 587_0_power_Return(x0)
827_1_power_InvokeMethod(644_0_power_Return(x0), x0, 1) → 1056_0_power_Return
827_1_power_InvokeMethod(969_0_power_Return(x0, x1), x0, x1) → 1056_0_power_Return
827_1_power_InvokeMethod(1056_0_power_Return, x0, x1) → 1056_0_power_Return
855_1_power_InvokeMethod(644_0_power_Return(x0), x2, x0, 1) → Cond_855_1_power_InvokeMethod(x0 <= 1, 644_0_power_Return(x0), x2, x0, 1)
Cond_855_1_power_InvokeMethod(TRUE, 644_0_power_Return(x0), x2, x0, 1) → 969_0_power_Return(x0, x2)
855_1_power_InvokeMethod(969_0_power_Return(x0, x1), x2, x0, x1) → Cond_855_1_power_InvokeMethod1(x0 <= 1, 969_0_power_Return(x0, x1), x2, x0, x1)
Cond_855_1_power_InvokeMethod1(TRUE, 969_0_power_Return(x0, x1), x2, x0, x1) → 969_0_power_Return(x0, x2)
855_1_power_InvokeMethod(1056_0_power_Return, x1, x0, x2) → Cond_855_1_power_InvokeMethod2(x0 <= 1, 1056_0_power_Return, x1, x0, x2)
Cond_855_1_power_InvokeMethod2(TRUE, 1056_0_power_Return, x1, x0, x2) → 969_0_power_Return(x0, x1)
840_1_power_InvokeMethod(644_0_power_Return(x0), x0, 1) → Cond_840_1_power_InvokeMethod(x0 > 1, 644_0_power_Return(x0), x0, 1)
Cond_840_1_power_InvokeMethod(TRUE, 644_0_power_Return(x0), x0, 1) → 951_0_power_Return
840_1_power_InvokeMethod(895_0_power_Return(x0, x1), x0, x1) → 951_0_power_Return
840_1_power_InvokeMethod(951_0_power_Return, x0, x1) → 951_0_power_Return
868_1_power_InvokeMethod(644_0_power_Return(x0), x2, x0, 1) → Cond_868_1_power_InvokeMethod(x0 > 1, 644_0_power_Return(x0), x2, x0, 1)
Cond_868_1_power_InvokeMethod(TRUE, 644_0_power_Return(x0), x2, x0, 1) → 895_0_power_Return(x0, x2)
868_1_power_InvokeMethod(895_0_power_Return(x0, x1), x2, x0, x1) → Cond_868_1_power_InvokeMethod1(x0 > 1, 895_0_power_Return(x0, x1), x2, x0, x1)
Cond_868_1_power_InvokeMethod1(TRUE, 895_0_power_Return(x0, x1), x2, x0, x1) → 895_0_power_Return(x0, x2)
868_1_power_InvokeMethod(951_0_power_Return, x1, x0, x2) → Cond_868_1_power_InvokeMethod2(x0 > 1, 951_0_power_Return, x1, x0, x2)
Cond_868_1_power_InvokeMethod2(TRUE, 951_0_power_Return, x1, x0, x2) → 895_0_power_Return(x0, x1)

The integer pair graph contains the following rules and edges:
(4): 574_0_POWER_GT(x0[4], x1[4]) → COND_574_0_POWER_GT(x1[4] > 1 && !(x0[4] = 2) && !(x1[4] % 2 = 1), x0[4], x1[4])
(3): COND_574_0_POWER_GT1(TRUE, x0[3], x1[3]) → 574_0_POWER_GT(x0[3], x1[3] - 1)
(2): 574_0_POWER_GT(x0[2], x1[2]) → COND_574_0_POWER_GT1(x1[2] > 0 && !(x1[2] = 1) && !(x0[2] = 2) && 1 = x1[2] % 2, x0[2], x1[2])
(1): COND_574_0_POWER_GT(TRUE, x0[1], x1[1]) → 574_0_POWER_GT(x0[1], x1[1] / 2)
(0): 574_0_POWER_GT(x0[0], x1[0]) → COND_574_0_POWER_GT(x1[0] > 1 && !(x0[0] = 2) && 0 = x1[0] % 2, x0[0], x1[0])

(1) -> (0), if ((x0[1]* x0[0])∧(x1[1] / 2* x1[0]))


(3) -> (0), if ((x0[3]* x0[0])∧(x1[3] - 1* x1[0]))


(0) -> (1), if ((x1[0] > 1 && !(x0[0] = 2) && 0 = x1[0] % 2* TRUE)∧(x0[0]* x0[1])∧(x1[0]* x1[1]))


(4) -> (1), if ((x1[4] > 1 && !(x0[4] = 2) && !(x1[4] % 2 = 1) →* TRUE)∧(x0[4]* x0[1])∧(x1[4]* x1[1]))


(1) -> (2), if ((x0[1]* x0[2])∧(x1[1] / 2* x1[2]))


(3) -> (2), if ((x0[3]* x0[2])∧(x1[3] - 1* x1[2]))


(2) -> (3), if ((x1[2] > 0 && !(x1[2] = 1) && !(x0[2] = 2) && 1 = x1[2] % 2* TRUE)∧(x0[2]* x0[3])∧(x1[2]* x1[3]))


(1) -> (4), if ((x0[1]* x0[4])∧(x1[1] / 2* x1[4]))


(3) -> (4), if ((x0[3]* x0[4])∧(x1[3] - 1* x1[4]))



The set Q consists of the following terms:
574_0_power_GT(x0, 0)
827_1_power_InvokeMethod(644_0_power_Return(x0), x0, 1)
827_1_power_InvokeMethod(969_0_power_Return(x0, x1), x0, x1)
827_1_power_InvokeMethod(1056_0_power_Return, x0, x1)
855_1_power_InvokeMethod(644_0_power_Return(x0), x1, x0, 1)
Cond_855_1_power_InvokeMethod(TRUE, 644_0_power_Return(x0), x1, x0, 1)
855_1_power_InvokeMethod(969_0_power_Return(x0, x1), x2, x0, x1)
Cond_855_1_power_InvokeMethod1(TRUE, 969_0_power_Return(x0, x1), x2, x0, x1)
855_1_power_InvokeMethod(1056_0_power_Return, x0, x1, x2)
Cond_855_1_power_InvokeMethod2(TRUE, 1056_0_power_Return, x0, x1, x2)
840_1_power_InvokeMethod(644_0_power_Return(x0), x0, 1)
Cond_840_1_power_InvokeMethod(TRUE, 644_0_power_Return(x0), x0, 1)
840_1_power_InvokeMethod(895_0_power_Return(x0, x1), x0, x1)
840_1_power_InvokeMethod(951_0_power_Return, x0, x1)
868_1_power_InvokeMethod(644_0_power_Return(x0), x1, x0, 1)
Cond_868_1_power_InvokeMethod(TRUE, 644_0_power_Return(x0), x1, x0, 1)
868_1_power_InvokeMethod(895_0_power_Return(x0, x1), x2, x0, x1)
Cond_868_1_power_InvokeMethod1(TRUE, 895_0_power_Return(x0, x1), x2, x0, x1)
868_1_power_InvokeMethod(951_0_power_Return, x0, x1, x2)
Cond_868_1_power_InvokeMethod2(TRUE, 951_0_power_Return, x0, x1, x2)

(9) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(10) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(4): 574_0_POWER_GT(x0[4], x1[4]) → COND_574_0_POWER_GT(x1[4] > 1 && !(x0[4] = 2) && !(x1[4] % 2 = 1), x0[4], x1[4])
(3): COND_574_0_POWER_GT1(TRUE, x0[3], x1[3]) → 574_0_POWER_GT(x0[3], x1[3] - 1)
(2): 574_0_POWER_GT(x0[2], x1[2]) → COND_574_0_POWER_GT1(x1[2] > 0 && !(x1[2] = 1) && !(x0[2] = 2) && 1 = x1[2] % 2, x0[2], x1[2])
(1): COND_574_0_POWER_GT(TRUE, x0[1], x1[1]) → 574_0_POWER_GT(x0[1], x1[1] / 2)
(0): 574_0_POWER_GT(x0[0], x1[0]) → COND_574_0_POWER_GT(x1[0] > 1 && !(x0[0] = 2) && 0 = x1[0] % 2, x0[0], x1[0])

(1) -> (0), if ((x0[1]* x0[0])∧(x1[1] / 2* x1[0]))


(3) -> (0), if ((x0[3]* x0[0])∧(x1[3] - 1* x1[0]))


(0) -> (1), if ((x1[0] > 1 && !(x0[0] = 2) && 0 = x1[0] % 2* TRUE)∧(x0[0]* x0[1])∧(x1[0]* x1[1]))


(4) -> (1), if ((x1[4] > 1 && !(x0[4] = 2) && !(x1[4] % 2 = 1) →* TRUE)∧(x0[4]* x0[1])∧(x1[4]* x1[1]))


(1) -> (2), if ((x0[1]* x0[2])∧(x1[1] / 2* x1[2]))


(3) -> (2), if ((x0[3]* x0[2])∧(x1[3] - 1* x1[2]))


(2) -> (3), if ((x1[2] > 0 && !(x1[2] = 1) && !(x0[2] = 2) && 1 = x1[2] % 2* TRUE)∧(x0[2]* x0[3])∧(x1[2]* x1[3]))


(1) -> (4), if ((x0[1]* x0[4])∧(x1[1] / 2* x1[4]))


(3) -> (4), if ((x0[3]* x0[4])∧(x1[3] - 1* x1[4]))



The set Q consists of the following terms:
574_0_power_GT(x0, 0)
827_1_power_InvokeMethod(644_0_power_Return(x0), x0, 1)
827_1_power_InvokeMethod(969_0_power_Return(x0, x1), x0, x1)
827_1_power_InvokeMethod(1056_0_power_Return, x0, x1)
855_1_power_InvokeMethod(644_0_power_Return(x0), x1, x0, 1)
Cond_855_1_power_InvokeMethod(TRUE, 644_0_power_Return(x0), x1, x0, 1)
855_1_power_InvokeMethod(969_0_power_Return(x0, x1), x2, x0, x1)
Cond_855_1_power_InvokeMethod1(TRUE, 969_0_power_Return(x0, x1), x2, x0, x1)
855_1_power_InvokeMethod(1056_0_power_Return, x0, x1, x2)
Cond_855_1_power_InvokeMethod2(TRUE, 1056_0_power_Return, x0, x1, x2)
840_1_power_InvokeMethod(644_0_power_Return(x0), x0, 1)
Cond_840_1_power_InvokeMethod(TRUE, 644_0_power_Return(x0), x0, 1)
840_1_power_InvokeMethod(895_0_power_Return(x0, x1), x0, x1)
840_1_power_InvokeMethod(951_0_power_Return, x0, x1)
868_1_power_InvokeMethod(644_0_power_Return(x0), x1, x0, 1)
Cond_868_1_power_InvokeMethod(TRUE, 644_0_power_Return(x0), x1, x0, 1)
868_1_power_InvokeMethod(895_0_power_Return(x0, x1), x2, x0, x1)
Cond_868_1_power_InvokeMethod1(TRUE, 895_0_power_Return(x0, x1), x2, x0, x1)
868_1_power_InvokeMethod(951_0_power_Return, x0, x1, x2)
Cond_868_1_power_InvokeMethod2(TRUE, 951_0_power_Return, x0, x1, x2)

(11) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 574_0_POWER_GT(x0[4], x1[4]) → COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4]) the following chains were created:
  • We consider the chain 574_0_POWER_GT(x0[4], x1[4]) → COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4]), COND_574_0_POWER_GT(TRUE, x0[1], x1[1]) → 574_0_POWER_GT(x0[1], /(x1[1], 2)) which results in the following constraint:

    (1)    (&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1)))=TRUEx0[4]=x0[1]x1[4]=x1[1]574_0_POWER_GT(x0[4], x1[4])≥NonInfC∧574_0_POWER_GT(x0[4], x1[4])≥COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])∧(UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥))



    We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraints:

    (2)    (>(x1[4], 1)=TRUE<(%(x1[4], 2), 1)=TRUE<(x0[4], 2)=TRUE574_0_POWER_GT(x0[4], x1[4])≥NonInfC∧574_0_POWER_GT(x0[4], x1[4])≥COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])∧(UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥))


    (3)    (>(x1[4], 1)=TRUE<(%(x1[4], 2), 1)=TRUE>(x0[4], 2)=TRUE574_0_POWER_GT(x0[4], x1[4])≥NonInfC∧574_0_POWER_GT(x0[4], x1[4])≥COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])∧(UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (4)    (x1[4] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧[1] + [-1]x0[4] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)



    We simplified constraint (3) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (5)    (x1[4] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧x0[4] + [-3] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)



    We simplified constraint (4) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (6)    (x1[4] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧[1] + [-1]x0[4] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)



    We simplified constraint (5) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (7)    (x1[4] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧x0[4] + [-3] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)



    We simplified constraint (8) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (9)    (x1[4] + [-2] ≥ 0∧max{[2], [-2]} + [-2] ≥ 0∧[1] + [-1]x0[4] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)



    We simplified constraint (10) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (11)    (x1[4] + [-2] ≥ 0∧max{[2], [-2]} + [-2] ≥ 0∧x0[4] + [-3] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)



    We simplified constraint (6) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (12)    (x1[4] + [-2] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧[4] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)



    We simplified constraint (7) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (13)    (x1[4] + [-2] ≥ 0∧x0[4] + [-3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)



    We simplified constraint (9) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (14)    (x1[4] + [-2] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧[4] ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)



    We simplified constraint (11) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (15)    (x1[4] + [-2] ≥ 0∧x0[4] + [-3] ≥ 0∧[4] ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)



    We simplified constraint (12) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (16)    (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧[4] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)



    We simplified constraint (13) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (17)    (x1[4] ≥ 0∧x0[4] + [-3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)



    We simplified constraint (14) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (18)    (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧[4] ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)



    We simplified constraint (15) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (19)    (x1[4] ≥ 0∧x0[4] + [-3] ≥ 0∧[4] ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)



    We simplified constraint (16) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (20)    (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)


    (21)    (x1[4] ≥ 0∧[1] + x0[4] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)



    We simplified constraint (20) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (22)    (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)



    We simplified constraint (21) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (23)    (x1[4] ≥ 0∧[1] + x0[4] ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)



    We simplified constraint (17) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (24)    (x1[4] ≥ 0∧x0[4] ≥ 0∧[4] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)



    We simplified constraint (24) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (25)    (x1[4] ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)



    We simplified constraint (18) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (26)    (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)


    (27)    (x1[4] ≥ 0∧[1] + x0[4] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)



    We simplified constraint (26) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (28)    (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧0 ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)



    We simplified constraint (27) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (29)    (x1[4] ≥ 0∧[1] + x0[4] ≥ 0∧0 ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)



    We simplified constraint (19) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (30)    (x1[4] ≥ 0∧x0[4] ≥ 0∧[4] ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)



    We simplified constraint (30) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (31)    (x1[4] ≥ 0∧x0[4] ≥ 0∧0 ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)







For Pair COND_574_0_POWER_GT1(TRUE, x0[3], x1[3]) → 574_0_POWER_GT(x0[3], -(x1[3], 1)) the following chains were created:
  • We consider the chain 574_0_POWER_GT(x0[2], x1[2]) → COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2]), COND_574_0_POWER_GT1(TRUE, x0[3], x1[3]) → 574_0_POWER_GT(x0[3], -(x1[3], 1)), 574_0_POWER_GT(x0[0], x1[0]) → COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0]) which results in the following constraint:

    (32)    (&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2)))=TRUEx0[2]=x0[3]x1[2]=x1[3]x0[3]=x0[0]-(x1[3], 1)=x1[0]COND_574_0_POWER_GT1(TRUE, x0[3], x1[3])≥NonInfC∧COND_574_0_POWER_GT1(TRUE, x0[3], x1[3])≥574_0_POWER_GT(x0[3], -(x1[3], 1))∧(UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥))



    We simplified constraint (32) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraints:

    (33)    (>=(1, %(x1[2], 2))=TRUE<=(1, %(x1[2], 2))=TRUE>(x1[2], 0)=TRUE<(x0[2], 2)=TRUE<(x1[2], 1)=TRUECOND_574_0_POWER_GT1(TRUE, x0[2], x1[2])≥NonInfC∧COND_574_0_POWER_GT1(TRUE, x0[2], x1[2])≥574_0_POWER_GT(x0[2], -(x1[2], 1))∧(UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥))


    (34)    (>=(1, %(x1[2], 2))=TRUE<=(1, %(x1[2], 2))=TRUE>(x1[2], 0)=TRUE<(x0[2], 2)=TRUE>(x1[2], 1)=TRUECOND_574_0_POWER_GT1(TRUE, x0[2], x1[2])≥NonInfC∧COND_574_0_POWER_GT1(TRUE, x0[2], x1[2])≥574_0_POWER_GT(x0[2], -(x1[2], 1))∧(UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥))



    We simplified constraint (33) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (35)    ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧[-1]x1[2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (34) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (36)    ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (35) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (37)    ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧[-1]x1[2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (36) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (38)    ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (39) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (40)    ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧x0[2] + [-3] ≥ 0∧[-1]x1[2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (41) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (42)    ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧x0[2] + [-3] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



    We solved constraint (37) using rule (POLY_REMOVE_MIN_MAX).We simplified constraint (38) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (43)    (x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] + [-2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



    We solved constraint (40) using rule (POLY_REMOVE_MIN_MAX).We simplified constraint (42) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (44)    (x1[2] + [-1] ≥ 0∧x0[2] + [-3] ≥ 0∧x1[2] + [-2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (43) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (45)    (x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧[-1] + x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (44) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (46)    (x1[2] ≥ 0∧x0[2] + [-3] ≥ 0∧[-1] + x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (45) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (47)    ([1] + x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (47) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (48)    ([1] + x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)


    (49)    ([1] + x1[2] ≥ 0∧[1] + x0[2] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (48) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (50)    ([1] + x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (49) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (51)    ([1] + x1[2] ≥ 0∧[1] + x0[2] ≥ 0∧x1[2] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (46) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (52)    ([1] + x1[2] ≥ 0∧x0[2] + [-3] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (52) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (53)    ([1] + x1[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (53) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (54)    ([1] + x1[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



  • We consider the chain 574_0_POWER_GT(x0[2], x1[2]) → COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2]), COND_574_0_POWER_GT1(TRUE, x0[3], x1[3]) → 574_0_POWER_GT(x0[3], -(x1[3], 1)), 574_0_POWER_GT(x0[2], x1[2]) → COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2]) which results in the following constraint:

    (55)    (&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2)))=TRUEx0[2]=x0[3]x1[2]=x1[3]x0[3]=x0[2]1-(x1[3], 1)=x1[2]1COND_574_0_POWER_GT1(TRUE, x0[3], x1[3])≥NonInfC∧COND_574_0_POWER_GT1(TRUE, x0[3], x1[3])≥574_0_POWER_GT(x0[3], -(x1[3], 1))∧(UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥))



    We simplified constraint (55) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraints:

    (56)    (>=(1, %(x1[2], 2))=TRUE<=(1, %(x1[2], 2))=TRUE>(x1[2], 0)=TRUE<(x0[2], 2)=TRUE<(x1[2], 1)=TRUECOND_574_0_POWER_GT1(TRUE, x0[2], x1[2])≥NonInfC∧COND_574_0_POWER_GT1(TRUE, x0[2], x1[2])≥574_0_POWER_GT(x0[2], -(x1[2], 1))∧(UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥))


    (57)    (>=(1, %(x1[2], 2))=TRUE<=(1, %(x1[2], 2))=TRUE>(x1[2], 0)=TRUE<(x0[2], 2)=TRUE>(x1[2], 1)=TRUECOND_574_0_POWER_GT1(TRUE, x0[2], x1[2])≥NonInfC∧COND_574_0_POWER_GT1(TRUE, x0[2], x1[2])≥574_0_POWER_GT(x0[2], -(x1[2], 1))∧(UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥))



    We simplified constraint (56) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (58)    ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧[-1]x1[2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (57) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (59)    ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (58) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (60)    ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧[-1]x1[2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (59) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (61)    ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (62) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (63)    ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧x0[2] + [-3] ≥ 0∧[-1]x1[2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (64) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (65)    ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧x0[2] + [-3] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



    We solved constraint (60) using rule (POLY_REMOVE_MIN_MAX).We simplified constraint (61) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (66)    (x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] + [-2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



    We solved constraint (63) using rule (POLY_REMOVE_MIN_MAX).We simplified constraint (65) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (67)    (x1[2] + [-1] ≥ 0∧x0[2] + [-3] ≥ 0∧x1[2] + [-2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (66) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (68)    (x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧[-1] + x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (67) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (69)    (x1[2] ≥ 0∧x0[2] + [-3] ≥ 0∧[-1] + x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (68) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (70)    ([1] + x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (70) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (71)    ([1] + x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)


    (72)    ([1] + x1[2] ≥ 0∧[1] + x0[2] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (71) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (73)    ([1] + x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (72) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (74)    ([1] + x1[2] ≥ 0∧[1] + x0[2] ≥ 0∧x1[2] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (69) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (75)    ([1] + x1[2] ≥ 0∧x0[2] + [-3] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (75) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (76)    ([1] + x1[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (76) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (77)    ([1] + x1[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



  • We consider the chain 574_0_POWER_GT(x0[2], x1[2]) → COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2]), COND_574_0_POWER_GT1(TRUE, x0[3], x1[3]) → 574_0_POWER_GT(x0[3], -(x1[3], 1)), 574_0_POWER_GT(x0[4], x1[4]) → COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4]) which results in the following constraint:

    (78)    (&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2)))=TRUEx0[2]=x0[3]x1[2]=x1[3]x0[3]=x0[4]-(x1[3], 1)=x1[4]COND_574_0_POWER_GT1(TRUE, x0[3], x1[3])≥NonInfC∧COND_574_0_POWER_GT1(TRUE, x0[3], x1[3])≥574_0_POWER_GT(x0[3], -(x1[3], 1))∧(UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥))



    We simplified constraint (78) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraints:

    (79)    (>=(1, %(x1[2], 2))=TRUE<=(1, %(x1[2], 2))=TRUE>(x1[2], 0)=TRUE<(x0[2], 2)=TRUE<(x1[2], 1)=TRUECOND_574_0_POWER_GT1(TRUE, x0[2], x1[2])≥NonInfC∧COND_574_0_POWER_GT1(TRUE, x0[2], x1[2])≥574_0_POWER_GT(x0[2], -(x1[2], 1))∧(UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥))


    (80)    (>=(1, %(x1[2], 2))=TRUE<=(1, %(x1[2], 2))=TRUE>(x1[2], 0)=TRUE<(x0[2], 2)=TRUE>(x1[2], 1)=TRUECOND_574_0_POWER_GT1(TRUE, x0[2], x1[2])≥NonInfC∧COND_574_0_POWER_GT1(TRUE, x0[2], x1[2])≥574_0_POWER_GT(x0[2], -(x1[2], 1))∧(UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥))



    We simplified constraint (79) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (81)    ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧[-1]x1[2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (80) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (82)    ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (81) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (83)    ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧[-1]x1[2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (82) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (84)    ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (85) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (86)    ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧x0[2] + [-3] ≥ 0∧[-1]x1[2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (87) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (88)    ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧x0[2] + [-3] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



    We solved constraint (83) using rule (POLY_REMOVE_MIN_MAX).We simplified constraint (84) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (89)    (x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] + [-2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



    We solved constraint (86) using rule (POLY_REMOVE_MIN_MAX).We simplified constraint (88) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (90)    (x1[2] + [-1] ≥ 0∧x0[2] + [-3] ≥ 0∧x1[2] + [-2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (89) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (91)    (x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧[-1] + x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (90) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (92)    (x1[2] ≥ 0∧x0[2] + [-3] ≥ 0∧[-1] + x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[(-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (91) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (93)    ([1] + x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (93) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (94)    ([1] + x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)


    (95)    ([1] + x1[2] ≥ 0∧[1] + x0[2] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (94) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (96)    ([1] + x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (95) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (97)    ([1] + x1[2] ≥ 0∧[1] + x0[2] ≥ 0∧x1[2] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (92) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (98)    ([1] + x1[2] ≥ 0∧x0[2] + [-3] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (98) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (99)    ([1] + x1[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)



    We simplified constraint (99) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (100)    ([1] + x1[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)







For Pair 574_0_POWER_GT(x0[2], x1[2]) → COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2]) the following chains were created:
  • We consider the chain 574_0_POWER_GT(x0[2], x1[2]) → COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2]), COND_574_0_POWER_GT1(TRUE, x0[3], x1[3]) → 574_0_POWER_GT(x0[3], -(x1[3], 1)) which results in the following constraint:

    (101)    (&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2)))=TRUEx0[2]=x0[3]x1[2]=x1[3]574_0_POWER_GT(x0[2], x1[2])≥NonInfC∧574_0_POWER_GT(x0[2], x1[2])≥COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])∧(UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥))



    We simplified constraint (101) using rules (IV), (IDP_BOOLEAN) which results in the following new constraints:

    (102)    (>=(1, %(x1[2], 2))=TRUE<=(1, %(x1[2], 2))=TRUE>(x1[2], 0)=TRUE<(x0[2], 2)=TRUE<(x1[2], 1)=TRUE574_0_POWER_GT(x0[2], x1[2])≥NonInfC∧574_0_POWER_GT(x0[2], x1[2])≥COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])∧(UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥))


    (103)    (>=(1, %(x1[2], 2))=TRUE<=(1, %(x1[2], 2))=TRUE>(x1[2], 0)=TRUE<(x0[2], 2)=TRUE>(x1[2], 1)=TRUE574_0_POWER_GT(x0[2], x1[2])≥NonInfC∧574_0_POWER_GT(x0[2], x1[2])≥COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])∧(UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥))



    We simplified constraint (102) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (104)    ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧[-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]x1[2] ≥ 0∧[(-1)bso_23] ≥ 0)



    We simplified constraint (103) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (105)    ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]x1[2] ≥ 0∧[(-1)bso_23] ≥ 0)



    We simplified constraint (104) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (106)    ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧[-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]x1[2] ≥ 0∧[(-1)bso_23] ≥ 0)



    We simplified constraint (105) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (107)    ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]x1[2] ≥ 0∧[(-1)bso_23] ≥ 0)



    We simplified constraint (108) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (109)    ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧x0[2] + [-3] ≥ 0∧[-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]x1[2] ≥ 0∧[(-1)bso_23] ≥ 0)



    We simplified constraint (110) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (111)    ([1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0∧x1[2] + [-1] ≥ 0∧x0[2] + [-3] ≥ 0∧x1[2] + [-2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]x1[2] ≥ 0∧[(-1)bso_23] ≥ 0)



    We solved constraint (106) using rule (POLY_REMOVE_MIN_MAX).We simplified constraint (107) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (112)    (x1[2] + [-1] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] + [-2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]x1[2] ≥ 0∧[(-1)bso_23] ≥ 0)



    We solved constraint (109) using rule (POLY_REMOVE_MIN_MAX).We simplified constraint (111) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (113)    (x1[2] + [-1] ≥ 0∧x0[2] + [-3] ≥ 0∧x1[2] + [-2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]x1[2] ≥ 0∧[(-1)bso_23] ≥ 0)



    We simplified constraint (112) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (114)    (x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧[-1] + x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)Bound*bni_22] + [bni_22]x1[2] ≥ 0∧[(-1)bso_23] ≥ 0)



    We simplified constraint (113) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (115)    (x1[2] ≥ 0∧x0[2] + [-3] ≥ 0∧[-1] + x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[(-1)Bound*bni_22] + [bni_22]x1[2] ≥ 0∧[(-1)bso_23] ≥ 0)



    We simplified constraint (114) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (116)    ([1] + x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x1[2] ≥ 0∧[(-1)bso_23] ≥ 0)



    We simplified constraint (116) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (117)    ([1] + x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x1[2] ≥ 0∧[(-1)bso_23] ≥ 0)


    (118)    ([1] + x1[2] ≥ 0∧[1] + x0[2] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x1[2] ≥ 0∧[(-1)bso_23] ≥ 0)



    We simplified constraint (117) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (119)    ([1] + x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x1[2] ≥ 0∧[(-1)bso_23] ≥ 0)



    We simplified constraint (118) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (120)    ([1] + x1[2] ≥ 0∧[1] + x0[2] ≥ 0∧x1[2] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x1[2] ≥ 0∧[(-1)bso_23] ≥ 0)



    We simplified constraint (115) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (121)    ([1] + x1[2] ≥ 0∧x0[2] + [-3] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x1[2] ≥ 0∧[(-1)bso_23] ≥ 0)



    We simplified constraint (121) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (122)    ([1] + x1[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x1[2] ≥ 0∧[(-1)bso_23] ≥ 0)



    We simplified constraint (122) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (123)    ([1] + x1[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x1[2] ≥ 0∧[(-1)bso_23] ≥ 0)







For Pair COND_574_0_POWER_GT(TRUE, x0[1], x1[1]) → 574_0_POWER_GT(x0[1], /(x1[1], 2)) the following chains were created:
  • We consider the chain 574_0_POWER_GT(x0[0], x1[0]) → COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0]), COND_574_0_POWER_GT(TRUE, x0[1], x1[1]) → 574_0_POWER_GT(x0[1], /(x1[1], 2)) which results in the following constraint:

    (124)    (&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2)))=TRUEx0[0]=x0[1]x1[0]=x1[1]COND_574_0_POWER_GT(TRUE, x0[1], x1[1])≥NonInfC∧COND_574_0_POWER_GT(TRUE, x0[1], x1[1])≥574_0_POWER_GT(x0[1], /(x1[1], 2))∧(UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥))



    We simplified constraint (124) using rules (III), (IDP_BOOLEAN) which results in the following new constraints:

    (125)    (>(x1[0], 1)=TRUE>=(0, %(x1[0], 2))=TRUE<=(0, %(x1[0], 2))=TRUE<(x0[0], 2)=TRUECOND_574_0_POWER_GT(TRUE, x0[0], x1[0])≥NonInfC∧COND_574_0_POWER_GT(TRUE, x0[0], x1[0])≥574_0_POWER_GT(x0[0], /(x1[0], 2))∧(UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥))


    (126)    (>(x1[0], 1)=TRUE>=(0, %(x1[0], 2))=TRUE<=(0, %(x1[0], 2))=TRUE>(x0[0], 2)=TRUECOND_574_0_POWER_GT(TRUE, x0[0], x1[0])≥NonInfC∧COND_574_0_POWER_GT(TRUE, x0[0], x1[0])≥574_0_POWER_GT(x0[0], /(x1[0], 2))∧(UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥))



    We simplified constraint (125) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (127)    (x1[0] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧[1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x1[0] ≥ 0∧[1 + (-1)bso_28] + x1[0] + [-1]max{x1[0], [-1]x1[0]} ≥ 0)



    We simplified constraint (126) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (128)    (x1[0] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧x0[0] + [-3] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x1[0] ≥ 0∧[1 + (-1)bso_28] + x1[0] + [-1]max{x1[0], [-1]x1[0]} ≥ 0)



    We simplified constraint (127) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (129)    (x1[0] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧[1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x1[0] ≥ 0∧[1 + (-1)bso_28] + x1[0] + [-1]max{x1[0], [-1]x1[0]} ≥ 0)



    We simplified constraint (128) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (130)    (x1[0] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧x0[0] + [-3] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x1[0] ≥ 0∧[1 + (-1)bso_28] + x1[0] + [-1]max{x1[0], [-1]x1[0]} ≥ 0)



    We simplified constraint (129) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (131)    (x1[0] + [-2] ≥ 0∧[1] + [-1]x0[0] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[2]x1[0] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x1[0] ≥ 0∧[1 + (-1)bso_28] ≥ 0)



    We simplified constraint (130) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (132)    (x1[0] + [-2] ≥ 0∧x0[0] + [-3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[2]x1[0] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x1[0] ≥ 0∧[1 + (-1)bso_28] ≥ 0)



    We simplified constraint (131) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (133)    (x1[0] ≥ 0∧[1] + [-1]x0[0] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[0] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[0] ≥ 0∧[1 + (-1)bso_28] ≥ 0)



    We simplified constraint (132) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (134)    (x1[0] ≥ 0∧x0[0] + [-3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[0] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[0] ≥ 0∧[1 + (-1)bso_28] ≥ 0)



    We simplified constraint (133) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (135)    (x1[0] ≥ 0∧[1] + [-1]x0[0] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[0] ≥ 0∧[1 + (-1)bso_28] ≥ 0)


    (136)    (x1[0] ≥ 0∧[1] + x0[0] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[0] ≥ 0∧[1 + (-1)bso_28] ≥ 0)



    We simplified constraint (135) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (137)    (x1[0] ≥ 0∧[1] + [-1]x0[0] ≥ 0∧x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x1[0] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[0] ≥ 0∧[1 + (-1)bso_28] ≥ 0)



    We simplified constraint (136) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (138)    (x1[0] ≥ 0∧[1] + x0[0] ≥ 0∧x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x1[0] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[0] ≥ 0∧[1 + (-1)bso_28] ≥ 0)



    We simplified constraint (134) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (139)    (x1[0] ≥ 0∧x0[0] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[0] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[0] ≥ 0∧[1 + (-1)bso_28] ≥ 0)



    We simplified constraint (139) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (140)    (x1[0] ≥ 0∧x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x1[0] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[0] ≥ 0∧[1 + (-1)bso_28] ≥ 0)



  • We consider the chain 574_0_POWER_GT(x0[4], x1[4]) → COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4]), COND_574_0_POWER_GT(TRUE, x0[1], x1[1]) → 574_0_POWER_GT(x0[1], /(x1[1], 2)) which results in the following constraint:

    (141)    (&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1)))=TRUEx0[4]=x0[1]x1[4]=x1[1]COND_574_0_POWER_GT(TRUE, x0[1], x1[1])≥NonInfC∧COND_574_0_POWER_GT(TRUE, x0[1], x1[1])≥574_0_POWER_GT(x0[1], /(x1[1], 2))∧(UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥))



    We simplified constraint (141) using rules (III), (IDP_BOOLEAN) which results in the following new constraints:

    (142)    (>(x1[4], 1)=TRUE<(%(x1[4], 2), 1)=TRUE<(x0[4], 2)=TRUECOND_574_0_POWER_GT(TRUE, x0[4], x1[4])≥NonInfC∧COND_574_0_POWER_GT(TRUE, x0[4], x1[4])≥574_0_POWER_GT(x0[4], /(x1[4], 2))∧(UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥))


    (143)    (>(x1[4], 1)=TRUE<(%(x1[4], 2), 1)=TRUE>(x0[4], 2)=TRUECOND_574_0_POWER_GT(TRUE, x0[4], x1[4])≥NonInfC∧COND_574_0_POWER_GT(TRUE, x0[4], x1[4])≥574_0_POWER_GT(x0[4], /(x1[4], 2))∧(UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥))



    We simplified constraint (142) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (144)    (x1[4] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧[1] + [-1]x0[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] + x1[4] + [-1]max{x1[4], [-1]x1[4]} ≥ 0)



    We simplified constraint (143) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (145)    (x1[4] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧x0[4] + [-3] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] + x1[4] + [-1]max{x1[4], [-1]x1[4]} ≥ 0)



    We simplified constraint (144) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (146)    (x1[4] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧[1] + [-1]x0[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] + x1[4] + [-1]max{x1[4], [-1]x1[4]} ≥ 0)



    We simplified constraint (145) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (147)    (x1[4] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧x0[4] + [-3] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] + x1[4] + [-1]max{x1[4], [-1]x1[4]} ≥ 0)



    We simplified constraint (148) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (149)    (x1[4] + [-2] ≥ 0∧max{[2], [-2]} + [-2] ≥ 0∧[1] + [-1]x0[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] + x1[4] + [-1]max{x1[4], [-1]x1[4]} ≥ 0)



    We simplified constraint (150) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (151)    (x1[4] + [-2] ≥ 0∧max{[2], [-2]} + [-2] ≥ 0∧x0[4] + [-3] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] + x1[4] + [-1]max{x1[4], [-1]x1[4]} ≥ 0)



    We simplified constraint (146) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (152)    (x1[4] + [-2] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2]x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] ≥ 0)



    We simplified constraint (147) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (153)    (x1[4] + [-2] ≥ 0∧x0[4] + [-3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2]x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] ≥ 0)



    We simplified constraint (149) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (154)    (x1[4] + [-2] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧[2]x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] ≥ 0)



    We simplified constraint (151) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (155)    (x1[4] + [-2] ≥ 0∧x0[4] + [-3] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧[2]x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] ≥ 0)



    We simplified constraint (152) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (156)    (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] ≥ 0)



    We simplified constraint (153) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (157)    (x1[4] ≥ 0∧x0[4] + [-3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] ≥ 0)



    We simplified constraint (154) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (158)    (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧[4] + [2]x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] ≥ 0)



    We simplified constraint (155) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (159)    (x1[4] ≥ 0∧x0[4] + [-3] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧[4] + [2]x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] ≥ 0)



    We simplified constraint (156) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (160)    (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[4] ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] ≥ 0)


    (161)    (x1[4] ≥ 0∧[1] + x0[4] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[4] ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] ≥ 0)



    We simplified constraint (160) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (162)    (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] ≥ 0)



    We simplified constraint (161) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (163)    (x1[4] ≥ 0∧[1] + x0[4] ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] ≥ 0)



    We simplified constraint (157) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (164)    (x1[4] ≥ 0∧x0[4] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[4] + [2]x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] ≥ 0)



    We simplified constraint (164) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (165)    (x1[4] ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] ≥ 0)



    We simplified constraint (158) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (166)    (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧[4] + [2]x1[4] ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] ≥ 0)


    (167)    (x1[4] ≥ 0∧[1] + x0[4] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧[4] + [2]x1[4] ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] ≥ 0)



    We simplified constraint (166) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (168)    (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧0 ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0∧[2] + x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] ≥ 0)



    We simplified constraint (167) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (169)    (x1[4] ≥ 0∧[1] + x0[4] ≥ 0∧0 ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0∧[2] + x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] ≥ 0)



    We simplified constraint (159) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (170)    (x1[4] ≥ 0∧x0[4] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧[4] + [2]x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] ≥ 0)



    We simplified constraint (170) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (171)    (x1[4] ≥ 0∧x0[4] ≥ 0∧0 ≥ 0∧[1] ≥ 0∧[2] + x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] ≥ 0)







For Pair 574_0_POWER_GT(x0[0], x1[0]) → COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0]) the following chains were created:
  • We consider the chain 574_0_POWER_GT(x0[0], x1[0]) → COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0]), COND_574_0_POWER_GT(TRUE, x0[1], x1[1]) → 574_0_POWER_GT(x0[1], /(x1[1], 2)) which results in the following constraint:

    (172)    (&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2)))=TRUEx0[0]=x0[1]x1[0]=x1[1]574_0_POWER_GT(x0[0], x1[0])≥NonInfC∧574_0_POWER_GT(x0[0], x1[0])≥COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])∧(UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥))



    We simplified constraint (172) using rules (IV), (IDP_BOOLEAN) which results in the following new constraints:

    (173)    (>(x1[0], 1)=TRUE>=(0, %(x1[0], 2))=TRUE<=(0, %(x1[0], 2))=TRUE<(x0[0], 2)=TRUE574_0_POWER_GT(x0[0], x1[0])≥NonInfC∧574_0_POWER_GT(x0[0], x1[0])≥COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])∧(UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥))


    (174)    (>(x1[0], 1)=TRUE>=(0, %(x1[0], 2))=TRUE<=(0, %(x1[0], 2))=TRUE>(x0[0], 2)=TRUE574_0_POWER_GT(x0[0], x1[0])≥NonInfC∧574_0_POWER_GT(x0[0], x1[0])≥COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])∧(UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥))



    We simplified constraint (173) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (175)    (x1[0] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧[1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[(-1)bni_29 + (-1)Bound*bni_29] + [bni_29]x1[0] ≥ 0∧[(-1)bso_30] ≥ 0)



    We simplified constraint (174) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (176)    (x1[0] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧x0[0] + [-3] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[(-1)bni_29 + (-1)Bound*bni_29] + [bni_29]x1[0] ≥ 0∧[(-1)bso_30] ≥ 0)



    We simplified constraint (175) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (177)    (x1[0] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧[1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[(-1)bni_29 + (-1)Bound*bni_29] + [bni_29]x1[0] ≥ 0∧[(-1)bso_30] ≥ 0)



    We simplified constraint (176) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (178)    (x1[0] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧x0[0] + [-3] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[(-1)bni_29 + (-1)Bound*bni_29] + [bni_29]x1[0] ≥ 0∧[(-1)bso_30] ≥ 0)



    We simplified constraint (177) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (179)    (x1[0] + [-2] ≥ 0∧[1] + [-1]x0[0] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[(-1)bni_29 + (-1)Bound*bni_29] + [bni_29]x1[0] ≥ 0∧[(-1)bso_30] ≥ 0)



    We simplified constraint (178) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (180)    (x1[0] + [-2] ≥ 0∧x0[0] + [-3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[(-1)bni_29 + (-1)Bound*bni_29] + [bni_29]x1[0] ≥ 0∧[(-1)bso_30] ≥ 0)



    We simplified constraint (179) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (181)    (x1[0] ≥ 0∧[1] + [-1]x0[0] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[bni_29 + (-1)Bound*bni_29] + [bni_29]x1[0] ≥ 0∧[(-1)bso_30] ≥ 0)



    We simplified constraint (180) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (182)    (x1[0] ≥ 0∧x0[0] + [-3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[bni_29 + (-1)Bound*bni_29] + [bni_29]x1[0] ≥ 0∧[(-1)bso_30] ≥ 0)



    We simplified constraint (181) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (183)    (x1[0] ≥ 0∧[1] + [-1]x0[0] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[bni_29 + (-1)Bound*bni_29] + [bni_29]x1[0] ≥ 0∧[(-1)bso_30] ≥ 0)


    (184)    (x1[0] ≥ 0∧[1] + x0[0] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[bni_29 + (-1)Bound*bni_29] + [bni_29]x1[0] ≥ 0∧[(-1)bso_30] ≥ 0)



    We simplified constraint (183) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (185)    (x1[0] ≥ 0∧[1] + [-1]x0[0] ≥ 0∧x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[bni_29 + (-1)Bound*bni_29] + [bni_29]x1[0] ≥ 0∧[(-1)bso_30] ≥ 0)



    We simplified constraint (184) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (186)    (x1[0] ≥ 0∧[1] + x0[0] ≥ 0∧x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[bni_29 + (-1)Bound*bni_29] + [bni_29]x1[0] ≥ 0∧[(-1)bso_30] ≥ 0)



    We simplified constraint (182) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (187)    (x1[0] ≥ 0∧x0[0] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[bni_29 + (-1)Bound*bni_29] + [bni_29]x1[0] ≥ 0∧[(-1)bso_30] ≥ 0)



    We simplified constraint (187) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (188)    (x1[0] ≥ 0∧x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[bni_29 + (-1)Bound*bni_29] + [bni_29]x1[0] ≥ 0∧[(-1)bso_30] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 574_0_POWER_GT(x0[4], x1[4]) → COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])
    • (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)
    • (x1[4] ≥ 0∧[1] + x0[4] ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)
    • (x1[4] ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)
    • (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧0 ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)
    • (x1[4] ≥ 0∧[1] + x0[4] ≥ 0∧0 ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)
    • (x1[4] ≥ 0∧x0[4] ≥ 0∧0 ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])), ≥)∧[bni_18 + (-1)Bound*bni_18] + [bni_18]x1[4] ≥ 0∧[(-1)bso_19] ≥ 0)

  • COND_574_0_POWER_GT1(TRUE, x0[3], x1[3]) → 574_0_POWER_GT(x0[3], -(x1[3], 1))
    • ([1] + x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
    • ([1] + x1[2] ≥ 0∧[1] + x0[2] ≥ 0∧x1[2] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
    • ([1] + x1[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
    • ([1] + x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
    • ([1] + x1[2] ≥ 0∧[1] + x0[2] ≥ 0∧x1[2] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
    • ([1] + x1[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
    • ([1] + x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
    • ([1] + x1[2] ≥ 0∧[1] + x0[2] ≥ 0∧x1[2] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
    • ([1] + x1[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[3], -(x1[3], 1))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [bni_20]x1[2] ≥ 0∧[1 + (-1)bso_21] ≥ 0)

  • 574_0_POWER_GT(x0[2], x1[2]) → COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])
    • ([1] + x1[2] ≥ 0∧[1] + [-1]x0[2] ≥ 0∧x1[2] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x1[2] ≥ 0∧[(-1)bso_23] ≥ 0)
    • ([1] + x1[2] ≥ 0∧[1] + x0[2] ≥ 0∧x1[2] ≥ 0∧[1] ≥ 0∧x0[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x1[2] ≥ 0∧[(-1)bso_23] ≥ 0)
    • ([1] + x1[2] ≥ 0∧x0[2] ≥ 0∧x1[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x1[2] ≥ 0∧[(-1)bso_23] ≥ 0)

  • COND_574_0_POWER_GT(TRUE, x0[1], x1[1]) → 574_0_POWER_GT(x0[1], /(x1[1], 2))
    • (x1[0] ≥ 0∧[1] + [-1]x0[0] ≥ 0∧x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x1[0] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[0] ≥ 0∧[1 + (-1)bso_28] ≥ 0)
    • (x1[0] ≥ 0∧[1] + x0[0] ≥ 0∧x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x1[0] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[0] ≥ 0∧[1 + (-1)bso_28] ≥ 0)
    • (x1[0] ≥ 0∧x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x1[0] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[0] ≥ 0∧[1 + (-1)bso_28] ≥ 0)
    • (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] ≥ 0)
    • (x1[4] ≥ 0∧[1] + x0[4] ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] ≥ 0)
    • (x1[4] ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] ≥ 0)
    • (x1[4] ≥ 0∧[1] + [-1]x0[4] ≥ 0∧0 ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0∧[2] + x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] ≥ 0)
    • (x1[4] ≥ 0∧[1] + x0[4] ≥ 0∧0 ≥ 0∧x0[4] ≥ 0∧[1] ≥ 0∧[2] + x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] ≥ 0)
    • (x1[4] ≥ 0∧x0[4] ≥ 0∧0 ≥ 0∧[1] ≥ 0∧[2] + x1[4] ≥ 0 ⇒ (UIncreasing(574_0_POWER_GT(x0[1], /(x1[1], 2))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[4] ≥ 0∧[1 + (-1)bso_28] ≥ 0)

  • 574_0_POWER_GT(x0[0], x1[0]) → COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])
    • (x1[0] ≥ 0∧[1] + [-1]x0[0] ≥ 0∧x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[bni_29 + (-1)Bound*bni_29] + [bni_29]x1[0] ≥ 0∧[(-1)bso_30] ≥ 0)
    • (x1[0] ≥ 0∧[1] + x0[0] ≥ 0∧x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[bni_29 + (-1)Bound*bni_29] + [bni_29]x1[0] ≥ 0∧[(-1)bso_30] ≥ 0)
    • (x1[0] ≥ 0∧x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])), ≥)∧[bni_29 + (-1)Bound*bni_29] + [bni_29]x1[0] ≥ 0∧[(-1)bso_30] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = [1]   
POL(574_0_POWER_GT(x1, x2)) = [-1] + x2   
POL(COND_574_0_POWER_GT(x1, x2, x3)) = [-1] + x3   
POL(&&(x1, x2)) = [-1]   
POL(>(x1, x2)) = [-1]   
POL(1) = [1]   
POL(!(x1)) = [-1]   
POL(=(x1, x2)) = [-1]   
POL(2) = [2]   
POL(COND_574_0_POWER_GT1(x1, x2, x3)) = [-1] + x3   
POL(-(x1, x2)) = x1 + [-1]x2   
POL(0) = 0   

Polynomial Interpretations with Context Sensitive Arithemetic Replacement
POL(TermCSAR-Mode @ Context)

POL(%(x1, 2)-1 @ {}) = min{x2, [-1]x2}   
POL(%(x1, 2)1 @ {}) = max{x2, [-1]x2}   
POL(/(x1, 2)1 @ {574_0_POWER_GT_2/1}) = max{x1, [-1]x1} + [-1]   

The following pairs are in P>:

COND_574_0_POWER_GT1(TRUE, x0[3], x1[3]) → 574_0_POWER_GT(x0[3], -(x1[3], 1))
COND_574_0_POWER_GT(TRUE, x0[1], x1[1]) → 574_0_POWER_GT(x0[1], /(x1[1], 2))

The following pairs are in Pbound:

574_0_POWER_GT(x0[4], x1[4]) → COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])
COND_574_0_POWER_GT1(TRUE, x0[3], x1[3]) → 574_0_POWER_GT(x0[3], -(x1[3], 1))
574_0_POWER_GT(x0[2], x1[2]) → COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])
COND_574_0_POWER_GT(TRUE, x0[1], x1[1]) → 574_0_POWER_GT(x0[1], /(x1[1], 2))
574_0_POWER_GT(x0[0], x1[0]) → COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])

The following pairs are in P:

574_0_POWER_GT(x0[4], x1[4]) → COND_574_0_POWER_GT(&&(&&(>(x1[4], 1), !(=(x0[4], 2))), !(=(%(x1[4], 2), 1))), x0[4], x1[4])
574_0_POWER_GT(x0[2], x1[2]) → COND_574_0_POWER_GT1(&&(&&(&&(>(x1[2], 0), !(=(x1[2], 1))), !(=(x0[2], 2))), =(1, %(x1[2], 2))), x0[2], x1[2])
574_0_POWER_GT(x0[0], x1[0]) → COND_574_0_POWER_GT(&&(&&(>(x1[0], 1), !(=(x0[0], 2))), =(0, %(x1[0], 2))), x0[0], x1[0])

At least the following rules have been oriented under context sensitive arithmetic replacement:

FALSE1&&(FALSE, FALSE)1
/1

(12) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(4): 574_0_POWER_GT(x0[4], x1[4]) → COND_574_0_POWER_GT(x1[4] > 1 && !(x0[4] = 2) && !(x1[4] % 2 = 1), x0[4], x1[4])
(2): 574_0_POWER_GT(x0[2], x1[2]) → COND_574_0_POWER_GT1(x1[2] > 0 && !(x1[2] = 1) && !(x0[2] = 2) && 1 = x1[2] % 2, x0[2], x1[2])
(0): 574_0_POWER_GT(x0[0], x1[0]) → COND_574_0_POWER_GT(x1[0] > 1 && !(x0[0] = 2) && 0 = x1[0] % 2, x0[0], x1[0])


The set Q consists of the following terms:
574_0_power_GT(x0, 0)
827_1_power_InvokeMethod(644_0_power_Return(x0), x0, 1)
827_1_power_InvokeMethod(969_0_power_Return(x0, x1), x0, x1)
827_1_power_InvokeMethod(1056_0_power_Return, x0, x1)
855_1_power_InvokeMethod(644_0_power_Return(x0), x1, x0, 1)
Cond_855_1_power_InvokeMethod(TRUE, 644_0_power_Return(x0), x1, x0, 1)
855_1_power_InvokeMethod(969_0_power_Return(x0, x1), x2, x0, x1)
Cond_855_1_power_InvokeMethod1(TRUE, 969_0_power_Return(x0, x1), x2, x0, x1)
855_1_power_InvokeMethod(1056_0_power_Return, x0, x1, x2)
Cond_855_1_power_InvokeMethod2(TRUE, 1056_0_power_Return, x0, x1, x2)
840_1_power_InvokeMethod(644_0_power_Return(x0), x0, 1)
Cond_840_1_power_InvokeMethod(TRUE, 644_0_power_Return(x0), x0, 1)
840_1_power_InvokeMethod(895_0_power_Return(x0, x1), x0, x1)
840_1_power_InvokeMethod(951_0_power_Return, x0, x1)
868_1_power_InvokeMethod(644_0_power_Return(x0), x1, x0, 1)
Cond_868_1_power_InvokeMethod(TRUE, 644_0_power_Return(x0), x1, x0, 1)
868_1_power_InvokeMethod(895_0_power_Return(x0, x1), x2, x0, x1)
Cond_868_1_power_InvokeMethod1(TRUE, 895_0_power_Return(x0, x1), x2, x0, x1)
868_1_power_InvokeMethod(951_0_power_Return, x0, x1, x2)
Cond_868_1_power_InvokeMethod2(TRUE, 951_0_power_Return, x0, x1, x2)

(13) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 3 less nodes.

(14) TRUE