0 JBC
↳1 JBC2FIG (⇐)
↳2 FIGraph
↳3 FIGtoITRSProof (⇐)
↳4 ITRS
↳5 DuplicateArgsRemoverProof (⇔)
↳6 ITRS
↳7 ITRStoIDPProof (⇔)
↳8 IDP
↳9 UsableRulesProof (⇔)
↳10 IDP
↳11 IDPNonInfProof (⇐)
↳12 AND
↳13 IDP
↳14 IDependencyGraphProof (⇔)
↳15 IDP
↳16 IDPNonInfProof (⇐)
↳17 AND
↳18 IDP
↳19 IDependencyGraphProof (⇔)
↳20 AND
↳21 IDP
↳22 IDPNonInfProof (⇐)
↳23 AND
↳24 IDP
↳25 IDependencyGraphProof (⇔)
↳26 TRUE
↳27 IDP
↳28 IDependencyGraphProof (⇔)
↳29 TRUE
↳30 IDP
↳31 IDPNonInfProof (⇐)
↳32 AND
↳33 IDP
↳34 IDependencyGraphProof (⇔)
↳35 TRUE
↳36 IDP
↳37 IDependencyGraphProof (⇔)
↳38 TRUE
↳39 IDP
↳40 IDPNonInfProof (⇐)
↳41 AND
↳42 IDP
↳43 IDependencyGraphProof (⇔)
↳44 TRUE
↳45 IDP
↳46 IDependencyGraphProof (⇔)
↳47 TRUE
↳48 IDP
↳49 IDPNonInfProof (⇐)
↳50 AND
↳51 IDP
↳52 IDependencyGraphProof (⇔)
↳53 TRUE
↳54 IDP
↳55 IDependencyGraphProof (⇔)
↳56 TRUE
↳57 IDP
↳58 IDPNonInfProof (⇐)
↳59 AND
↳60 IDP
↳61 IDependencyGraphProof (⇔)
↳62 TRUE
↳63 IDP
↳64 IDependencyGraphProof (⇔)
↳65 TRUE
↳66 IDP
↳67 IDPNonInfProof (⇐)
↳68 AND
↳69 IDP
↳70 IDependencyGraphProof (⇔)
↳71 TRUE
↳72 IDP
↳73 IDependencyGraphProof (⇔)
↳74 TRUE
↳75 IDP
↳76 IDPNonInfProof (⇐)
↳77 AND
↳78 IDP
↳79 IDependencyGraphProof (⇔)
↳80 TRUE
↳81 IDP
↳82 IDependencyGraphProof (⇔)
↳83 TRUE
↳84 IDP
↳85 IDPNonInfProof (⇐)
↳86 AND
↳87 IDP
↳88 IDependencyGraphProof (⇔)
↳89 TRUE
↳90 IDP
↳91 IDependencyGraphProof (⇔)
↳92 TRUE
↳93 IDP
↳94 IDependencyGraphProof (⇔)
↳95 AND
↳96 IDP
↳97 IDPNonInfProof (⇐)
↳98 AND
↳99 IDP
↳100 IDependencyGraphProof (⇔)
↳101 TRUE
↳102 IDP
↳103 IDependencyGraphProof (⇔)
↳104 TRUE
↳105 IDP
↳106 IDPNonInfProof (⇐)
↳107 AND
↳108 IDP
↳109 IDependencyGraphProof (⇔)
↳110 TRUE
↳111 IDP
↳112 IDependencyGraphProof (⇔)
↳113 TRUE
↳114 IDP
↳115 IDPNonInfProof (⇐)
↳116 AND
↳117 IDP
↳118 IDependencyGraphProof (⇔)
↳119 TRUE
↳120 IDP
↳121 IDependencyGraphProof (⇔)
↳122 TRUE
↳123 IDP
↳124 IDPNonInfProof (⇐)
↳125 AND
↳126 IDP
↳127 IDependencyGraphProof (⇔)
↳128 TRUE
↳129 IDP
↳130 IDependencyGraphProof (⇔)
↳131 TRUE
↳132 IDP
↳133 IDPNonInfProof (⇐)
↳134 AND
↳135 IDP
↳136 IDependencyGraphProof (⇔)
↳137 TRUE
↳138 IDP
↳139 IDependencyGraphProof (⇔)
↳140 TRUE
↳141 IDP
↳142 IDPNonInfProof (⇐)
↳143 AND
↳144 IDP
↳145 IDependencyGraphProof (⇔)
↳146 TRUE
↳147 IDP
↳148 IDependencyGraphProof (⇔)
↳149 TRUE
↳150 IDP
↳151 IDPNonInfProof (⇐)
↳152 AND
↳153 IDP
↳154 IDependencyGraphProof (⇔)
↳155 TRUE
↳156 IDP
↳157 IDependencyGraphProof (⇔)
↳158 TRUE
↳159 IDP
↳160 IDPNonInfProof (⇐)
↳161 AND
↳162 IDP
↳163 IDependencyGraphProof (⇔)
↳164 TRUE
↳165 IDP
↳166 IDependencyGraphProof (⇔)
↳167 TRUE
↳168 IDP
↳169 IDependencyGraphProof (⇔)
↳170 IDP
↳171 IDPNonInfProof (⇐)
↳172 AND
↳173 IDP
↳174 IDependencyGraphProof (⇔)
↳175 AND
↳176 IDP
↳177 IDPNonInfProof (⇐)
↳178 AND
↳179 IDP
↳180 IDependencyGraphProof (⇔)
↳181 TRUE
↳182 IDP
↳183 IDependencyGraphProof (⇔)
↳184 TRUE
↳185 IDP
↳186 IDPNonInfProof (⇐)
↳187 AND
↳188 IDP
↳189 IDependencyGraphProof (⇔)
↳190 TRUE
↳191 IDP
↳192 IDependencyGraphProof (⇔)
↳193 TRUE
↳194 IDP
↳195 IDPNonInfProof (⇐)
↳196 AND
↳197 IDP
↳198 IDependencyGraphProof (⇔)
↳199 TRUE
↳200 IDP
↳201 IDependencyGraphProof (⇔)
↳202 TRUE
↳203 IDP
↳204 IDPNonInfProof (⇐)
↳205 AND
↳206 IDP
↳207 IDependencyGraphProof (⇔)
↳208 TRUE
↳209 IDP
↳210 IDependencyGraphProof (⇔)
↳211 TRUE
↳212 IDP
↳213 IDPNonInfProof (⇐)
↳214 AND
↳215 IDP
↳216 IDependencyGraphProof (⇔)
↳217 TRUE
↳218 IDP
↳219 IDependencyGraphProof (⇔)
↳220 TRUE
↳221 IDP
↳222 IDPNonInfProof (⇐)
↳223 AND
↳224 IDP
↳225 IDependencyGraphProof (⇔)
↳226 TRUE
↳227 IDP
↳228 IDependencyGraphProof (⇔)
↳229 TRUE
↳230 IDP
↳231 IDPNonInfProof (⇐)
↳232 AND
↳233 IDP
↳234 IDependencyGraphProof (⇔)
↳235 TRUE
↳236 IDP
↳237 IDependencyGraphProof (⇔)
↳238 TRUE
↳239 IDP
↳240 IDPNonInfProof (⇐)
↳241 AND
↳242 IDP
↳243 IDependencyGraphProof (⇔)
↳244 TRUE
↳245 IDP
↳246 IDependencyGraphProof (⇔)
↳247 TRUE
↳248 IDP
↳249 IDependencyGraphProof (⇔)
↳250 AND
↳251 IDP
↳252 IDPNonInfProof (⇐)
↳253 AND
↳254 IDP
↳255 IDependencyGraphProof (⇔)
↳256 TRUE
↳257 IDP
↳258 IDependencyGraphProof (⇔)
↳259 TRUE
↳260 IDP
↳261 IDPNonInfProof (⇐)
↳262 AND
↳263 IDP
↳264 IDependencyGraphProof (⇔)
↳265 TRUE
↳266 IDP
↳267 IDependencyGraphProof (⇔)
↳268 TRUE
↳269 IDP
↳270 IDPNonInfProof (⇐)
↳271 AND
↳272 IDP
↳273 IDependencyGraphProof (⇔)
↳274 TRUE
↳275 IDP
↳276 IDependencyGraphProof (⇔)
↳277 TRUE
↳278 IDP
↳279 IDPNonInfProof (⇐)
↳280 AND
↳281 IDP
↳282 IDependencyGraphProof (⇔)
↳283 TRUE
↳284 IDP
↳285 IDependencyGraphProof (⇔)
↳286 TRUE
↳287 IDP
↳288 IDPNonInfProof (⇐)
↳289 AND
↳290 IDP
↳291 IDependencyGraphProof (⇔)
↳292 TRUE
↳293 IDP
↳294 IDependencyGraphProof (⇔)
↳295 TRUE
↳296 IDP
↳297 IDPNonInfProof (⇐)
↳298 AND
↳299 IDP
↳300 IDependencyGraphProof (⇔)
↳301 TRUE
↳302 IDP
↳303 IDependencyGraphProof (⇔)
↳304 TRUE
↳305 IDP
↳306 IDPNonInfProof (⇐)
↳307 AND
↳308 IDP
↳309 IDependencyGraphProof (⇔)
↳310 TRUE
↳311 IDP
↳312 IDependencyGraphProof (⇔)
↳313 TRUE
↳314 IDP
↳315 IDPNonInfProof (⇐)
↳316 AND
↳317 IDP
↳318 IDependencyGraphProof (⇔)
↳319 TRUE
↳320 IDP
↳321 IDependencyGraphProof (⇔)
↳322 TRUE
No human-readable program information known.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Load175(x1, x2, x3, x4, x5, x6) → Load175(x1, x5, x6)
Cond_Load175(x1, x2, x3, x4, x5, x6, x7) → Cond_Load175(x1, x2, x6, x7)
Load258(x1, x2, x3, x4, x5, x6) → Load258(x1, x5, x6)
Cond_Load258(x1, x2, x3, x4, x5, x6, x7) → Cond_Load258(x1, x2, x6, x7)
Load363(x1, x2, x3, x4, x5, x6) → Load363(x1, x5, x6)
Cond_Load363(x1, x2, x3, x4, x5, x6, x7) → Cond_Load363(x1, x2, x6, x7)
Load484(x1, x2, x3, x4, x5, x6) → Load484(x1, x5, x6)
Cond_Load484(x1, x2, x3, x4, x5, x6, x7) → Cond_Load484(x1, x2, x6, x7)
Load608(x1, x2, x3, x4, x5, x6) → Load608(x1, x5, x6)
Cond_Load608(x1, x2, x3, x4, x5, x6, x7) → Cond_Load608(x1, x2, x6, x7)
Load768(x1, x2, x3, x4, x5, x6) → Load768(x1, x5, x6)
Cond_Load768(x1, x2, x3, x4, x5, x6, x7) → Cond_Load768(x1, x2, x6, x7)
Load949(x1, x2, x3, x4, x5, x6) → Load949(x1, x5, x6)
Cond_Load949(x1, x2, x3, x4, x5, x6, x7) → Cond_Load949(x1, x2, x6, x7)
Load1100(x1, x2, x3, x4) → Load1100(x1, x3, x4)
Cond_Load1100(x1, x2, x3, x4, x5) → Cond_Load1100(x1, x2, x4, x5)
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(0) -> (22), if ((i5[0] →* i5[22])∧(i7[0] + 1 →* i7[22]))
(0) -> (28), if ((i5[0] →* i5[28])∧(i7[0] + 1 →* i7[28]))
(1) -> (0), if ((i7[1] →* 0)∧(i5[1] →* i5[0])∧(i7[1] →* i7[0]))
(1) -> (2), if ((i5[1] →* i5[2])∧(i7[1] →* i7[2])∧(i7[1] →* i696[2]))
(2) -> (3), if ((i5[2] →* i5[3])∧(i7[2] →* i7[3])∧(i696[2] →* i696[3])∧(i696[2] > 0 →* TRUE))
(3) -> (0), if ((i7[3] →* i7[0])∧(i5[3] →* i5[0])∧(i696[3] - 1 →* 0))
(3) -> (2), if ((i7[3] →* i7[2])∧(i696[3] - 1 →* i696[2])∧(i5[3] →* i5[2]))
(4) -> (1), if ((i5[4] →* i5[1])∧(i7[4] →* 0)∧(i7[4] →* i7[1]))
(4) -> (5), if ((i7[4] →* i7[5])∧(i7[4] →* i605[5])∧(i5[4] →* i5[5]))
(5) -> (6), if ((i5[5] →* i5[6])∧(i7[5] →* i7[6])∧(i605[5] →* i605[6])∧(i605[5] > 0 →* TRUE))
(6) -> (1), if ((i605[6] - 1 →* 0)∧(i5[6] →* i5[1])∧(i7[6] →* i7[1]))
(6) -> (5), if ((i7[6] →* i7[5])∧(i605[6] - 1 →* i605[5])∧(i5[6] →* i5[5]))
(7) -> (4), if ((i7[7] →* 0)∧(i7[7] →* i7[4])∧(i5[7] →* i5[4]))
(7) -> (8), if ((i5[7] →* i5[8])∧(i7[7] →* i436[8])∧(i7[7] →* i7[8]))
(8) -> (9), if ((i7[8] →* i7[9])∧(i436[8] →* i436[9])∧(i5[8] →* i5[9])∧(i436[8] > 0 →* TRUE))
(9) -> (4), if ((i7[9] →* i7[4])∧(i436[9] - 1 →* 0)∧(i5[9] →* i5[4]))
(9) -> (8), if ((i436[9] - 1 →* i436[8])∧(i7[9] →* i7[8])∧(i5[9] →* i5[8]))
(10) -> (7), if ((i5[10] →* i5[7])∧(i7[10] →* i7[7])∧(i7[10] →* 0))
(10) -> (11), if ((i7[10] →* i7[11])∧(i5[10] →* i5[11])∧(i7[10] →* i296[11]))
(11) -> (12), if ((i296[11] > 0 →* TRUE)∧(i7[11] →* i7[12])∧(i296[11] →* i296[12])∧(i5[11] →* i5[12]))
(12) -> (7), if ((i296[12] - 1 →* 0)∧(i7[12] →* i7[7])∧(i5[12] →* i5[7]))
(12) -> (11), if ((i296[12] - 1 →* i296[11])∧(i5[12] →* i5[11])∧(i7[12] →* i7[11]))
(13) -> (10), if ((i5[13] →* i5[10])∧(i7[13] →* 0)∧(i7[13] →* i7[10]))
(13) -> (14), if ((i7[13] →* i187[14])∧(i5[13] →* i5[14])∧(i7[13] →* i7[14]))
(14) -> (15), if ((i7[14] →* i7[15])∧(i5[14] →* i5[15])∧(i187[14] →* i187[15])∧(i187[14] > 0 →* TRUE))
(15) -> (10), if ((i7[15] →* i7[10])∧(i187[15] - 1 →* 0)∧(i5[15] →* i5[10]))
(15) -> (14), if ((i187[15] - 1 →* i187[14])∧(i5[15] →* i5[14])∧(i7[15] →* i7[14]))
(16) -> (13), if ((i7[16] →* i7[13])∧(i7[16] →* 0)∧(i5[16] →* i5[13]))
(16) -> (17), if ((i7[16] →* i104[17])∧(i5[16] →* i5[17])∧(i7[16] →* i7[17]))
(17) -> (18), if ((i7[17] →* i7[18])∧(i5[17] →* i5[18])∧(i104[17] →* i104[18])∧(i104[17] > 0 →* TRUE))
(18) -> (13), if ((i5[18] →* i5[13])∧(i104[18] - 1 →* 0)∧(i7[18] →* i7[13]))
(18) -> (17), if ((i104[18] - 1 →* i104[17])∧(i5[18] →* i5[17])∧(i7[18] →* i7[17]))
(19) -> (16), if ((i7[19] →* 0)∧(i5[19] →* i5[16])∧(i7[19] →* i7[16]))
(19) -> (20), if ((i7[19] →* i49[20])∧(i7[19] →* i7[20])∧(i5[19] →* i5[20]))
(20) -> (21), if ((i7[20] →* i7[21])∧(i49[20] > 0 →* TRUE)∧(i5[20] →* i5[21])∧(i49[20] →* i49[21]))
(21) -> (16), if ((i7[21] →* i7[16])∧(i49[21] - 1 →* 0)∧(i5[21] →* i5[16]))
(21) -> (20), if ((i7[21] →* i7[20])∧(i49[21] - 1 →* i49[20])∧(i5[21] →* i5[20]))
(22) -> (23), if ((i5[22] →* i5[23])∧(i7[22] > 0 && i7[22] < 100 →* TRUE)∧(i7[22] →* i7[23]))
(23) -> (19), if ((i5[23] →* i5[19])∧(i7[23] →* i7[19])∧(i7[23] →* 0))
(23) -> (26), if ((i7[23] →* i7[26])∧(i5[23] →* i5[26])∧(i7[23] →* i20[26]))
(24) -> (25), if ((i5[24] > 0 && i5[24] < 100 →* TRUE)∧(i5[24] →* i5[25]))
(25) -> (19), if ((i5[25] →* i5[19])∧(i5[25] →* i7[19])∧(i5[25] →* 0))
(25) -> (26), if ((i5[25] →* i5[26])∧(i5[25] →* i7[26])∧(i5[25] →* i20[26]))
(26) -> (27), if ((i20[26] > 0 →* TRUE)∧(i7[26] →* i7[27])∧(i20[26] →* i20[27])∧(i5[26] →* i5[27]))
(27) -> (19), if ((i7[27] →* i7[19])∧(i5[27] →* i5[19])∧(i20[27] - 1 →* 0))
(27) -> (26), if ((i20[27] - 1 →* i20[26])∧(i7[27] →* i7[26])∧(i5[27] →* i5[26]))
(28) -> (29), if ((i7[28] >= 100 && i5[28] > 0 →* TRUE)∧(i5[28] →* i5[29])∧(i7[28] →* i7[29]))
(29) -> (24), if ((i5[29] - 1 →* i5[24]))
(29) -> (30), if ((i5[29] - 1 →* i5[30]))
(30) -> (31), if ((i5[30] →* i5[31])∧(i5[30] >= 100 →* TRUE))
(31) -> (24), if ((i5[31] - 1 →* i5[24]))
(31) -> (30), if ((i5[31] - 1 →* i5[30]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(0) -> (22), if ((i5[0] →* i5[22])∧(i7[0] + 1 →* i7[22]))
(0) -> (28), if ((i5[0] →* i5[28])∧(i7[0] + 1 →* i7[28]))
(1) -> (0), if ((i7[1] →* 0)∧(i5[1] →* i5[0])∧(i7[1] →* i7[0]))
(1) -> (2), if ((i5[1] →* i5[2])∧(i7[1] →* i7[2])∧(i7[1] →* i696[2]))
(2) -> (3), if ((i5[2] →* i5[3])∧(i7[2] →* i7[3])∧(i696[2] →* i696[3])∧(i696[2] > 0 →* TRUE))
(3) -> (0), if ((i7[3] →* i7[0])∧(i5[3] →* i5[0])∧(i696[3] - 1 →* 0))
(3) -> (2), if ((i7[3] →* i7[2])∧(i696[3] - 1 →* i696[2])∧(i5[3] →* i5[2]))
(4) -> (1), if ((i5[4] →* i5[1])∧(i7[4] →* 0)∧(i7[4] →* i7[1]))
(4) -> (5), if ((i7[4] →* i7[5])∧(i7[4] →* i605[5])∧(i5[4] →* i5[5]))
(5) -> (6), if ((i5[5] →* i5[6])∧(i7[5] →* i7[6])∧(i605[5] →* i605[6])∧(i605[5] > 0 →* TRUE))
(6) -> (1), if ((i605[6] - 1 →* 0)∧(i5[6] →* i5[1])∧(i7[6] →* i7[1]))
(6) -> (5), if ((i7[6] →* i7[5])∧(i605[6] - 1 →* i605[5])∧(i5[6] →* i5[5]))
(7) -> (4), if ((i7[7] →* 0)∧(i7[7] →* i7[4])∧(i5[7] →* i5[4]))
(7) -> (8), if ((i5[7] →* i5[8])∧(i7[7] →* i436[8])∧(i7[7] →* i7[8]))
(8) -> (9), if ((i7[8] →* i7[9])∧(i436[8] →* i436[9])∧(i5[8] →* i5[9])∧(i436[8] > 0 →* TRUE))
(9) -> (4), if ((i7[9] →* i7[4])∧(i436[9] - 1 →* 0)∧(i5[9] →* i5[4]))
(9) -> (8), if ((i436[9] - 1 →* i436[8])∧(i7[9] →* i7[8])∧(i5[9] →* i5[8]))
(10) -> (7), if ((i5[10] →* i5[7])∧(i7[10] →* i7[7])∧(i7[10] →* 0))
(10) -> (11), if ((i7[10] →* i7[11])∧(i5[10] →* i5[11])∧(i7[10] →* i296[11]))
(11) -> (12), if ((i296[11] > 0 →* TRUE)∧(i7[11] →* i7[12])∧(i296[11] →* i296[12])∧(i5[11] →* i5[12]))
(12) -> (7), if ((i296[12] - 1 →* 0)∧(i7[12] →* i7[7])∧(i5[12] →* i5[7]))
(12) -> (11), if ((i296[12] - 1 →* i296[11])∧(i5[12] →* i5[11])∧(i7[12] →* i7[11]))
(13) -> (10), if ((i5[13] →* i5[10])∧(i7[13] →* 0)∧(i7[13] →* i7[10]))
(13) -> (14), if ((i7[13] →* i187[14])∧(i5[13] →* i5[14])∧(i7[13] →* i7[14]))
(14) -> (15), if ((i7[14] →* i7[15])∧(i5[14] →* i5[15])∧(i187[14] →* i187[15])∧(i187[14] > 0 →* TRUE))
(15) -> (10), if ((i7[15] →* i7[10])∧(i187[15] - 1 →* 0)∧(i5[15] →* i5[10]))
(15) -> (14), if ((i187[15] - 1 →* i187[14])∧(i5[15] →* i5[14])∧(i7[15] →* i7[14]))
(16) -> (13), if ((i7[16] →* i7[13])∧(i7[16] →* 0)∧(i5[16] →* i5[13]))
(16) -> (17), if ((i7[16] →* i104[17])∧(i5[16] →* i5[17])∧(i7[16] →* i7[17]))
(17) -> (18), if ((i7[17] →* i7[18])∧(i5[17] →* i5[18])∧(i104[17] →* i104[18])∧(i104[17] > 0 →* TRUE))
(18) -> (13), if ((i5[18] →* i5[13])∧(i104[18] - 1 →* 0)∧(i7[18] →* i7[13]))
(18) -> (17), if ((i104[18] - 1 →* i104[17])∧(i5[18] →* i5[17])∧(i7[18] →* i7[17]))
(19) -> (16), if ((i7[19] →* 0)∧(i5[19] →* i5[16])∧(i7[19] →* i7[16]))
(19) -> (20), if ((i7[19] →* i49[20])∧(i7[19] →* i7[20])∧(i5[19] →* i5[20]))
(20) -> (21), if ((i7[20] →* i7[21])∧(i49[20] > 0 →* TRUE)∧(i5[20] →* i5[21])∧(i49[20] →* i49[21]))
(21) -> (16), if ((i7[21] →* i7[16])∧(i49[21] - 1 →* 0)∧(i5[21] →* i5[16]))
(21) -> (20), if ((i7[21] →* i7[20])∧(i49[21] - 1 →* i49[20])∧(i5[21] →* i5[20]))
(22) -> (23), if ((i5[22] →* i5[23])∧(i7[22] > 0 && i7[22] < 100 →* TRUE)∧(i7[22] →* i7[23]))
(23) -> (19), if ((i5[23] →* i5[19])∧(i7[23] →* i7[19])∧(i7[23] →* 0))
(23) -> (26), if ((i7[23] →* i7[26])∧(i5[23] →* i5[26])∧(i7[23] →* i20[26]))
(24) -> (25), if ((i5[24] > 0 && i5[24] < 100 →* TRUE)∧(i5[24] →* i5[25]))
(25) -> (19), if ((i5[25] →* i5[19])∧(i5[25] →* i7[19])∧(i5[25] →* 0))
(25) -> (26), if ((i5[25] →* i5[26])∧(i5[25] →* i7[26])∧(i5[25] →* i20[26]))
(26) -> (27), if ((i20[26] > 0 →* TRUE)∧(i7[26] →* i7[27])∧(i20[26] →* i20[27])∧(i5[26] →* i5[27]))
(27) -> (19), if ((i7[27] →* i7[19])∧(i5[27] →* i5[19])∧(i20[27] - 1 →* 0))
(27) -> (26), if ((i20[27] - 1 →* i20[26])∧(i7[27] →* i7[26])∧(i5[27] →* i5[26]))
(28) -> (29), if ((i7[28] >= 100 && i5[28] > 0 →* TRUE)∧(i5[28] →* i5[29])∧(i7[28] →* i7[29]))
(29) -> (24), if ((i5[29] - 1 →* i5[24]))
(29) -> (30), if ((i5[29] - 1 →* i5[30]))
(30) -> (31), if ((i5[30] →* i5[31])∧(i5[30] >= 100 →* TRUE))
(31) -> (24), if ((i5[31] - 1 →* i5[24]))
(31) -> (30), if ((i5[31] - 1 →* i5[30]))
(1) (i7[1]=0∧i5[1]=i5[0]∧i7[1]=i7[0]∧i5[0]=i5[22]∧+(i7[0], 1)=i7[22] ⇒ LOAD1100(i5[0], i7[0], 0)≥NonInfC∧LOAD1100(i5[0], i7[0], 0)≥LOAD83(i5[0], +(i7[0], 1))∧(UIncreasing(LOAD83(i5[0], +(i7[0], 1))), ≥))
(2) (LOAD1100(i5[1], 0, 0)≥NonInfC∧LOAD1100(i5[1], 0, 0)≥LOAD83(i5[1], +(0, 1))∧(UIncreasing(LOAD83(i5[0], +(i7[0], 1))), ≥))
(3) ((UIncreasing(LOAD83(i5[0], +(i7[0], 1))), ≥)∧[(-1)bso_99] ≥ 0)
(4) ((UIncreasing(LOAD83(i5[0], +(i7[0], 1))), ≥)∧[(-1)bso_99] ≥ 0)
(5) ((UIncreasing(LOAD83(i5[0], +(i7[0], 1))), ≥)∧[(-1)bso_99] ≥ 0)
(6) ((UIncreasing(LOAD83(i5[0], +(i7[0], 1))), ≥)∧0 = 0∧[(-1)bso_99] ≥ 0)
(7) (i7[3]=i7[0]∧i5[3]=i5[0]∧-(i696[3], 1)=0∧i5[0]=i5[22]∧+(i7[0], 1)=i7[22] ⇒ LOAD1100(i5[0], i7[0], 0)≥NonInfC∧LOAD1100(i5[0], i7[0], 0)≥LOAD83(i5[0], +(i7[0], 1))∧(UIncreasing(LOAD83(i5[0], +(i7[0], 1))), ≥))
(8) (-(i696[3], 1)=0 ⇒ LOAD1100(i5[3], i7[3], 0)≥NonInfC∧LOAD1100(i5[3], i7[3], 0)≥LOAD83(i5[3], +(i7[3], 1))∧(UIncreasing(LOAD83(i5[0], +(i7[0], 1))), ≥))
(9) (i696[3] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD83(i5[0], +(i7[0], 1))), ≥)∧0 ≥ 0∧[(-1)bso_99] ≥ 0)
(10) (i696[3] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD83(i5[0], +(i7[0], 1))), ≥)∧0 ≥ 0∧[(-1)bso_99] ≥ 0)
(11) (i696[3] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD83(i5[0], +(i7[0], 1))), ≥)∧0 ≥ 0∧[(-1)bso_99] ≥ 0)
(12) (i696[3] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD83(i5[0], +(i7[0], 1))), ≥)∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_99] ≥ 0)
(13) (i7[1]=0∧i5[1]=i5[0]∧i7[1]=i7[0]∧i5[0]=i5[28]∧+(i7[0], 1)=i7[28] ⇒ LOAD1100(i5[0], i7[0], 0)≥NonInfC∧LOAD1100(i5[0], i7[0], 0)≥LOAD83(i5[0], +(i7[0], 1))∧(UIncreasing(LOAD83(i5[0], +(i7[0], 1))), ≥))
(14) (LOAD1100(i5[1], 0, 0)≥NonInfC∧LOAD1100(i5[1], 0, 0)≥LOAD83(i5[1], +(0, 1))∧(UIncreasing(LOAD83(i5[0], +(i7[0], 1))), ≥))
(15) ((UIncreasing(LOAD83(i5[0], +(i7[0], 1))), ≥)∧[(-1)bso_99] ≥ 0)
(16) ((UIncreasing(LOAD83(i5[0], +(i7[0], 1))), ≥)∧[(-1)bso_99] ≥ 0)
(17) ((UIncreasing(LOAD83(i5[0], +(i7[0], 1))), ≥)∧[(-1)bso_99] ≥ 0)
(18) ((UIncreasing(LOAD83(i5[0], +(i7[0], 1))), ≥)∧0 = 0∧[(-1)bso_99] ≥ 0)
(19) (i7[3]=i7[0]∧i5[3]=i5[0]∧-(i696[3], 1)=0∧i5[0]=i5[28]∧+(i7[0], 1)=i7[28] ⇒ LOAD1100(i5[0], i7[0], 0)≥NonInfC∧LOAD1100(i5[0], i7[0], 0)≥LOAD83(i5[0], +(i7[0], 1))∧(UIncreasing(LOAD83(i5[0], +(i7[0], 1))), ≥))
(20) (-(i696[3], 1)=0 ⇒ LOAD1100(i5[3], i7[3], 0)≥NonInfC∧LOAD1100(i5[3], i7[3], 0)≥LOAD83(i5[3], +(i7[3], 1))∧(UIncreasing(LOAD83(i5[0], +(i7[0], 1))), ≥))
(21) (i696[3] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD83(i5[0], +(i7[0], 1))), ≥)∧0 ≥ 0∧[(-1)bso_99] ≥ 0)
(22) (i696[3] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD83(i5[0], +(i7[0], 1))), ≥)∧0 ≥ 0∧[(-1)bso_99] ≥ 0)
(23) (i696[3] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD83(i5[0], +(i7[0], 1))), ≥)∧0 ≥ 0∧[(-1)bso_99] ≥ 0)
(24) (i696[3] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD83(i5[0], +(i7[0], 1))), ≥)∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_99] ≥ 0)
(25) (i7[1]=0∧i5[1]=i5[0]∧i7[1]=i7[0] ⇒ LOAD949(i5[1], i7[1], 0)≥NonInfC∧LOAD949(i5[1], i7[1], 0)≥LOAD1100(i5[1], i7[1], i7[1])∧(UIncreasing(LOAD1100(i5[1], i7[1], i7[1])), ≥))
(26) (LOAD949(i5[1], 0, 0)≥NonInfC∧LOAD949(i5[1], 0, 0)≥LOAD1100(i5[1], 0, 0)∧(UIncreasing(LOAD1100(i5[1], i7[1], i7[1])), ≥))
(27) ((UIncreasing(LOAD1100(i5[1], i7[1], i7[1])), ≥)∧[(-1)bso_101] ≥ 0)
(28) ((UIncreasing(LOAD1100(i5[1], i7[1], i7[1])), ≥)∧[(-1)bso_101] ≥ 0)
(29) ((UIncreasing(LOAD1100(i5[1], i7[1], i7[1])), ≥)∧[(-1)bso_101] ≥ 0)
(30) ((UIncreasing(LOAD1100(i5[1], i7[1], i7[1])), ≥)∧0 = 0∧[(-1)bso_101] ≥ 0)
(31) (i5[1]=i5[2]∧i7[1]=i7[2]∧i7[1]=i696[2] ⇒ LOAD949(i5[1], i7[1], 0)≥NonInfC∧LOAD949(i5[1], i7[1], 0)≥LOAD1100(i5[1], i7[1], i7[1])∧(UIncreasing(LOAD1100(i5[1], i7[1], i7[1])), ≥))
(32) (LOAD949(i5[1], i7[1], 0)≥NonInfC∧LOAD949(i5[1], i7[1], 0)≥LOAD1100(i5[1], i7[1], i7[1])∧(UIncreasing(LOAD1100(i5[1], i7[1], i7[1])), ≥))
(33) ((UIncreasing(LOAD1100(i5[1], i7[1], i7[1])), ≥)∧[(-1)bso_101] ≥ 0)
(34) ((UIncreasing(LOAD1100(i5[1], i7[1], i7[1])), ≥)∧[(-1)bso_101] ≥ 0)
(35) ((UIncreasing(LOAD1100(i5[1], i7[1], i7[1])), ≥)∧[(-1)bso_101] ≥ 0)
(36) ((UIncreasing(LOAD1100(i5[1], i7[1], i7[1])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_101] ≥ 0)
(37) (i5[2]=i5[3]∧i7[2]=i7[3]∧i696[2]=i696[3]∧>(i696[2], 0)=TRUE ⇒ LOAD1100(i5[2], i7[2], i696[2])≥NonInfC∧LOAD1100(i5[2], i7[2], i696[2])≥COND_LOAD1100(>(i696[2], 0), i5[2], i7[2], i696[2])∧(UIncreasing(COND_LOAD1100(>(i696[2], 0), i5[2], i7[2], i696[2])), ≥))
(38) (>(i696[2], 0)=TRUE ⇒ LOAD1100(i5[2], i7[2], i696[2])≥NonInfC∧LOAD1100(i5[2], i7[2], i696[2])≥COND_LOAD1100(>(i696[2], 0), i5[2], i7[2], i696[2])∧(UIncreasing(COND_LOAD1100(>(i696[2], 0), i5[2], i7[2], i696[2])), ≥))
(39) (i696[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1100(>(i696[2], 0), i5[2], i7[2], i696[2])), ≥)∧[(-1)bni_102 + (-1)Bound*bni_102] + [bni_102]i5[2] ≥ 0∧[(-1)bso_103] ≥ 0)
(40) (i696[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1100(>(i696[2], 0), i5[2], i7[2], i696[2])), ≥)∧[(-1)bni_102 + (-1)Bound*bni_102] + [bni_102]i5[2] ≥ 0∧[(-1)bso_103] ≥ 0)
(41) (i696[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1100(>(i696[2], 0), i5[2], i7[2], i696[2])), ≥)∧[(-1)bni_102 + (-1)Bound*bni_102] + [bni_102]i5[2] ≥ 0∧[(-1)bso_103] ≥ 0)
(42) (i696[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1100(>(i696[2], 0), i5[2], i7[2], i696[2])), ≥)∧0 = 0∧[bni_102] = 0∧[(-1)bni_102 + (-1)Bound*bni_102] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_103] ≥ 0)
(43) (i696[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD1100(>(i696[2], 0), i5[2], i7[2], i696[2])), ≥)∧0 = 0∧[bni_102] = 0∧[(-1)bni_102 + (-1)Bound*bni_102] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_103] ≥ 0)
(44) (i5[2]=i5[3]∧i7[2]=i7[3]∧i696[2]=i696[3]∧>(i696[2], 0)=TRUE∧i7[3]=i7[0]∧i5[3]=i5[0]∧-(i696[3], 1)=0 ⇒ COND_LOAD1100(TRUE, i5[3], i7[3], i696[3])≥NonInfC∧COND_LOAD1100(TRUE, i5[3], i7[3], i696[3])≥LOAD1100(i5[3], i7[3], -(i696[3], 1))∧(UIncreasing(LOAD1100(i5[3], i7[3], -(i696[3], 1))), ≥))
(45) (>(i696[2], 0)=TRUE∧-(i696[2], 1)=0 ⇒ COND_LOAD1100(TRUE, i5[2], i7[2], i696[2])≥NonInfC∧COND_LOAD1100(TRUE, i5[2], i7[2], i696[2])≥LOAD1100(i5[2], i7[2], -(i696[2], 1))∧(UIncreasing(LOAD1100(i5[3], i7[3], -(i696[3], 1))), ≥))
(46) (i696[2] + [-1] ≥ 0∧i696[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD1100(i5[3], i7[3], -(i696[3], 1))), ≥)∧[(-1)bni_104 + (-1)Bound*bni_104] + [bni_104]i5[2] ≥ 0∧[(-1)bso_105] ≥ 0)
(47) (i696[2] + [-1] ≥ 0∧i696[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD1100(i5[3], i7[3], -(i696[3], 1))), ≥)∧[(-1)bni_104 + (-1)Bound*bni_104] + [bni_104]i5[2] ≥ 0∧[(-1)bso_105] ≥ 0)
(48) (i696[2] + [-1] ≥ 0∧i696[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD1100(i5[3], i7[3], -(i696[3], 1))), ≥)∧[(-1)bni_104 + (-1)Bound*bni_104] + [bni_104]i5[2] ≥ 0∧[(-1)bso_105] ≥ 0)
(49) (i696[2] + [-1] ≥ 0∧i696[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD1100(i5[3], i7[3], -(i696[3], 1))), ≥)∧0 = 0∧[bni_104] = 0∧[(-1)bni_104 + (-1)Bound*bni_104] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_105] ≥ 0)
(50) (i696[2] ≥ 0∧i696[2] ≥ 0 ⇒ (UIncreasing(LOAD1100(i5[3], i7[3], -(i696[3], 1))), ≥)∧0 = 0∧[bni_104] = 0∧[(-1)bni_104 + (-1)Bound*bni_104] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_105] ≥ 0)
(51) (i5[2]=i5[3]∧i7[2]=i7[3]∧i696[2]=i696[3]∧>(i696[2], 0)=TRUE∧i7[3]=i7[2]1∧-(i696[3], 1)=i696[2]1∧i5[3]=i5[2]1 ⇒ COND_LOAD1100(TRUE, i5[3], i7[3], i696[3])≥NonInfC∧COND_LOAD1100(TRUE, i5[3], i7[3], i696[3])≥LOAD1100(i5[3], i7[3], -(i696[3], 1))∧(UIncreasing(LOAD1100(i5[3], i7[3], -(i696[3], 1))), ≥))
(52) (>(i696[2], 0)=TRUE ⇒ COND_LOAD1100(TRUE, i5[2], i7[2], i696[2])≥NonInfC∧COND_LOAD1100(TRUE, i5[2], i7[2], i696[2])≥LOAD1100(i5[2], i7[2], -(i696[2], 1))∧(UIncreasing(LOAD1100(i5[3], i7[3], -(i696[3], 1))), ≥))
(53) (i696[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD1100(i5[3], i7[3], -(i696[3], 1))), ≥)∧[(-1)bni_104 + (-1)Bound*bni_104] + [bni_104]i5[2] ≥ 0∧[(-1)bso_105] ≥ 0)
(54) (i696[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD1100(i5[3], i7[3], -(i696[3], 1))), ≥)∧[(-1)bni_104 + (-1)Bound*bni_104] + [bni_104]i5[2] ≥ 0∧[(-1)bso_105] ≥ 0)
(55) (i696[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD1100(i5[3], i7[3], -(i696[3], 1))), ≥)∧[(-1)bni_104 + (-1)Bound*bni_104] + [bni_104]i5[2] ≥ 0∧[(-1)bso_105] ≥ 0)
(56) (i696[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD1100(i5[3], i7[3], -(i696[3], 1))), ≥)∧0 = 0∧[bni_104] = 0∧[(-1)bni_104 + (-1)Bound*bni_104] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_105] ≥ 0)
(57) (i696[2] ≥ 0 ⇒ (UIncreasing(LOAD1100(i5[3], i7[3], -(i696[3], 1))), ≥)∧0 = 0∧[bni_104] = 0∧[(-1)bni_104 + (-1)Bound*bni_104] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_105] ≥ 0)
(58) (i5[4]=i5[1]∧i7[4]=0∧i7[4]=i7[1] ⇒ LOAD768(i5[4], i7[4], 0)≥NonInfC∧LOAD768(i5[4], i7[4], 0)≥LOAD949(i5[4], i7[4], i7[4])∧(UIncreasing(LOAD949(i5[4], i7[4], i7[4])), ≥))
(59) (LOAD768(i5[4], 0, 0)≥NonInfC∧LOAD768(i5[4], 0, 0)≥LOAD949(i5[4], 0, 0)∧(UIncreasing(LOAD949(i5[4], i7[4], i7[4])), ≥))
(60) ((UIncreasing(LOAD949(i5[4], i7[4], i7[4])), ≥)∧[(-1)bso_107] ≥ 0)
(61) ((UIncreasing(LOAD949(i5[4], i7[4], i7[4])), ≥)∧[(-1)bso_107] ≥ 0)
(62) ((UIncreasing(LOAD949(i5[4], i7[4], i7[4])), ≥)∧[(-1)bso_107] ≥ 0)
(63) ((UIncreasing(LOAD949(i5[4], i7[4], i7[4])), ≥)∧0 = 0∧[(-1)bso_107] ≥ 0)
(64) (i7[4]=i7[5]∧i7[4]=i605[5]∧i5[4]=i5[5] ⇒ LOAD768(i5[4], i7[4], 0)≥NonInfC∧LOAD768(i5[4], i7[4], 0)≥LOAD949(i5[4], i7[4], i7[4])∧(UIncreasing(LOAD949(i5[4], i7[4], i7[4])), ≥))
(65) (LOAD768(i5[4], i7[4], 0)≥NonInfC∧LOAD768(i5[4], i7[4], 0)≥LOAD949(i5[4], i7[4], i7[4])∧(UIncreasing(LOAD949(i5[4], i7[4], i7[4])), ≥))
(66) ((UIncreasing(LOAD949(i5[4], i7[4], i7[4])), ≥)∧[(-1)bso_107] ≥ 0)
(67) ((UIncreasing(LOAD949(i5[4], i7[4], i7[4])), ≥)∧[(-1)bso_107] ≥ 0)
(68) ((UIncreasing(LOAD949(i5[4], i7[4], i7[4])), ≥)∧[(-1)bso_107] ≥ 0)
(69) ((UIncreasing(LOAD949(i5[4], i7[4], i7[4])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_107] ≥ 0)
(70) (i5[5]=i5[6]∧i7[5]=i7[6]∧i605[5]=i605[6]∧>(i605[5], 0)=TRUE ⇒ LOAD949(i5[5], i7[5], i605[5])≥NonInfC∧LOAD949(i5[5], i7[5], i605[5])≥COND_LOAD949(>(i605[5], 0), i5[5], i7[5], i605[5])∧(UIncreasing(COND_LOAD949(>(i605[5], 0), i5[5], i7[5], i605[5])), ≥))
(71) (>(i605[5], 0)=TRUE ⇒ LOAD949(i5[5], i7[5], i605[5])≥NonInfC∧LOAD949(i5[5], i7[5], i605[5])≥COND_LOAD949(>(i605[5], 0), i5[5], i7[5], i605[5])∧(UIncreasing(COND_LOAD949(>(i605[5], 0), i5[5], i7[5], i605[5])), ≥))
(72) (i605[5] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD949(>(i605[5], 0), i5[5], i7[5], i605[5])), ≥)∧[(-1)bni_108 + (-1)Bound*bni_108] + [bni_108]i5[5] ≥ 0∧[(-1)bso_109] ≥ 0)
(73) (i605[5] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD949(>(i605[5], 0), i5[5], i7[5], i605[5])), ≥)∧[(-1)bni_108 + (-1)Bound*bni_108] + [bni_108]i5[5] ≥ 0∧[(-1)bso_109] ≥ 0)
(74) (i605[5] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD949(>(i605[5], 0), i5[5], i7[5], i605[5])), ≥)∧[(-1)bni_108 + (-1)Bound*bni_108] + [bni_108]i5[5] ≥ 0∧[(-1)bso_109] ≥ 0)
(75) (i605[5] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD949(>(i605[5], 0), i5[5], i7[5], i605[5])), ≥)∧0 = 0∧[bni_108] = 0∧[(-1)bni_108 + (-1)Bound*bni_108] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_109] ≥ 0)
(76) (i605[5] ≥ 0 ⇒ (UIncreasing(COND_LOAD949(>(i605[5], 0), i5[5], i7[5], i605[5])), ≥)∧0 = 0∧[bni_108] = 0∧[(-1)bni_108 + (-1)Bound*bni_108] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_109] ≥ 0)
(77) (i5[5]=i5[6]∧i7[5]=i7[6]∧i605[5]=i605[6]∧>(i605[5], 0)=TRUE∧-(i605[6], 1)=0∧i5[6]=i5[1]∧i7[6]=i7[1] ⇒ COND_LOAD949(TRUE, i5[6], i7[6], i605[6])≥NonInfC∧COND_LOAD949(TRUE, i5[6], i7[6], i605[6])≥LOAD949(i5[6], i7[6], -(i605[6], 1))∧(UIncreasing(LOAD949(i5[6], i7[6], -(i605[6], 1))), ≥))
(78) (>(i605[5], 0)=TRUE∧-(i605[5], 1)=0 ⇒ COND_LOAD949(TRUE, i5[5], i7[5], i605[5])≥NonInfC∧COND_LOAD949(TRUE, i5[5], i7[5], i605[5])≥LOAD949(i5[5], i7[5], -(i605[5], 1))∧(UIncreasing(LOAD949(i5[6], i7[6], -(i605[6], 1))), ≥))
(79) (i605[5] + [-1] ≥ 0∧i605[5] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD949(i5[6], i7[6], -(i605[6], 1))), ≥)∧[(-1)bni_110 + (-1)Bound*bni_110] + [bni_110]i5[5] ≥ 0∧[(-1)bso_111] ≥ 0)
(80) (i605[5] + [-1] ≥ 0∧i605[5] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD949(i5[6], i7[6], -(i605[6], 1))), ≥)∧[(-1)bni_110 + (-1)Bound*bni_110] + [bni_110]i5[5] ≥ 0∧[(-1)bso_111] ≥ 0)
(81) (i605[5] + [-1] ≥ 0∧i605[5] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD949(i5[6], i7[6], -(i605[6], 1))), ≥)∧[(-1)bni_110 + (-1)Bound*bni_110] + [bni_110]i5[5] ≥ 0∧[(-1)bso_111] ≥ 0)
(82) (i605[5] + [-1] ≥ 0∧i605[5] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD949(i5[6], i7[6], -(i605[6], 1))), ≥)∧0 = 0∧[bni_110] = 0∧[(-1)bni_110 + (-1)Bound*bni_110] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_111] ≥ 0)
(83) (i605[5] ≥ 0∧i605[5] ≥ 0 ⇒ (UIncreasing(LOAD949(i5[6], i7[6], -(i605[6], 1))), ≥)∧0 = 0∧[bni_110] = 0∧[(-1)bni_110 + (-1)Bound*bni_110] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_111] ≥ 0)
(84) (i5[5]=i5[6]∧i7[5]=i7[6]∧i605[5]=i605[6]∧>(i605[5], 0)=TRUE∧i7[6]=i7[5]1∧-(i605[6], 1)=i605[5]1∧i5[6]=i5[5]1 ⇒ COND_LOAD949(TRUE, i5[6], i7[6], i605[6])≥NonInfC∧COND_LOAD949(TRUE, i5[6], i7[6], i605[6])≥LOAD949(i5[6], i7[6], -(i605[6], 1))∧(UIncreasing(LOAD949(i5[6], i7[6], -(i605[6], 1))), ≥))
(85) (>(i605[5], 0)=TRUE ⇒ COND_LOAD949(TRUE, i5[5], i7[5], i605[5])≥NonInfC∧COND_LOAD949(TRUE, i5[5], i7[5], i605[5])≥LOAD949(i5[5], i7[5], -(i605[5], 1))∧(UIncreasing(LOAD949(i5[6], i7[6], -(i605[6], 1))), ≥))
(86) (i605[5] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD949(i5[6], i7[6], -(i605[6], 1))), ≥)∧[(-1)bni_110 + (-1)Bound*bni_110] + [bni_110]i5[5] ≥ 0∧[(-1)bso_111] ≥ 0)
(87) (i605[5] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD949(i5[6], i7[6], -(i605[6], 1))), ≥)∧[(-1)bni_110 + (-1)Bound*bni_110] + [bni_110]i5[5] ≥ 0∧[(-1)bso_111] ≥ 0)
(88) (i605[5] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD949(i5[6], i7[6], -(i605[6], 1))), ≥)∧[(-1)bni_110 + (-1)Bound*bni_110] + [bni_110]i5[5] ≥ 0∧[(-1)bso_111] ≥ 0)
(89) (i605[5] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD949(i5[6], i7[6], -(i605[6], 1))), ≥)∧0 = 0∧[bni_110] = 0∧[(-1)bni_110 + (-1)Bound*bni_110] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_111] ≥ 0)
(90) (i605[5] ≥ 0 ⇒ (UIncreasing(LOAD949(i5[6], i7[6], -(i605[6], 1))), ≥)∧0 = 0∧[bni_110] = 0∧[(-1)bni_110 + (-1)Bound*bni_110] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_111] ≥ 0)
(91) (i7[7]=0∧i7[7]=i7[4]∧i5[7]=i5[4] ⇒ LOAD608(i5[7], i7[7], 0)≥NonInfC∧LOAD608(i5[7], i7[7], 0)≥LOAD768(i5[7], i7[7], i7[7])∧(UIncreasing(LOAD768(i5[7], i7[7], i7[7])), ≥))
(92) (LOAD608(i5[7], 0, 0)≥NonInfC∧LOAD608(i5[7], 0, 0)≥LOAD768(i5[7], 0, 0)∧(UIncreasing(LOAD768(i5[7], i7[7], i7[7])), ≥))
(93) ((UIncreasing(LOAD768(i5[7], i7[7], i7[7])), ≥)∧[(-1)bso_113] ≥ 0)
(94) ((UIncreasing(LOAD768(i5[7], i7[7], i7[7])), ≥)∧[(-1)bso_113] ≥ 0)
(95) ((UIncreasing(LOAD768(i5[7], i7[7], i7[7])), ≥)∧[(-1)bso_113] ≥ 0)
(96) ((UIncreasing(LOAD768(i5[7], i7[7], i7[7])), ≥)∧0 = 0∧[(-1)bso_113] ≥ 0)
(97) (i5[7]=i5[8]∧i7[7]=i436[8]∧i7[7]=i7[8] ⇒ LOAD608(i5[7], i7[7], 0)≥NonInfC∧LOAD608(i5[7], i7[7], 0)≥LOAD768(i5[7], i7[7], i7[7])∧(UIncreasing(LOAD768(i5[7], i7[7], i7[7])), ≥))
(98) (LOAD608(i5[7], i7[7], 0)≥NonInfC∧LOAD608(i5[7], i7[7], 0)≥LOAD768(i5[7], i7[7], i7[7])∧(UIncreasing(LOAD768(i5[7], i7[7], i7[7])), ≥))
(99) ((UIncreasing(LOAD768(i5[7], i7[7], i7[7])), ≥)∧[(-1)bso_113] ≥ 0)
(100) ((UIncreasing(LOAD768(i5[7], i7[7], i7[7])), ≥)∧[(-1)bso_113] ≥ 0)
(101) ((UIncreasing(LOAD768(i5[7], i7[7], i7[7])), ≥)∧[(-1)bso_113] ≥ 0)
(102) ((UIncreasing(LOAD768(i5[7], i7[7], i7[7])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_113] ≥ 0)
(103) (i7[8]=i7[9]∧i436[8]=i436[9]∧i5[8]=i5[9]∧>(i436[8], 0)=TRUE ⇒ LOAD768(i5[8], i7[8], i436[8])≥NonInfC∧LOAD768(i5[8], i7[8], i436[8])≥COND_LOAD768(>(i436[8], 0), i5[8], i7[8], i436[8])∧(UIncreasing(COND_LOAD768(>(i436[8], 0), i5[8], i7[8], i436[8])), ≥))
(104) (>(i436[8], 0)=TRUE ⇒ LOAD768(i5[8], i7[8], i436[8])≥NonInfC∧LOAD768(i5[8], i7[8], i436[8])≥COND_LOAD768(>(i436[8], 0), i5[8], i7[8], i436[8])∧(UIncreasing(COND_LOAD768(>(i436[8], 0), i5[8], i7[8], i436[8])), ≥))
(105) (i436[8] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD768(>(i436[8], 0), i5[8], i7[8], i436[8])), ≥)∧[(-1)bni_114 + (-1)Bound*bni_114] + [bni_114]i5[8] ≥ 0∧[(-1)bso_115] ≥ 0)
(106) (i436[8] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD768(>(i436[8], 0), i5[8], i7[8], i436[8])), ≥)∧[(-1)bni_114 + (-1)Bound*bni_114] + [bni_114]i5[8] ≥ 0∧[(-1)bso_115] ≥ 0)
(107) (i436[8] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD768(>(i436[8], 0), i5[8], i7[8], i436[8])), ≥)∧[(-1)bni_114 + (-1)Bound*bni_114] + [bni_114]i5[8] ≥ 0∧[(-1)bso_115] ≥ 0)
(108) (i436[8] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD768(>(i436[8], 0), i5[8], i7[8], i436[8])), ≥)∧0 = 0∧[bni_114] = 0∧[(-1)bni_114 + (-1)Bound*bni_114] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_115] ≥ 0)
(109) (i436[8] ≥ 0 ⇒ (UIncreasing(COND_LOAD768(>(i436[8], 0), i5[8], i7[8], i436[8])), ≥)∧0 = 0∧[bni_114] = 0∧[(-1)bni_114 + (-1)Bound*bni_114] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_115] ≥ 0)
(110) (i7[8]=i7[9]∧i436[8]=i436[9]∧i5[8]=i5[9]∧>(i436[8], 0)=TRUE∧i7[9]=i7[4]∧-(i436[9], 1)=0∧i5[9]=i5[4] ⇒ COND_LOAD768(TRUE, i5[9], i7[9], i436[9])≥NonInfC∧COND_LOAD768(TRUE, i5[9], i7[9], i436[9])≥LOAD768(i5[9], i7[9], -(i436[9], 1))∧(UIncreasing(LOAD768(i5[9], i7[9], -(i436[9], 1))), ≥))
(111) (>(i436[8], 0)=TRUE∧-(i436[8], 1)=0 ⇒ COND_LOAD768(TRUE, i5[8], i7[8], i436[8])≥NonInfC∧COND_LOAD768(TRUE, i5[8], i7[8], i436[8])≥LOAD768(i5[8], i7[8], -(i436[8], 1))∧(UIncreasing(LOAD768(i5[9], i7[9], -(i436[9], 1))), ≥))
(112) (i436[8] + [-1] ≥ 0∧i436[8] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD768(i5[9], i7[9], -(i436[9], 1))), ≥)∧[(-1)bni_116 + (-1)Bound*bni_116] + [bni_116]i5[8] ≥ 0∧[(-1)bso_117] ≥ 0)
(113) (i436[8] + [-1] ≥ 0∧i436[8] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD768(i5[9], i7[9], -(i436[9], 1))), ≥)∧[(-1)bni_116 + (-1)Bound*bni_116] + [bni_116]i5[8] ≥ 0∧[(-1)bso_117] ≥ 0)
(114) (i436[8] + [-1] ≥ 0∧i436[8] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD768(i5[9], i7[9], -(i436[9], 1))), ≥)∧[(-1)bni_116 + (-1)Bound*bni_116] + [bni_116]i5[8] ≥ 0∧[(-1)bso_117] ≥ 0)
(115) (i436[8] + [-1] ≥ 0∧i436[8] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD768(i5[9], i7[9], -(i436[9], 1))), ≥)∧0 = 0∧[bni_116] = 0∧[(-1)bni_116 + (-1)Bound*bni_116] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_117] ≥ 0)
(116) (i436[8] ≥ 0∧i436[8] ≥ 0 ⇒ (UIncreasing(LOAD768(i5[9], i7[9], -(i436[9], 1))), ≥)∧0 = 0∧[bni_116] = 0∧[(-1)bni_116 + (-1)Bound*bni_116] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_117] ≥ 0)
(117) (i7[8]=i7[9]∧i436[8]=i436[9]∧i5[8]=i5[9]∧>(i436[8], 0)=TRUE∧-(i436[9], 1)=i436[8]1∧i7[9]=i7[8]1∧i5[9]=i5[8]1 ⇒ COND_LOAD768(TRUE, i5[9], i7[9], i436[9])≥NonInfC∧COND_LOAD768(TRUE, i5[9], i7[9], i436[9])≥LOAD768(i5[9], i7[9], -(i436[9], 1))∧(UIncreasing(LOAD768(i5[9], i7[9], -(i436[9], 1))), ≥))
(118) (>(i436[8], 0)=TRUE ⇒ COND_LOAD768(TRUE, i5[8], i7[8], i436[8])≥NonInfC∧COND_LOAD768(TRUE, i5[8], i7[8], i436[8])≥LOAD768(i5[8], i7[8], -(i436[8], 1))∧(UIncreasing(LOAD768(i5[9], i7[9], -(i436[9], 1))), ≥))
(119) (i436[8] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD768(i5[9], i7[9], -(i436[9], 1))), ≥)∧[(-1)bni_116 + (-1)Bound*bni_116] + [bni_116]i5[8] ≥ 0∧[(-1)bso_117] ≥ 0)
(120) (i436[8] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD768(i5[9], i7[9], -(i436[9], 1))), ≥)∧[(-1)bni_116 + (-1)Bound*bni_116] + [bni_116]i5[8] ≥ 0∧[(-1)bso_117] ≥ 0)
(121) (i436[8] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD768(i5[9], i7[9], -(i436[9], 1))), ≥)∧[(-1)bni_116 + (-1)Bound*bni_116] + [bni_116]i5[8] ≥ 0∧[(-1)bso_117] ≥ 0)
(122) (i436[8] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD768(i5[9], i7[9], -(i436[9], 1))), ≥)∧0 = 0∧[bni_116] = 0∧[(-1)bni_116 + (-1)Bound*bni_116] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_117] ≥ 0)
(123) (i436[8] ≥ 0 ⇒ (UIncreasing(LOAD768(i5[9], i7[9], -(i436[9], 1))), ≥)∧0 = 0∧[bni_116] = 0∧[(-1)bni_116 + (-1)Bound*bni_116] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_117] ≥ 0)
(124) (i5[10]=i5[7]∧i7[10]=i7[7]∧i7[10]=0 ⇒ LOAD484(i5[10], i7[10], 0)≥NonInfC∧LOAD484(i5[10], i7[10], 0)≥LOAD608(i5[10], i7[10], i7[10])∧(UIncreasing(LOAD608(i5[10], i7[10], i7[10])), ≥))
(125) (LOAD484(i5[10], 0, 0)≥NonInfC∧LOAD484(i5[10], 0, 0)≥LOAD608(i5[10], 0, 0)∧(UIncreasing(LOAD608(i5[10], i7[10], i7[10])), ≥))
(126) ((UIncreasing(LOAD608(i5[10], i7[10], i7[10])), ≥)∧[(-1)bso_119] ≥ 0)
(127) ((UIncreasing(LOAD608(i5[10], i7[10], i7[10])), ≥)∧[(-1)bso_119] ≥ 0)
(128) ((UIncreasing(LOAD608(i5[10], i7[10], i7[10])), ≥)∧[(-1)bso_119] ≥ 0)
(129) ((UIncreasing(LOAD608(i5[10], i7[10], i7[10])), ≥)∧0 = 0∧[(-1)bso_119] ≥ 0)
(130) (i7[10]=i7[11]∧i5[10]=i5[11]∧i7[10]=i296[11] ⇒ LOAD484(i5[10], i7[10], 0)≥NonInfC∧LOAD484(i5[10], i7[10], 0)≥LOAD608(i5[10], i7[10], i7[10])∧(UIncreasing(LOAD608(i5[10], i7[10], i7[10])), ≥))
(131) (LOAD484(i5[10], i7[10], 0)≥NonInfC∧LOAD484(i5[10], i7[10], 0)≥LOAD608(i5[10], i7[10], i7[10])∧(UIncreasing(LOAD608(i5[10], i7[10], i7[10])), ≥))
(132) ((UIncreasing(LOAD608(i5[10], i7[10], i7[10])), ≥)∧[(-1)bso_119] ≥ 0)
(133) ((UIncreasing(LOAD608(i5[10], i7[10], i7[10])), ≥)∧[(-1)bso_119] ≥ 0)
(134) ((UIncreasing(LOAD608(i5[10], i7[10], i7[10])), ≥)∧[(-1)bso_119] ≥ 0)
(135) ((UIncreasing(LOAD608(i5[10], i7[10], i7[10])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_119] ≥ 0)
(136) (>(i296[11], 0)=TRUE∧i7[11]=i7[12]∧i296[11]=i296[12]∧i5[11]=i5[12] ⇒ LOAD608(i5[11], i7[11], i296[11])≥NonInfC∧LOAD608(i5[11], i7[11], i296[11])≥COND_LOAD608(>(i296[11], 0), i5[11], i7[11], i296[11])∧(UIncreasing(COND_LOAD608(>(i296[11], 0), i5[11], i7[11], i296[11])), ≥))
(137) (>(i296[11], 0)=TRUE ⇒ LOAD608(i5[11], i7[11], i296[11])≥NonInfC∧LOAD608(i5[11], i7[11], i296[11])≥COND_LOAD608(>(i296[11], 0), i5[11], i7[11], i296[11])∧(UIncreasing(COND_LOAD608(>(i296[11], 0), i5[11], i7[11], i296[11])), ≥))
(138) (i296[11] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD608(>(i296[11], 0), i5[11], i7[11], i296[11])), ≥)∧[(-1)bni_120 + (-1)Bound*bni_120] + [bni_120]i5[11] ≥ 0∧[(-1)bso_121] ≥ 0)
(139) (i296[11] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD608(>(i296[11], 0), i5[11], i7[11], i296[11])), ≥)∧[(-1)bni_120 + (-1)Bound*bni_120] + [bni_120]i5[11] ≥ 0∧[(-1)bso_121] ≥ 0)
(140) (i296[11] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD608(>(i296[11], 0), i5[11], i7[11], i296[11])), ≥)∧[(-1)bni_120 + (-1)Bound*bni_120] + [bni_120]i5[11] ≥ 0∧[(-1)bso_121] ≥ 0)
(141) (i296[11] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD608(>(i296[11], 0), i5[11], i7[11], i296[11])), ≥)∧0 = 0∧[bni_120] = 0∧[(-1)bni_120 + (-1)Bound*bni_120] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_121] ≥ 0)
(142) (i296[11] ≥ 0 ⇒ (UIncreasing(COND_LOAD608(>(i296[11], 0), i5[11], i7[11], i296[11])), ≥)∧0 = 0∧[bni_120] = 0∧[(-1)bni_120 + (-1)Bound*bni_120] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_121] ≥ 0)
(143) (>(i296[11], 0)=TRUE∧i7[11]=i7[12]∧i296[11]=i296[12]∧i5[11]=i5[12]∧-(i296[12], 1)=0∧i7[12]=i7[7]∧i5[12]=i5[7] ⇒ COND_LOAD608(TRUE, i5[12], i7[12], i296[12])≥NonInfC∧COND_LOAD608(TRUE, i5[12], i7[12], i296[12])≥LOAD608(i5[12], i7[12], -(i296[12], 1))∧(UIncreasing(LOAD608(i5[12], i7[12], -(i296[12], 1))), ≥))
(144) (>(i296[11], 0)=TRUE∧-(i296[11], 1)=0 ⇒ COND_LOAD608(TRUE, i5[11], i7[11], i296[11])≥NonInfC∧COND_LOAD608(TRUE, i5[11], i7[11], i296[11])≥LOAD608(i5[11], i7[11], -(i296[11], 1))∧(UIncreasing(LOAD608(i5[12], i7[12], -(i296[12], 1))), ≥))
(145) (i296[11] + [-1] ≥ 0∧i296[11] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD608(i5[12], i7[12], -(i296[12], 1))), ≥)∧[(-1)bni_122 + (-1)Bound*bni_122] + [bni_122]i5[11] ≥ 0∧[(-1)bso_123] ≥ 0)
(146) (i296[11] + [-1] ≥ 0∧i296[11] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD608(i5[12], i7[12], -(i296[12], 1))), ≥)∧[(-1)bni_122 + (-1)Bound*bni_122] + [bni_122]i5[11] ≥ 0∧[(-1)bso_123] ≥ 0)
(147) (i296[11] + [-1] ≥ 0∧i296[11] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD608(i5[12], i7[12], -(i296[12], 1))), ≥)∧[(-1)bni_122 + (-1)Bound*bni_122] + [bni_122]i5[11] ≥ 0∧[(-1)bso_123] ≥ 0)
(148) (i296[11] + [-1] ≥ 0∧i296[11] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD608(i5[12], i7[12], -(i296[12], 1))), ≥)∧0 = 0∧[bni_122] = 0∧[(-1)bni_122 + (-1)Bound*bni_122] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_123] ≥ 0)
(149) (i296[11] ≥ 0∧i296[11] ≥ 0 ⇒ (UIncreasing(LOAD608(i5[12], i7[12], -(i296[12], 1))), ≥)∧0 = 0∧[bni_122] = 0∧[(-1)bni_122 + (-1)Bound*bni_122] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_123] ≥ 0)
(150) (>(i296[11], 0)=TRUE∧i7[11]=i7[12]∧i296[11]=i296[12]∧i5[11]=i5[12]∧-(i296[12], 1)=i296[11]1∧i5[12]=i5[11]1∧i7[12]=i7[11]1 ⇒ COND_LOAD608(TRUE, i5[12], i7[12], i296[12])≥NonInfC∧COND_LOAD608(TRUE, i5[12], i7[12], i296[12])≥LOAD608(i5[12], i7[12], -(i296[12], 1))∧(UIncreasing(LOAD608(i5[12], i7[12], -(i296[12], 1))), ≥))
(151) (>(i296[11], 0)=TRUE ⇒ COND_LOAD608(TRUE, i5[11], i7[11], i296[11])≥NonInfC∧COND_LOAD608(TRUE, i5[11], i7[11], i296[11])≥LOAD608(i5[11], i7[11], -(i296[11], 1))∧(UIncreasing(LOAD608(i5[12], i7[12], -(i296[12], 1))), ≥))
(152) (i296[11] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD608(i5[12], i7[12], -(i296[12], 1))), ≥)∧[(-1)bni_122 + (-1)Bound*bni_122] + [bni_122]i5[11] ≥ 0∧[(-1)bso_123] ≥ 0)
(153) (i296[11] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD608(i5[12], i7[12], -(i296[12], 1))), ≥)∧[(-1)bni_122 + (-1)Bound*bni_122] + [bni_122]i5[11] ≥ 0∧[(-1)bso_123] ≥ 0)
(154) (i296[11] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD608(i5[12], i7[12], -(i296[12], 1))), ≥)∧[(-1)bni_122 + (-1)Bound*bni_122] + [bni_122]i5[11] ≥ 0∧[(-1)bso_123] ≥ 0)
(155) (i296[11] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD608(i5[12], i7[12], -(i296[12], 1))), ≥)∧0 = 0∧[bni_122] = 0∧[(-1)bni_122 + (-1)Bound*bni_122] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_123] ≥ 0)
(156) (i296[11] ≥ 0 ⇒ (UIncreasing(LOAD608(i5[12], i7[12], -(i296[12], 1))), ≥)∧0 = 0∧[bni_122] = 0∧[(-1)bni_122 + (-1)Bound*bni_122] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_123] ≥ 0)
(157) (i5[13]=i5[10]∧i7[13]=0∧i7[13]=i7[10] ⇒ LOAD363(i5[13], i7[13], 0)≥NonInfC∧LOAD363(i5[13], i7[13], 0)≥LOAD484(i5[13], i7[13], i7[13])∧(UIncreasing(LOAD484(i5[13], i7[13], i7[13])), ≥))
(158) (LOAD363(i5[13], 0, 0)≥NonInfC∧LOAD363(i5[13], 0, 0)≥LOAD484(i5[13], 0, 0)∧(UIncreasing(LOAD484(i5[13], i7[13], i7[13])), ≥))
(159) ((UIncreasing(LOAD484(i5[13], i7[13], i7[13])), ≥)∧[(-1)bso_125] ≥ 0)
(160) ((UIncreasing(LOAD484(i5[13], i7[13], i7[13])), ≥)∧[(-1)bso_125] ≥ 0)
(161) ((UIncreasing(LOAD484(i5[13], i7[13], i7[13])), ≥)∧[(-1)bso_125] ≥ 0)
(162) ((UIncreasing(LOAD484(i5[13], i7[13], i7[13])), ≥)∧0 = 0∧[(-1)bso_125] ≥ 0)
(163) (i7[13]=i187[14]∧i5[13]=i5[14]∧i7[13]=i7[14] ⇒ LOAD363(i5[13], i7[13], 0)≥NonInfC∧LOAD363(i5[13], i7[13], 0)≥LOAD484(i5[13], i7[13], i7[13])∧(UIncreasing(LOAD484(i5[13], i7[13], i7[13])), ≥))
(164) (LOAD363(i5[13], i7[13], 0)≥NonInfC∧LOAD363(i5[13], i7[13], 0)≥LOAD484(i5[13], i7[13], i7[13])∧(UIncreasing(LOAD484(i5[13], i7[13], i7[13])), ≥))
(165) ((UIncreasing(LOAD484(i5[13], i7[13], i7[13])), ≥)∧[(-1)bso_125] ≥ 0)
(166) ((UIncreasing(LOAD484(i5[13], i7[13], i7[13])), ≥)∧[(-1)bso_125] ≥ 0)
(167) ((UIncreasing(LOAD484(i5[13], i7[13], i7[13])), ≥)∧[(-1)bso_125] ≥ 0)
(168) ((UIncreasing(LOAD484(i5[13], i7[13], i7[13])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_125] ≥ 0)
(169) (i7[14]=i7[15]∧i5[14]=i5[15]∧i187[14]=i187[15]∧>(i187[14], 0)=TRUE ⇒ LOAD484(i5[14], i7[14], i187[14])≥NonInfC∧LOAD484(i5[14], i7[14], i187[14])≥COND_LOAD484(>(i187[14], 0), i5[14], i7[14], i187[14])∧(UIncreasing(COND_LOAD484(>(i187[14], 0), i5[14], i7[14], i187[14])), ≥))
(170) (>(i187[14], 0)=TRUE ⇒ LOAD484(i5[14], i7[14], i187[14])≥NonInfC∧LOAD484(i5[14], i7[14], i187[14])≥COND_LOAD484(>(i187[14], 0), i5[14], i7[14], i187[14])∧(UIncreasing(COND_LOAD484(>(i187[14], 0), i5[14], i7[14], i187[14])), ≥))
(171) (i187[14] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD484(>(i187[14], 0), i5[14], i7[14], i187[14])), ≥)∧[(-1)bni_126 + (-1)Bound*bni_126] + [bni_126]i5[14] ≥ 0∧[(-1)bso_127] ≥ 0)
(172) (i187[14] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD484(>(i187[14], 0), i5[14], i7[14], i187[14])), ≥)∧[(-1)bni_126 + (-1)Bound*bni_126] + [bni_126]i5[14] ≥ 0∧[(-1)bso_127] ≥ 0)
(173) (i187[14] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD484(>(i187[14], 0), i5[14], i7[14], i187[14])), ≥)∧[(-1)bni_126 + (-1)Bound*bni_126] + [bni_126]i5[14] ≥ 0∧[(-1)bso_127] ≥ 0)
(174) (i187[14] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD484(>(i187[14], 0), i5[14], i7[14], i187[14])), ≥)∧0 = 0∧[bni_126] = 0∧[(-1)bni_126 + (-1)Bound*bni_126] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_127] ≥ 0)
(175) (i187[14] ≥ 0 ⇒ (UIncreasing(COND_LOAD484(>(i187[14], 0), i5[14], i7[14], i187[14])), ≥)∧0 = 0∧[bni_126] = 0∧[(-1)bni_126 + (-1)Bound*bni_126] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_127] ≥ 0)
(176) (i7[14]=i7[15]∧i5[14]=i5[15]∧i187[14]=i187[15]∧>(i187[14], 0)=TRUE∧i7[15]=i7[10]∧-(i187[15], 1)=0∧i5[15]=i5[10] ⇒ COND_LOAD484(TRUE, i5[15], i7[15], i187[15])≥NonInfC∧COND_LOAD484(TRUE, i5[15], i7[15], i187[15])≥LOAD484(i5[15], i7[15], -(i187[15], 1))∧(UIncreasing(LOAD484(i5[15], i7[15], -(i187[15], 1))), ≥))
(177) (>(i187[14], 0)=TRUE∧-(i187[14], 1)=0 ⇒ COND_LOAD484(TRUE, i5[14], i7[14], i187[14])≥NonInfC∧COND_LOAD484(TRUE, i5[14], i7[14], i187[14])≥LOAD484(i5[14], i7[14], -(i187[14], 1))∧(UIncreasing(LOAD484(i5[15], i7[15], -(i187[15], 1))), ≥))
(178) (i187[14] + [-1] ≥ 0∧i187[14] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD484(i5[15], i7[15], -(i187[15], 1))), ≥)∧[(-1)bni_128 + (-1)Bound*bni_128] + [bni_128]i5[14] ≥ 0∧[(-1)bso_129] ≥ 0)
(179) (i187[14] + [-1] ≥ 0∧i187[14] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD484(i5[15], i7[15], -(i187[15], 1))), ≥)∧[(-1)bni_128 + (-1)Bound*bni_128] + [bni_128]i5[14] ≥ 0∧[(-1)bso_129] ≥ 0)
(180) (i187[14] + [-1] ≥ 0∧i187[14] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD484(i5[15], i7[15], -(i187[15], 1))), ≥)∧[(-1)bni_128 + (-1)Bound*bni_128] + [bni_128]i5[14] ≥ 0∧[(-1)bso_129] ≥ 0)
(181) (i187[14] + [-1] ≥ 0∧i187[14] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD484(i5[15], i7[15], -(i187[15], 1))), ≥)∧0 = 0∧[bni_128] = 0∧[(-1)bni_128 + (-1)Bound*bni_128] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_129] ≥ 0)
(182) (i187[14] ≥ 0∧i187[14] ≥ 0 ⇒ (UIncreasing(LOAD484(i5[15], i7[15], -(i187[15], 1))), ≥)∧0 = 0∧[bni_128] = 0∧[(-1)bni_128 + (-1)Bound*bni_128] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_129] ≥ 0)
(183) (i7[14]=i7[15]∧i5[14]=i5[15]∧i187[14]=i187[15]∧>(i187[14], 0)=TRUE∧-(i187[15], 1)=i187[14]1∧i5[15]=i5[14]1∧i7[15]=i7[14]1 ⇒ COND_LOAD484(TRUE, i5[15], i7[15], i187[15])≥NonInfC∧COND_LOAD484(TRUE, i5[15], i7[15], i187[15])≥LOAD484(i5[15], i7[15], -(i187[15], 1))∧(UIncreasing(LOAD484(i5[15], i7[15], -(i187[15], 1))), ≥))
(184) (>(i187[14], 0)=TRUE ⇒ COND_LOAD484(TRUE, i5[14], i7[14], i187[14])≥NonInfC∧COND_LOAD484(TRUE, i5[14], i7[14], i187[14])≥LOAD484(i5[14], i7[14], -(i187[14], 1))∧(UIncreasing(LOAD484(i5[15], i7[15], -(i187[15], 1))), ≥))
(185) (i187[14] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD484(i5[15], i7[15], -(i187[15], 1))), ≥)∧[(-1)bni_128 + (-1)Bound*bni_128] + [bni_128]i5[14] ≥ 0∧[(-1)bso_129] ≥ 0)
(186) (i187[14] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD484(i5[15], i7[15], -(i187[15], 1))), ≥)∧[(-1)bni_128 + (-1)Bound*bni_128] + [bni_128]i5[14] ≥ 0∧[(-1)bso_129] ≥ 0)
(187) (i187[14] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD484(i5[15], i7[15], -(i187[15], 1))), ≥)∧[(-1)bni_128 + (-1)Bound*bni_128] + [bni_128]i5[14] ≥ 0∧[(-1)bso_129] ≥ 0)
(188) (i187[14] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD484(i5[15], i7[15], -(i187[15], 1))), ≥)∧0 = 0∧[bni_128] = 0∧[(-1)bni_128 + (-1)Bound*bni_128] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_129] ≥ 0)
(189) (i187[14] ≥ 0 ⇒ (UIncreasing(LOAD484(i5[15], i7[15], -(i187[15], 1))), ≥)∧0 = 0∧[bni_128] = 0∧[(-1)bni_128 + (-1)Bound*bni_128] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_129] ≥ 0)
(190) (i7[16]=i7[13]∧i7[16]=0∧i5[16]=i5[13] ⇒ LOAD258(i5[16], i7[16], 0)≥NonInfC∧LOAD258(i5[16], i7[16], 0)≥LOAD363(i5[16], i7[16], i7[16])∧(UIncreasing(LOAD363(i5[16], i7[16], i7[16])), ≥))
(191) (LOAD258(i5[16], 0, 0)≥NonInfC∧LOAD258(i5[16], 0, 0)≥LOAD363(i5[16], 0, 0)∧(UIncreasing(LOAD363(i5[16], i7[16], i7[16])), ≥))
(192) ((UIncreasing(LOAD363(i5[16], i7[16], i7[16])), ≥)∧[(-1)bso_131] ≥ 0)
(193) ((UIncreasing(LOAD363(i5[16], i7[16], i7[16])), ≥)∧[(-1)bso_131] ≥ 0)
(194) ((UIncreasing(LOAD363(i5[16], i7[16], i7[16])), ≥)∧[(-1)bso_131] ≥ 0)
(195) ((UIncreasing(LOAD363(i5[16], i7[16], i7[16])), ≥)∧0 = 0∧[(-1)bso_131] ≥ 0)
(196) (i7[16]=i104[17]∧i5[16]=i5[17]∧i7[16]=i7[17] ⇒ LOAD258(i5[16], i7[16], 0)≥NonInfC∧LOAD258(i5[16], i7[16], 0)≥LOAD363(i5[16], i7[16], i7[16])∧(UIncreasing(LOAD363(i5[16], i7[16], i7[16])), ≥))
(197) (LOAD258(i5[16], i7[16], 0)≥NonInfC∧LOAD258(i5[16], i7[16], 0)≥LOAD363(i5[16], i7[16], i7[16])∧(UIncreasing(LOAD363(i5[16], i7[16], i7[16])), ≥))
(198) ((UIncreasing(LOAD363(i5[16], i7[16], i7[16])), ≥)∧[(-1)bso_131] ≥ 0)
(199) ((UIncreasing(LOAD363(i5[16], i7[16], i7[16])), ≥)∧[(-1)bso_131] ≥ 0)
(200) ((UIncreasing(LOAD363(i5[16], i7[16], i7[16])), ≥)∧[(-1)bso_131] ≥ 0)
(201) ((UIncreasing(LOAD363(i5[16], i7[16], i7[16])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_131] ≥ 0)
(202) (i7[17]=i7[18]∧i5[17]=i5[18]∧i104[17]=i104[18]∧>(i104[17], 0)=TRUE ⇒ LOAD363(i5[17], i7[17], i104[17])≥NonInfC∧LOAD363(i5[17], i7[17], i104[17])≥COND_LOAD363(>(i104[17], 0), i5[17], i7[17], i104[17])∧(UIncreasing(COND_LOAD363(>(i104[17], 0), i5[17], i7[17], i104[17])), ≥))
(203) (>(i104[17], 0)=TRUE ⇒ LOAD363(i5[17], i7[17], i104[17])≥NonInfC∧LOAD363(i5[17], i7[17], i104[17])≥COND_LOAD363(>(i104[17], 0), i5[17], i7[17], i104[17])∧(UIncreasing(COND_LOAD363(>(i104[17], 0), i5[17], i7[17], i104[17])), ≥))
(204) (i104[17] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD363(>(i104[17], 0), i5[17], i7[17], i104[17])), ≥)∧[(-1)bni_132 + (-1)Bound*bni_132] + [bni_132]i5[17] ≥ 0∧[(-1)bso_133] ≥ 0)
(205) (i104[17] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD363(>(i104[17], 0), i5[17], i7[17], i104[17])), ≥)∧[(-1)bni_132 + (-1)Bound*bni_132] + [bni_132]i5[17] ≥ 0∧[(-1)bso_133] ≥ 0)
(206) (i104[17] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD363(>(i104[17], 0), i5[17], i7[17], i104[17])), ≥)∧[(-1)bni_132 + (-1)Bound*bni_132] + [bni_132]i5[17] ≥ 0∧[(-1)bso_133] ≥ 0)
(207) (i104[17] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD363(>(i104[17], 0), i5[17], i7[17], i104[17])), ≥)∧0 = 0∧[bni_132] = 0∧[(-1)bni_132 + (-1)Bound*bni_132] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_133] ≥ 0)
(208) (i104[17] ≥ 0 ⇒ (UIncreasing(COND_LOAD363(>(i104[17], 0), i5[17], i7[17], i104[17])), ≥)∧0 = 0∧[bni_132] = 0∧[(-1)bni_132 + (-1)Bound*bni_132] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_133] ≥ 0)
(209) (i7[17]=i7[18]∧i5[17]=i5[18]∧i104[17]=i104[18]∧>(i104[17], 0)=TRUE∧i5[18]=i5[13]∧-(i104[18], 1)=0∧i7[18]=i7[13] ⇒ COND_LOAD363(TRUE, i5[18], i7[18], i104[18])≥NonInfC∧COND_LOAD363(TRUE, i5[18], i7[18], i104[18])≥LOAD363(i5[18], i7[18], -(i104[18], 1))∧(UIncreasing(LOAD363(i5[18], i7[18], -(i104[18], 1))), ≥))
(210) (>(i104[17], 0)=TRUE∧-(i104[17], 1)=0 ⇒ COND_LOAD363(TRUE, i5[17], i7[17], i104[17])≥NonInfC∧COND_LOAD363(TRUE, i5[17], i7[17], i104[17])≥LOAD363(i5[17], i7[17], -(i104[17], 1))∧(UIncreasing(LOAD363(i5[18], i7[18], -(i104[18], 1))), ≥))
(211) (i104[17] + [-1] ≥ 0∧i104[17] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD363(i5[18], i7[18], -(i104[18], 1))), ≥)∧[(-1)bni_134 + (-1)Bound*bni_134] + [bni_134]i5[17] ≥ 0∧[(-1)bso_135] ≥ 0)
(212) (i104[17] + [-1] ≥ 0∧i104[17] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD363(i5[18], i7[18], -(i104[18], 1))), ≥)∧[(-1)bni_134 + (-1)Bound*bni_134] + [bni_134]i5[17] ≥ 0∧[(-1)bso_135] ≥ 0)
(213) (i104[17] + [-1] ≥ 0∧i104[17] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD363(i5[18], i7[18], -(i104[18], 1))), ≥)∧[(-1)bni_134 + (-1)Bound*bni_134] + [bni_134]i5[17] ≥ 0∧[(-1)bso_135] ≥ 0)
(214) (i104[17] + [-1] ≥ 0∧i104[17] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD363(i5[18], i7[18], -(i104[18], 1))), ≥)∧0 = 0∧[bni_134] = 0∧[(-1)bni_134 + (-1)Bound*bni_134] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_135] ≥ 0)
(215) (i104[17] ≥ 0∧i104[17] ≥ 0 ⇒ (UIncreasing(LOAD363(i5[18], i7[18], -(i104[18], 1))), ≥)∧0 = 0∧[bni_134] = 0∧[(-1)bni_134 + (-1)Bound*bni_134] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_135] ≥ 0)
(216) (i7[17]=i7[18]∧i5[17]=i5[18]∧i104[17]=i104[18]∧>(i104[17], 0)=TRUE∧-(i104[18], 1)=i104[17]1∧i5[18]=i5[17]1∧i7[18]=i7[17]1 ⇒ COND_LOAD363(TRUE, i5[18], i7[18], i104[18])≥NonInfC∧COND_LOAD363(TRUE, i5[18], i7[18], i104[18])≥LOAD363(i5[18], i7[18], -(i104[18], 1))∧(UIncreasing(LOAD363(i5[18], i7[18], -(i104[18], 1))), ≥))
(217) (>(i104[17], 0)=TRUE ⇒ COND_LOAD363(TRUE, i5[17], i7[17], i104[17])≥NonInfC∧COND_LOAD363(TRUE, i5[17], i7[17], i104[17])≥LOAD363(i5[17], i7[17], -(i104[17], 1))∧(UIncreasing(LOAD363(i5[18], i7[18], -(i104[18], 1))), ≥))
(218) (i104[17] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD363(i5[18], i7[18], -(i104[18], 1))), ≥)∧[(-1)bni_134 + (-1)Bound*bni_134] + [bni_134]i5[17] ≥ 0∧[(-1)bso_135] ≥ 0)
(219) (i104[17] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD363(i5[18], i7[18], -(i104[18], 1))), ≥)∧[(-1)bni_134 + (-1)Bound*bni_134] + [bni_134]i5[17] ≥ 0∧[(-1)bso_135] ≥ 0)
(220) (i104[17] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD363(i5[18], i7[18], -(i104[18], 1))), ≥)∧[(-1)bni_134 + (-1)Bound*bni_134] + [bni_134]i5[17] ≥ 0∧[(-1)bso_135] ≥ 0)
(221) (i104[17] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD363(i5[18], i7[18], -(i104[18], 1))), ≥)∧0 = 0∧[bni_134] = 0∧[(-1)bni_134 + (-1)Bound*bni_134] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_135] ≥ 0)
(222) (i104[17] ≥ 0 ⇒ (UIncreasing(LOAD363(i5[18], i7[18], -(i104[18], 1))), ≥)∧0 = 0∧[bni_134] = 0∧[(-1)bni_134 + (-1)Bound*bni_134] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_135] ≥ 0)
(223) (i7[19]=0∧i5[19]=i5[16]∧i7[19]=i7[16] ⇒ LOAD175(i5[19], i7[19], 0)≥NonInfC∧LOAD175(i5[19], i7[19], 0)≥LOAD258(i5[19], i7[19], i7[19])∧(UIncreasing(LOAD258(i5[19], i7[19], i7[19])), ≥))
(224) (LOAD175(i5[19], 0, 0)≥NonInfC∧LOAD175(i5[19], 0, 0)≥LOAD258(i5[19], 0, 0)∧(UIncreasing(LOAD258(i5[19], i7[19], i7[19])), ≥))
(225) ((UIncreasing(LOAD258(i5[19], i7[19], i7[19])), ≥)∧[(-1)bso_137] ≥ 0)
(226) ((UIncreasing(LOAD258(i5[19], i7[19], i7[19])), ≥)∧[(-1)bso_137] ≥ 0)
(227) ((UIncreasing(LOAD258(i5[19], i7[19], i7[19])), ≥)∧[(-1)bso_137] ≥ 0)
(228) ((UIncreasing(LOAD258(i5[19], i7[19], i7[19])), ≥)∧0 = 0∧[(-1)bso_137] ≥ 0)
(229) (i7[19]=i49[20]∧i7[19]=i7[20]∧i5[19]=i5[20] ⇒ LOAD175(i5[19], i7[19], 0)≥NonInfC∧LOAD175(i5[19], i7[19], 0)≥LOAD258(i5[19], i7[19], i7[19])∧(UIncreasing(LOAD258(i5[19], i7[19], i7[19])), ≥))
(230) (LOAD175(i5[19], i7[19], 0)≥NonInfC∧LOAD175(i5[19], i7[19], 0)≥LOAD258(i5[19], i7[19], i7[19])∧(UIncreasing(LOAD258(i5[19], i7[19], i7[19])), ≥))
(231) ((UIncreasing(LOAD258(i5[19], i7[19], i7[19])), ≥)∧[(-1)bso_137] ≥ 0)
(232) ((UIncreasing(LOAD258(i5[19], i7[19], i7[19])), ≥)∧[(-1)bso_137] ≥ 0)
(233) ((UIncreasing(LOAD258(i5[19], i7[19], i7[19])), ≥)∧[(-1)bso_137] ≥ 0)
(234) ((UIncreasing(LOAD258(i5[19], i7[19], i7[19])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_137] ≥ 0)
(235) (i7[20]=i7[21]∧>(i49[20], 0)=TRUE∧i5[20]=i5[21]∧i49[20]=i49[21] ⇒ LOAD258(i5[20], i7[20], i49[20])≥NonInfC∧LOAD258(i5[20], i7[20], i49[20])≥COND_LOAD258(>(i49[20], 0), i5[20], i7[20], i49[20])∧(UIncreasing(COND_LOAD258(>(i49[20], 0), i5[20], i7[20], i49[20])), ≥))
(236) (>(i49[20], 0)=TRUE ⇒ LOAD258(i5[20], i7[20], i49[20])≥NonInfC∧LOAD258(i5[20], i7[20], i49[20])≥COND_LOAD258(>(i49[20], 0), i5[20], i7[20], i49[20])∧(UIncreasing(COND_LOAD258(>(i49[20], 0), i5[20], i7[20], i49[20])), ≥))
(237) (i49[20] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD258(>(i49[20], 0), i5[20], i7[20], i49[20])), ≥)∧[(-1)bni_138 + (-1)Bound*bni_138] + [bni_138]i5[20] ≥ 0∧[(-1)bso_139] ≥ 0)
(238) (i49[20] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD258(>(i49[20], 0), i5[20], i7[20], i49[20])), ≥)∧[(-1)bni_138 + (-1)Bound*bni_138] + [bni_138]i5[20] ≥ 0∧[(-1)bso_139] ≥ 0)
(239) (i49[20] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD258(>(i49[20], 0), i5[20], i7[20], i49[20])), ≥)∧[(-1)bni_138 + (-1)Bound*bni_138] + [bni_138]i5[20] ≥ 0∧[(-1)bso_139] ≥ 0)
(240) (i49[20] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD258(>(i49[20], 0), i5[20], i7[20], i49[20])), ≥)∧0 = 0∧[bni_138] = 0∧[(-1)bni_138 + (-1)Bound*bni_138] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_139] ≥ 0)
(241) (i49[20] ≥ 0 ⇒ (UIncreasing(COND_LOAD258(>(i49[20], 0), i5[20], i7[20], i49[20])), ≥)∧0 = 0∧[bni_138] = 0∧[(-1)bni_138 + (-1)Bound*bni_138] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_139] ≥ 0)
(242) (i7[20]=i7[21]∧>(i49[20], 0)=TRUE∧i5[20]=i5[21]∧i49[20]=i49[21]∧i7[21]=i7[16]∧-(i49[21], 1)=0∧i5[21]=i5[16] ⇒ COND_LOAD258(TRUE, i5[21], i7[21], i49[21])≥NonInfC∧COND_LOAD258(TRUE, i5[21], i7[21], i49[21])≥LOAD258(i5[21], i7[21], -(i49[21], 1))∧(UIncreasing(LOAD258(i5[21], i7[21], -(i49[21], 1))), ≥))
(243) (>(i49[20], 0)=TRUE∧-(i49[20], 1)=0 ⇒ COND_LOAD258(TRUE, i5[20], i7[20], i49[20])≥NonInfC∧COND_LOAD258(TRUE, i5[20], i7[20], i49[20])≥LOAD258(i5[20], i7[20], -(i49[20], 1))∧(UIncreasing(LOAD258(i5[21], i7[21], -(i49[21], 1))), ≥))
(244) (i49[20] + [-1] ≥ 0∧i49[20] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD258(i5[21], i7[21], -(i49[21], 1))), ≥)∧[(-1)bni_140 + (-1)Bound*bni_140] + [bni_140]i5[20] ≥ 0∧[(-1)bso_141] ≥ 0)
(245) (i49[20] + [-1] ≥ 0∧i49[20] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD258(i5[21], i7[21], -(i49[21], 1))), ≥)∧[(-1)bni_140 + (-1)Bound*bni_140] + [bni_140]i5[20] ≥ 0∧[(-1)bso_141] ≥ 0)
(246) (i49[20] + [-1] ≥ 0∧i49[20] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD258(i5[21], i7[21], -(i49[21], 1))), ≥)∧[(-1)bni_140 + (-1)Bound*bni_140] + [bni_140]i5[20] ≥ 0∧[(-1)bso_141] ≥ 0)
(247) (i49[20] + [-1] ≥ 0∧i49[20] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD258(i5[21], i7[21], -(i49[21], 1))), ≥)∧0 = 0∧[bni_140] = 0∧[(-1)bni_140 + (-1)Bound*bni_140] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_141] ≥ 0)
(248) (i49[20] ≥ 0∧i49[20] ≥ 0 ⇒ (UIncreasing(LOAD258(i5[21], i7[21], -(i49[21], 1))), ≥)∧0 = 0∧[bni_140] = 0∧[(-1)bni_140 + (-1)Bound*bni_140] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_141] ≥ 0)
(249) (i7[20]=i7[21]∧>(i49[20], 0)=TRUE∧i5[20]=i5[21]∧i49[20]=i49[21]∧i7[21]=i7[20]1∧-(i49[21], 1)=i49[20]1∧i5[21]=i5[20]1 ⇒ COND_LOAD258(TRUE, i5[21], i7[21], i49[21])≥NonInfC∧COND_LOAD258(TRUE, i5[21], i7[21], i49[21])≥LOAD258(i5[21], i7[21], -(i49[21], 1))∧(UIncreasing(LOAD258(i5[21], i7[21], -(i49[21], 1))), ≥))
(250) (>(i49[20], 0)=TRUE ⇒ COND_LOAD258(TRUE, i5[20], i7[20], i49[20])≥NonInfC∧COND_LOAD258(TRUE, i5[20], i7[20], i49[20])≥LOAD258(i5[20], i7[20], -(i49[20], 1))∧(UIncreasing(LOAD258(i5[21], i7[21], -(i49[21], 1))), ≥))
(251) (i49[20] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD258(i5[21], i7[21], -(i49[21], 1))), ≥)∧[(-1)bni_140 + (-1)Bound*bni_140] + [bni_140]i5[20] ≥ 0∧[(-1)bso_141] ≥ 0)
(252) (i49[20] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD258(i5[21], i7[21], -(i49[21], 1))), ≥)∧[(-1)bni_140 + (-1)Bound*bni_140] + [bni_140]i5[20] ≥ 0∧[(-1)bso_141] ≥ 0)
(253) (i49[20] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD258(i5[21], i7[21], -(i49[21], 1))), ≥)∧[(-1)bni_140 + (-1)Bound*bni_140] + [bni_140]i5[20] ≥ 0∧[(-1)bso_141] ≥ 0)
(254) (i49[20] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD258(i5[21], i7[21], -(i49[21], 1))), ≥)∧0 = 0∧[bni_140] = 0∧[(-1)bni_140 + (-1)Bound*bni_140] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_141] ≥ 0)
(255) (i49[20] ≥ 0 ⇒ (UIncreasing(LOAD258(i5[21], i7[21], -(i49[21], 1))), ≥)∧0 = 0∧[bni_140] = 0∧[(-1)bni_140 + (-1)Bound*bni_140] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_141] ≥ 0)
(256) (i5[22]=i5[23]∧&&(>(i7[22], 0), <(i7[22], 100))=TRUE∧i7[22]=i7[23] ⇒ LOAD83(i5[22], i7[22])≥NonInfC∧LOAD83(i5[22], i7[22])≥COND_LOAD83(&&(>(i7[22], 0), <(i7[22], 100)), i5[22], i7[22])∧(UIncreasing(COND_LOAD83(&&(>(i7[22], 0), <(i7[22], 100)), i5[22], i7[22])), ≥))
(257) (>(i7[22], 0)=TRUE∧<(i7[22], 100)=TRUE ⇒ LOAD83(i5[22], i7[22])≥NonInfC∧LOAD83(i5[22], i7[22])≥COND_LOAD83(&&(>(i7[22], 0), <(i7[22], 100)), i5[22], i7[22])∧(UIncreasing(COND_LOAD83(&&(>(i7[22], 0), <(i7[22], 100)), i5[22], i7[22])), ≥))
(258) (i7[22] + [-1] ≥ 0∧[99] + [-1]i7[22] ≥ 0 ⇒ (UIncreasing(COND_LOAD83(&&(>(i7[22], 0), <(i7[22], 100)), i5[22], i7[22])), ≥)∧[(-1)bni_142 + (-1)Bound*bni_142] + [bni_142]i5[22] ≥ 0∧[(-1)bso_143] ≥ 0)
(259) (i7[22] + [-1] ≥ 0∧[99] + [-1]i7[22] ≥ 0 ⇒ (UIncreasing(COND_LOAD83(&&(>(i7[22], 0), <(i7[22], 100)), i5[22], i7[22])), ≥)∧[(-1)bni_142 + (-1)Bound*bni_142] + [bni_142]i5[22] ≥ 0∧[(-1)bso_143] ≥ 0)
(260) (i7[22] + [-1] ≥ 0∧[99] + [-1]i7[22] ≥ 0 ⇒ (UIncreasing(COND_LOAD83(&&(>(i7[22], 0), <(i7[22], 100)), i5[22], i7[22])), ≥)∧[(-1)bni_142 + (-1)Bound*bni_142] + [bni_142]i5[22] ≥ 0∧[(-1)bso_143] ≥ 0)
(261) (i7[22] + [-1] ≥ 0∧[99] + [-1]i7[22] ≥ 0 ⇒ (UIncreasing(COND_LOAD83(&&(>(i7[22], 0), <(i7[22], 100)), i5[22], i7[22])), ≥)∧[bni_142] = 0∧[(-1)bni_142 + (-1)Bound*bni_142] ≥ 0∧0 = 0∧[(-1)bso_143] ≥ 0)
(262) (i7[22] ≥ 0∧[98] + [-1]i7[22] ≥ 0 ⇒ (UIncreasing(COND_LOAD83(&&(>(i7[22], 0), <(i7[22], 100)), i5[22], i7[22])), ≥)∧[bni_142] = 0∧[(-1)bni_142 + (-1)Bound*bni_142] ≥ 0∧0 = 0∧[(-1)bso_143] ≥ 0)
(263) (i5[23]=i5[19]∧i7[23]=i7[19]∧i7[23]=0 ⇒ COND_LOAD83(TRUE, i5[23], i7[23])≥NonInfC∧COND_LOAD83(TRUE, i5[23], i7[23])≥LOAD175(i5[23], i7[23], i7[23])∧(UIncreasing(LOAD175(i5[23], i7[23], i7[23])), ≥))
(264) (COND_LOAD83(TRUE, i5[23], 0)≥NonInfC∧COND_LOAD83(TRUE, i5[23], 0)≥LOAD175(i5[23], 0, 0)∧(UIncreasing(LOAD175(i5[23], i7[23], i7[23])), ≥))
(265) ((UIncreasing(LOAD175(i5[23], i7[23], i7[23])), ≥)∧[(-1)bso_145] ≥ 0)
(266) ((UIncreasing(LOAD175(i5[23], i7[23], i7[23])), ≥)∧[(-1)bso_145] ≥ 0)
(267) ((UIncreasing(LOAD175(i5[23], i7[23], i7[23])), ≥)∧[(-1)bso_145] ≥ 0)
(268) ((UIncreasing(LOAD175(i5[23], i7[23], i7[23])), ≥)∧0 = 0∧[(-1)bso_145] ≥ 0)
(269) (i7[23]=i7[26]∧i5[23]=i5[26]∧i7[23]=i20[26] ⇒ COND_LOAD83(TRUE, i5[23], i7[23])≥NonInfC∧COND_LOAD83(TRUE, i5[23], i7[23])≥LOAD175(i5[23], i7[23], i7[23])∧(UIncreasing(LOAD175(i5[23], i7[23], i7[23])), ≥))
(270) (COND_LOAD83(TRUE, i5[23], i7[23])≥NonInfC∧COND_LOAD83(TRUE, i5[23], i7[23])≥LOAD175(i5[23], i7[23], i7[23])∧(UIncreasing(LOAD175(i5[23], i7[23], i7[23])), ≥))
(271) ((UIncreasing(LOAD175(i5[23], i7[23], i7[23])), ≥)∧[(-1)bso_145] ≥ 0)
(272) ((UIncreasing(LOAD175(i5[23], i7[23], i7[23])), ≥)∧[(-1)bso_145] ≥ 0)
(273) ((UIncreasing(LOAD175(i5[23], i7[23], i7[23])), ≥)∧[(-1)bso_145] ≥ 0)
(274) ((UIncreasing(LOAD175(i5[23], i7[23], i7[23])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_145] ≥ 0)
(275) (&&(>(i5[24], 0), <(i5[24], 100))=TRUE∧i5[24]=i5[25] ⇒ LOAD55(i5[24])≥NonInfC∧LOAD55(i5[24])≥COND_LOAD55(&&(>(i5[24], 0), <(i5[24], 100)), i5[24])∧(UIncreasing(COND_LOAD55(&&(>(i5[24], 0), <(i5[24], 100)), i5[24])), ≥))
(276) (>(i5[24], 0)=TRUE∧<(i5[24], 100)=TRUE ⇒ LOAD55(i5[24])≥NonInfC∧LOAD55(i5[24])≥COND_LOAD55(&&(>(i5[24], 0), <(i5[24], 100)), i5[24])∧(UIncreasing(COND_LOAD55(&&(>(i5[24], 0), <(i5[24], 100)), i5[24])), ≥))
(277) (i5[24] + [-1] ≥ 0∧[99] + [-1]i5[24] ≥ 0 ⇒ (UIncreasing(COND_LOAD55(&&(>(i5[24], 0), <(i5[24], 100)), i5[24])), ≥)∧[(-1)bni_146 + (-1)Bound*bni_146] + [bni_146]i5[24] ≥ 0∧[(-1)bso_147] ≥ 0)
(278) (i5[24] + [-1] ≥ 0∧[99] + [-1]i5[24] ≥ 0 ⇒ (UIncreasing(COND_LOAD55(&&(>(i5[24], 0), <(i5[24], 100)), i5[24])), ≥)∧[(-1)bni_146 + (-1)Bound*bni_146] + [bni_146]i5[24] ≥ 0∧[(-1)bso_147] ≥ 0)
(279) (i5[24] + [-1] ≥ 0∧[99] + [-1]i5[24] ≥ 0 ⇒ (UIncreasing(COND_LOAD55(&&(>(i5[24], 0), <(i5[24], 100)), i5[24])), ≥)∧[(-1)bni_146 + (-1)Bound*bni_146] + [bni_146]i5[24] ≥ 0∧[(-1)bso_147] ≥ 0)
(280) (i5[24] ≥ 0∧[98] + [-1]i5[24] ≥ 0 ⇒ (UIncreasing(COND_LOAD55(&&(>(i5[24], 0), <(i5[24], 100)), i5[24])), ≥)∧[(-1)Bound*bni_146] + [bni_146]i5[24] ≥ 0∧[(-1)bso_147] ≥ 0)
(281) (i5[25]=i5[19]∧i5[25]=i7[19]∧i5[25]=0 ⇒ COND_LOAD55(TRUE, i5[25])≥NonInfC∧COND_LOAD55(TRUE, i5[25])≥LOAD175(i5[25], i5[25], i5[25])∧(UIncreasing(LOAD175(i5[25], i5[25], i5[25])), ≥))
(282) (COND_LOAD55(TRUE, 0)≥NonInfC∧COND_LOAD55(TRUE, 0)≥LOAD175(0, 0, 0)∧(UIncreasing(LOAD175(i5[25], i5[25], i5[25])), ≥))
(283) ((UIncreasing(LOAD175(i5[25], i5[25], i5[25])), ≥)∧[(-1)bso_149] ≥ 0)
(284) ((UIncreasing(LOAD175(i5[25], i5[25], i5[25])), ≥)∧[(-1)bso_149] ≥ 0)
(285) ((UIncreasing(LOAD175(i5[25], i5[25], i5[25])), ≥)∧[(-1)bso_149] ≥ 0)
(286) (i5[25]=i5[26]∧i5[25]=i7[26]∧i5[25]=i20[26] ⇒ COND_LOAD55(TRUE, i5[25])≥NonInfC∧COND_LOAD55(TRUE, i5[25])≥LOAD175(i5[25], i5[25], i5[25])∧(UIncreasing(LOAD175(i5[25], i5[25], i5[25])), ≥))
(287) (COND_LOAD55(TRUE, i5[25])≥NonInfC∧COND_LOAD55(TRUE, i5[25])≥LOAD175(i5[25], i5[25], i5[25])∧(UIncreasing(LOAD175(i5[25], i5[25], i5[25])), ≥))
(288) ((UIncreasing(LOAD175(i5[25], i5[25], i5[25])), ≥)∧[(-1)bso_149] ≥ 0)
(289) ((UIncreasing(LOAD175(i5[25], i5[25], i5[25])), ≥)∧[(-1)bso_149] ≥ 0)
(290) ((UIncreasing(LOAD175(i5[25], i5[25], i5[25])), ≥)∧[(-1)bso_149] ≥ 0)
(291) ((UIncreasing(LOAD175(i5[25], i5[25], i5[25])), ≥)∧0 = 0∧[(-1)bso_149] ≥ 0)
(292) (>(i20[26], 0)=TRUE∧i7[26]=i7[27]∧i20[26]=i20[27]∧i5[26]=i5[27] ⇒ LOAD175(i5[26], i7[26], i20[26])≥NonInfC∧LOAD175(i5[26], i7[26], i20[26])≥COND_LOAD175(>(i20[26], 0), i5[26], i7[26], i20[26])∧(UIncreasing(COND_LOAD175(>(i20[26], 0), i5[26], i7[26], i20[26])), ≥))
(293) (>(i20[26], 0)=TRUE ⇒ LOAD175(i5[26], i7[26], i20[26])≥NonInfC∧LOAD175(i5[26], i7[26], i20[26])≥COND_LOAD175(>(i20[26], 0), i5[26], i7[26], i20[26])∧(UIncreasing(COND_LOAD175(>(i20[26], 0), i5[26], i7[26], i20[26])), ≥))
(294) (i20[26] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD175(>(i20[26], 0), i5[26], i7[26], i20[26])), ≥)∧[(-1)bni_150 + (-1)Bound*bni_150] + [bni_150]i5[26] ≥ 0∧[(-1)bso_151] ≥ 0)
(295) (i20[26] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD175(>(i20[26], 0), i5[26], i7[26], i20[26])), ≥)∧[(-1)bni_150 + (-1)Bound*bni_150] + [bni_150]i5[26] ≥ 0∧[(-1)bso_151] ≥ 0)
(296) (i20[26] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD175(>(i20[26], 0), i5[26], i7[26], i20[26])), ≥)∧[(-1)bni_150 + (-1)Bound*bni_150] + [bni_150]i5[26] ≥ 0∧[(-1)bso_151] ≥ 0)
(297) (i20[26] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD175(>(i20[26], 0), i5[26], i7[26], i20[26])), ≥)∧0 = 0∧[bni_150] = 0∧[(-1)bni_150 + (-1)Bound*bni_150] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_151] ≥ 0)
(298) (i20[26] ≥ 0 ⇒ (UIncreasing(COND_LOAD175(>(i20[26], 0), i5[26], i7[26], i20[26])), ≥)∧0 = 0∧[bni_150] = 0∧[(-1)bni_150 + (-1)Bound*bni_150] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_151] ≥ 0)
(299) (>(i20[26], 0)=TRUE∧i7[26]=i7[27]∧i20[26]=i20[27]∧i5[26]=i5[27]∧i7[27]=i7[19]∧i5[27]=i5[19]∧-(i20[27], 1)=0 ⇒ COND_LOAD175(TRUE, i5[27], i7[27], i20[27])≥NonInfC∧COND_LOAD175(TRUE, i5[27], i7[27], i20[27])≥LOAD175(i5[27], i7[27], -(i20[27], 1))∧(UIncreasing(LOAD175(i5[27], i7[27], -(i20[27], 1))), ≥))
(300) (>(i20[26], 0)=TRUE∧-(i20[26], 1)=0 ⇒ COND_LOAD175(TRUE, i5[26], i7[26], i20[26])≥NonInfC∧COND_LOAD175(TRUE, i5[26], i7[26], i20[26])≥LOAD175(i5[26], i7[26], -(i20[26], 1))∧(UIncreasing(LOAD175(i5[27], i7[27], -(i20[27], 1))), ≥))
(301) (i20[26] + [-1] ≥ 0∧i20[26] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD175(i5[27], i7[27], -(i20[27], 1))), ≥)∧[(-1)bni_152 + (-1)Bound*bni_152] + [bni_152]i5[26] ≥ 0∧[(-1)bso_153] ≥ 0)
(302) (i20[26] + [-1] ≥ 0∧i20[26] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD175(i5[27], i7[27], -(i20[27], 1))), ≥)∧[(-1)bni_152 + (-1)Bound*bni_152] + [bni_152]i5[26] ≥ 0∧[(-1)bso_153] ≥ 0)
(303) (i20[26] + [-1] ≥ 0∧i20[26] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD175(i5[27], i7[27], -(i20[27], 1))), ≥)∧[(-1)bni_152 + (-1)Bound*bni_152] + [bni_152]i5[26] ≥ 0∧[(-1)bso_153] ≥ 0)
(304) (i20[26] + [-1] ≥ 0∧i20[26] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD175(i5[27], i7[27], -(i20[27], 1))), ≥)∧0 = 0∧[bni_152] = 0∧[(-1)bni_152 + (-1)Bound*bni_152] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_153] ≥ 0)
(305) (i20[26] ≥ 0∧i20[26] ≥ 0 ⇒ (UIncreasing(LOAD175(i5[27], i7[27], -(i20[27], 1))), ≥)∧0 = 0∧[bni_152] = 0∧[(-1)bni_152 + (-1)Bound*bni_152] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_153] ≥ 0)
(306) (>(i20[26], 0)=TRUE∧i7[26]=i7[27]∧i20[26]=i20[27]∧i5[26]=i5[27]∧-(i20[27], 1)=i20[26]1∧i7[27]=i7[26]1∧i5[27]=i5[26]1 ⇒ COND_LOAD175(TRUE, i5[27], i7[27], i20[27])≥NonInfC∧COND_LOAD175(TRUE, i5[27], i7[27], i20[27])≥LOAD175(i5[27], i7[27], -(i20[27], 1))∧(UIncreasing(LOAD175(i5[27], i7[27], -(i20[27], 1))), ≥))
(307) (>(i20[26], 0)=TRUE ⇒ COND_LOAD175(TRUE, i5[26], i7[26], i20[26])≥NonInfC∧COND_LOAD175(TRUE, i5[26], i7[26], i20[26])≥LOAD175(i5[26], i7[26], -(i20[26], 1))∧(UIncreasing(LOAD175(i5[27], i7[27], -(i20[27], 1))), ≥))
(308) (i20[26] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD175(i5[27], i7[27], -(i20[27], 1))), ≥)∧[(-1)bni_152 + (-1)Bound*bni_152] + [bni_152]i5[26] ≥ 0∧[(-1)bso_153] ≥ 0)
(309) (i20[26] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD175(i5[27], i7[27], -(i20[27], 1))), ≥)∧[(-1)bni_152 + (-1)Bound*bni_152] + [bni_152]i5[26] ≥ 0∧[(-1)bso_153] ≥ 0)
(310) (i20[26] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD175(i5[27], i7[27], -(i20[27], 1))), ≥)∧[(-1)bni_152 + (-1)Bound*bni_152] + [bni_152]i5[26] ≥ 0∧[(-1)bso_153] ≥ 0)
(311) (i20[26] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD175(i5[27], i7[27], -(i20[27], 1))), ≥)∧0 = 0∧[bni_152] = 0∧[(-1)bni_152 + (-1)Bound*bni_152] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_153] ≥ 0)
(312) (i20[26] ≥ 0 ⇒ (UIncreasing(LOAD175(i5[27], i7[27], -(i20[27], 1))), ≥)∧0 = 0∧[bni_152] = 0∧[(-1)bni_152 + (-1)Bound*bni_152] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_153] ≥ 0)
(313) (&&(>=(i7[28], 100), >(i5[28], 0))=TRUE∧i5[28]=i5[29]∧i7[28]=i7[29] ⇒ LOAD83(i5[28], i7[28])≥NonInfC∧LOAD83(i5[28], i7[28])≥COND_LOAD831(&&(>=(i7[28], 100), >(i5[28], 0)), i5[28], i7[28])∧(UIncreasing(COND_LOAD831(&&(>=(i7[28], 100), >(i5[28], 0)), i5[28], i7[28])), ≥))
(314) (>=(i7[28], 100)=TRUE∧>(i5[28], 0)=TRUE ⇒ LOAD83(i5[28], i7[28])≥NonInfC∧LOAD83(i5[28], i7[28])≥COND_LOAD831(&&(>=(i7[28], 100), >(i5[28], 0)), i5[28], i7[28])∧(UIncreasing(COND_LOAD831(&&(>=(i7[28], 100), >(i5[28], 0)), i5[28], i7[28])), ≥))
(315) (i7[28] + [-100] ≥ 0∧i5[28] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD831(&&(>=(i7[28], 100), >(i5[28], 0)), i5[28], i7[28])), ≥)∧[(-1)bni_154 + (-1)Bound*bni_154] + [bni_154]i5[28] ≥ 0∧[(-1)bso_155] ≥ 0)
(316) (i7[28] + [-100] ≥ 0∧i5[28] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD831(&&(>=(i7[28], 100), >(i5[28], 0)), i5[28], i7[28])), ≥)∧[(-1)bni_154 + (-1)Bound*bni_154] + [bni_154]i5[28] ≥ 0∧[(-1)bso_155] ≥ 0)
(317) (i7[28] + [-100] ≥ 0∧i5[28] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD831(&&(>=(i7[28], 100), >(i5[28], 0)), i5[28], i7[28])), ≥)∧[(-1)bni_154 + (-1)Bound*bni_154] + [bni_154]i5[28] ≥ 0∧[(-1)bso_155] ≥ 0)
(318) (i7[28] ≥ 0∧i5[28] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD831(&&(>=(i7[28], 100), >(i5[28], 0)), i5[28], i7[28])), ≥)∧[(-1)bni_154 + (-1)Bound*bni_154] + [bni_154]i5[28] ≥ 0∧[(-1)bso_155] ≥ 0)
(319) (i7[28] ≥ 0∧i5[28] ≥ 0 ⇒ (UIncreasing(COND_LOAD831(&&(>=(i7[28], 100), >(i5[28], 0)), i5[28], i7[28])), ≥)∧[(-1)Bound*bni_154] + [bni_154]i5[28] ≥ 0∧[(-1)bso_155] ≥ 0)
(320) (&&(>=(i7[28], 100), >(i5[28], 0))=TRUE∧i5[28]=i5[29]∧i7[28]=i7[29]∧-(i5[29], 1)=i5[24] ⇒ COND_LOAD831(TRUE, i5[29], i7[29])≥NonInfC∧COND_LOAD831(TRUE, i5[29], i7[29])≥LOAD55(-(i5[29], 1))∧(UIncreasing(LOAD55(-(i5[29], 1))), ≥))
(321) (>=(i7[28], 100)=TRUE∧>(i5[28], 0)=TRUE ⇒ COND_LOAD831(TRUE, i5[28], i7[28])≥NonInfC∧COND_LOAD831(TRUE, i5[28], i7[28])≥LOAD55(-(i5[28], 1))∧(UIncreasing(LOAD55(-(i5[29], 1))), ≥))
(322) (i7[28] + [-100] ≥ 0∧i5[28] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD55(-(i5[29], 1))), ≥)∧[(-1)bni_156 + (-1)Bound*bni_156] + [bni_156]i5[28] ≥ 0∧[1 + (-1)bso_157] ≥ 0)
(323) (i7[28] + [-100] ≥ 0∧i5[28] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD55(-(i5[29], 1))), ≥)∧[(-1)bni_156 + (-1)Bound*bni_156] + [bni_156]i5[28] ≥ 0∧[1 + (-1)bso_157] ≥ 0)
(324) (i7[28] + [-100] ≥ 0∧i5[28] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD55(-(i5[29], 1))), ≥)∧[(-1)bni_156 + (-1)Bound*bni_156] + [bni_156]i5[28] ≥ 0∧[1 + (-1)bso_157] ≥ 0)
(325) (i7[28] ≥ 0∧i5[28] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD55(-(i5[29], 1))), ≥)∧[(-1)bni_156 + (-1)Bound*bni_156] + [bni_156]i5[28] ≥ 0∧[1 + (-1)bso_157] ≥ 0)
(326) (i7[28] ≥ 0∧i5[28] ≥ 0 ⇒ (UIncreasing(LOAD55(-(i5[29], 1))), ≥)∧[(-1)Bound*bni_156] + [bni_156]i5[28] ≥ 0∧[1 + (-1)bso_157] ≥ 0)
(327) (&&(>=(i7[28], 100), >(i5[28], 0))=TRUE∧i5[28]=i5[29]∧i7[28]=i7[29]∧-(i5[29], 1)=i5[30] ⇒ COND_LOAD831(TRUE, i5[29], i7[29])≥NonInfC∧COND_LOAD831(TRUE, i5[29], i7[29])≥LOAD55(-(i5[29], 1))∧(UIncreasing(LOAD55(-(i5[29], 1))), ≥))
(328) (>=(i7[28], 100)=TRUE∧>(i5[28], 0)=TRUE ⇒ COND_LOAD831(TRUE, i5[28], i7[28])≥NonInfC∧COND_LOAD831(TRUE, i5[28], i7[28])≥LOAD55(-(i5[28], 1))∧(UIncreasing(LOAD55(-(i5[29], 1))), ≥))
(329) (i7[28] + [-100] ≥ 0∧i5[28] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD55(-(i5[29], 1))), ≥)∧[(-1)bni_156 + (-1)Bound*bni_156] + [bni_156]i5[28] ≥ 0∧[1 + (-1)bso_157] ≥ 0)
(330) (i7[28] + [-100] ≥ 0∧i5[28] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD55(-(i5[29], 1))), ≥)∧[(-1)bni_156 + (-1)Bound*bni_156] + [bni_156]i5[28] ≥ 0∧[1 + (-1)bso_157] ≥ 0)
(331) (i7[28] + [-100] ≥ 0∧i5[28] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD55(-(i5[29], 1))), ≥)∧[(-1)bni_156 + (-1)Bound*bni_156] + [bni_156]i5[28] ≥ 0∧[1 + (-1)bso_157] ≥ 0)
(332) (i7[28] ≥ 0∧i5[28] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD55(-(i5[29], 1))), ≥)∧[(-1)bni_156 + (-1)Bound*bni_156] + [bni_156]i5[28] ≥ 0∧[1 + (-1)bso_157] ≥ 0)
(333) (i7[28] ≥ 0∧i5[28] ≥ 0 ⇒ (UIncreasing(LOAD55(-(i5[29], 1))), ≥)∧[(-1)Bound*bni_156] + [bni_156]i5[28] ≥ 0∧[1 + (-1)bso_157] ≥ 0)
(334) (i5[30]=i5[31]∧>=(i5[30], 100)=TRUE ⇒ LOAD55(i5[30])≥NonInfC∧LOAD55(i5[30])≥COND_LOAD551(>=(i5[30], 100), i5[30])∧(UIncreasing(COND_LOAD551(>=(i5[30], 100), i5[30])), ≥))
(335) (>=(i5[30], 100)=TRUE ⇒ LOAD55(i5[30])≥NonInfC∧LOAD55(i5[30])≥COND_LOAD551(>=(i5[30], 100), i5[30])∧(UIncreasing(COND_LOAD551(>=(i5[30], 100), i5[30])), ≥))
(336) (i5[30] + [-100] ≥ 0 ⇒ (UIncreasing(COND_LOAD551(>=(i5[30], 100), i5[30])), ≥)∧[(-1)bni_158 + (-1)Bound*bni_158] + [bni_158]i5[30] ≥ 0∧[(-1)bso_159] ≥ 0)
(337) (i5[30] + [-100] ≥ 0 ⇒ (UIncreasing(COND_LOAD551(>=(i5[30], 100), i5[30])), ≥)∧[(-1)bni_158 + (-1)Bound*bni_158] + [bni_158]i5[30] ≥ 0∧[(-1)bso_159] ≥ 0)
(338) (i5[30] + [-100] ≥ 0 ⇒ (UIncreasing(COND_LOAD551(>=(i5[30], 100), i5[30])), ≥)∧[(-1)bni_158 + (-1)Bound*bni_158] + [bni_158]i5[30] ≥ 0∧[(-1)bso_159] ≥ 0)
(339) (i5[30] ≥ 0 ⇒ (UIncreasing(COND_LOAD551(>=(i5[30], 100), i5[30])), ≥)∧[(99)bni_158 + (-1)Bound*bni_158] + [bni_158]i5[30] ≥ 0∧[(-1)bso_159] ≥ 0)
(340) (i5[30]=i5[31]∧>=(i5[30], 100)=TRUE∧-(i5[31], 1)=i5[24] ⇒ COND_LOAD551(TRUE, i5[31])≥NonInfC∧COND_LOAD551(TRUE, i5[31])≥LOAD55(-(i5[31], 1))∧(UIncreasing(LOAD55(-(i5[31], 1))), ≥))
(341) (>=(i5[30], 100)=TRUE ⇒ COND_LOAD551(TRUE, i5[30])≥NonInfC∧COND_LOAD551(TRUE, i5[30])≥LOAD55(-(i5[30], 1))∧(UIncreasing(LOAD55(-(i5[31], 1))), ≥))
(342) (i5[30] + [-100] ≥ 0 ⇒ (UIncreasing(LOAD55(-(i5[31], 1))), ≥)∧[(-1)bni_160 + (-1)Bound*bni_160] + [bni_160]i5[30] ≥ 0∧[1 + (-1)bso_161] ≥ 0)
(343) (i5[30] + [-100] ≥ 0 ⇒ (UIncreasing(LOAD55(-(i5[31], 1))), ≥)∧[(-1)bni_160 + (-1)Bound*bni_160] + [bni_160]i5[30] ≥ 0∧[1 + (-1)bso_161] ≥ 0)
(344) (i5[30] + [-100] ≥ 0 ⇒ (UIncreasing(LOAD55(-(i5[31], 1))), ≥)∧[(-1)bni_160 + (-1)Bound*bni_160] + [bni_160]i5[30] ≥ 0∧[1 + (-1)bso_161] ≥ 0)
(345) (i5[30] ≥ 0 ⇒ (UIncreasing(LOAD55(-(i5[31], 1))), ≥)∧[(99)bni_160 + (-1)Bound*bni_160] + [bni_160]i5[30] ≥ 0∧[1 + (-1)bso_161] ≥ 0)
(346) (i5[30]=i5[31]∧>=(i5[30], 100)=TRUE∧-(i5[31], 1)=i5[30]1 ⇒ COND_LOAD551(TRUE, i5[31])≥NonInfC∧COND_LOAD551(TRUE, i5[31])≥LOAD55(-(i5[31], 1))∧(UIncreasing(LOAD55(-(i5[31], 1))), ≥))
(347) (>=(i5[30], 100)=TRUE ⇒ COND_LOAD551(TRUE, i5[30])≥NonInfC∧COND_LOAD551(TRUE, i5[30])≥LOAD55(-(i5[30], 1))∧(UIncreasing(LOAD55(-(i5[31], 1))), ≥))
(348) (i5[30] + [-100] ≥ 0 ⇒ (UIncreasing(LOAD55(-(i5[31], 1))), ≥)∧[(-1)bni_160 + (-1)Bound*bni_160] + [bni_160]i5[30] ≥ 0∧[1 + (-1)bso_161] ≥ 0)
(349) (i5[30] + [-100] ≥ 0 ⇒ (UIncreasing(LOAD55(-(i5[31], 1))), ≥)∧[(-1)bni_160 + (-1)Bound*bni_160] + [bni_160]i5[30] ≥ 0∧[1 + (-1)bso_161] ≥ 0)
(350) (i5[30] + [-100] ≥ 0 ⇒ (UIncreasing(LOAD55(-(i5[31], 1))), ≥)∧[(-1)bni_160 + (-1)Bound*bni_160] + [bni_160]i5[30] ≥ 0∧[1 + (-1)bso_161] ≥ 0)
(351) (i5[30] ≥ 0 ⇒ (UIncreasing(LOAD55(-(i5[31], 1))), ≥)∧[(99)bni_160 + (-1)Bound*bni_160] + [bni_160]i5[30] ≥ 0∧[1 + (-1)bso_161] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(LOAD1100(x1, x2, x3)) = [-1] + x1
POL(0) = 0
POL(LOAD83(x1, x2)) = [-1] + x1
POL(+(x1, x2)) = x1 + x2
POL(1) = [1]
POL(LOAD949(x1, x2, x3)) = [-1] + x1
POL(COND_LOAD1100(x1, x2, x3, x4)) = [-1] + x2
POL(>(x1, x2)) = [-1]
POL(-(x1, x2)) = x1 + [-1]x2
POL(LOAD768(x1, x2, x3)) = [-1] + x1
POL(COND_LOAD949(x1, x2, x3, x4)) = [-1] + x2
POL(LOAD608(x1, x2, x3)) = [-1] + x1
POL(COND_LOAD768(x1, x2, x3, x4)) = [-1] + x2
POL(LOAD484(x1, x2, x3)) = [-1] + x1
POL(COND_LOAD608(x1, x2, x3, x4)) = [-1] + x2
POL(LOAD363(x1, x2, x3)) = [-1] + x1
POL(COND_LOAD484(x1, x2, x3, x4)) = [-1] + x2
POL(LOAD258(x1, x2, x3)) = [-1] + x1
POL(COND_LOAD363(x1, x2, x3, x4)) = [-1] + x2
POL(LOAD175(x1, x2, x3)) = [-1] + x1
POL(COND_LOAD258(x1, x2, x3, x4)) = [-1] + x2
POL(COND_LOAD83(x1, x2, x3)) = [-1] + x2
POL(&&(x1, x2)) = [-1]
POL(<(x1, x2)) = [-1]
POL(100) = [100]
POL(LOAD55(x1)) = [-1] + x1
POL(COND_LOAD55(x1, x2)) = [-1] + x2
POL(COND_LOAD175(x1, x2, x3, x4)) = [-1] + x2
POL(COND_LOAD831(x1, x2, x3)) = [-1] + x2
POL(>=(x1, x2)) = [-1]
POL(COND_LOAD551(x1, x2)) = [-1] + x2
COND_LOAD831(TRUE, i5[29], i7[29]) → LOAD55(-(i5[29], 1))
COND_LOAD551(TRUE, i5[31]) → LOAD55(-(i5[31], 1))
LOAD55(i5[24]) → COND_LOAD55(&&(>(i5[24], 0), <(i5[24], 100)), i5[24])
LOAD83(i5[28], i7[28]) → COND_LOAD831(&&(>=(i7[28], 100), >(i5[28], 0)), i5[28], i7[28])
COND_LOAD831(TRUE, i5[29], i7[29]) → LOAD55(-(i5[29], 1))
LOAD55(i5[30]) → COND_LOAD551(>=(i5[30], 100), i5[30])
COND_LOAD551(TRUE, i5[31]) → LOAD55(-(i5[31], 1))
LOAD1100(i5[0], i7[0], 0) → LOAD83(i5[0], +(i7[0], 1))
LOAD949(i5[1], i7[1], 0) → LOAD1100(i5[1], i7[1], i7[1])
LOAD1100(i5[2], i7[2], i696[2]) → COND_LOAD1100(>(i696[2], 0), i5[2], i7[2], i696[2])
COND_LOAD1100(TRUE, i5[3], i7[3], i696[3]) → LOAD1100(i5[3], i7[3], -(i696[3], 1))
LOAD768(i5[4], i7[4], 0) → LOAD949(i5[4], i7[4], i7[4])
LOAD949(i5[5], i7[5], i605[5]) → COND_LOAD949(>(i605[5], 0), i5[5], i7[5], i605[5])
COND_LOAD949(TRUE, i5[6], i7[6], i605[6]) → LOAD949(i5[6], i7[6], -(i605[6], 1))
LOAD608(i5[7], i7[7], 0) → LOAD768(i5[7], i7[7], i7[7])
LOAD768(i5[8], i7[8], i436[8]) → COND_LOAD768(>(i436[8], 0), i5[8], i7[8], i436[8])
COND_LOAD768(TRUE, i5[9], i7[9], i436[9]) → LOAD768(i5[9], i7[9], -(i436[9], 1))
LOAD484(i5[10], i7[10], 0) → LOAD608(i5[10], i7[10], i7[10])
LOAD608(i5[11], i7[11], i296[11]) → COND_LOAD608(>(i296[11], 0), i5[11], i7[11], i296[11])
COND_LOAD608(TRUE, i5[12], i7[12], i296[12]) → LOAD608(i5[12], i7[12], -(i296[12], 1))
LOAD363(i5[13], i7[13], 0) → LOAD484(i5[13], i7[13], i7[13])
LOAD484(i5[14], i7[14], i187[14]) → COND_LOAD484(>(i187[14], 0), i5[14], i7[14], i187[14])
COND_LOAD484(TRUE, i5[15], i7[15], i187[15]) → LOAD484(i5[15], i7[15], -(i187[15], 1))
LOAD258(i5[16], i7[16], 0) → LOAD363(i5[16], i7[16], i7[16])
LOAD363(i5[17], i7[17], i104[17]) → COND_LOAD363(>(i104[17], 0), i5[17], i7[17], i104[17])
COND_LOAD363(TRUE, i5[18], i7[18], i104[18]) → LOAD363(i5[18], i7[18], -(i104[18], 1))
LOAD175(i5[19], i7[19], 0) → LOAD258(i5[19], i7[19], i7[19])
LOAD258(i5[20], i7[20], i49[20]) → COND_LOAD258(>(i49[20], 0), i5[20], i7[20], i49[20])
COND_LOAD258(TRUE, i5[21], i7[21], i49[21]) → LOAD258(i5[21], i7[21], -(i49[21], 1))
LOAD83(i5[22], i7[22]) → COND_LOAD83(&&(>(i7[22], 0), <(i7[22], 100)), i5[22], i7[22])
COND_LOAD83(TRUE, i5[23], i7[23]) → LOAD175(i5[23], i7[23], i7[23])
LOAD55(i5[24]) → COND_LOAD55(&&(>(i5[24], 0), <(i5[24], 100)), i5[24])
COND_LOAD55(TRUE, i5[25]) → LOAD175(i5[25], i5[25], i5[25])
LOAD175(i5[26], i7[26], i20[26]) → COND_LOAD175(>(i20[26], 0), i5[26], i7[26], i20[26])
COND_LOAD175(TRUE, i5[27], i7[27], i20[27]) → LOAD175(i5[27], i7[27], -(i20[27], 1))
LOAD83(i5[28], i7[28]) → COND_LOAD831(&&(>=(i7[28], 100), >(i5[28], 0)), i5[28], i7[28])
LOAD55(i5[30]) → COND_LOAD551(>=(i5[30], 100), i5[30])
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(FALSE, FALSE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(1) -> (0), if ((i7[1] →* 0)∧(i5[1] →* i5[0])∧(i7[1] →* i7[0]))
(3) -> (0), if ((i7[3] →* i7[0])∧(i5[3] →* i5[0])∧(i696[3] - 1 →* 0))
(4) -> (1), if ((i5[4] →* i5[1])∧(i7[4] →* 0)∧(i7[4] →* i7[1]))
(6) -> (1), if ((i605[6] - 1 →* 0)∧(i5[6] →* i5[1])∧(i7[6] →* i7[1]))
(1) -> (2), if ((i5[1] →* i5[2])∧(i7[1] →* i7[2])∧(i7[1] →* i696[2]))
(3) -> (2), if ((i7[3] →* i7[2])∧(i696[3] - 1 →* i696[2])∧(i5[3] →* i5[2]))
(2) -> (3), if ((i5[2] →* i5[3])∧(i7[2] →* i7[3])∧(i696[2] →* i696[3])∧(i696[2] > 0 →* TRUE))
(7) -> (4), if ((i7[7] →* 0)∧(i7[7] →* i7[4])∧(i5[7] →* i5[4]))
(9) -> (4), if ((i7[9] →* i7[4])∧(i436[9] - 1 →* 0)∧(i5[9] →* i5[4]))
(4) -> (5), if ((i7[4] →* i7[5])∧(i7[4] →* i605[5])∧(i5[4] →* i5[5]))
(6) -> (5), if ((i7[6] →* i7[5])∧(i605[6] - 1 →* i605[5])∧(i5[6] →* i5[5]))
(5) -> (6), if ((i5[5] →* i5[6])∧(i7[5] →* i7[6])∧(i605[5] →* i605[6])∧(i605[5] > 0 →* TRUE))
(10) -> (7), if ((i5[10] →* i5[7])∧(i7[10] →* i7[7])∧(i7[10] →* 0))
(12) -> (7), if ((i296[12] - 1 →* 0)∧(i7[12] →* i7[7])∧(i5[12] →* i5[7]))
(7) -> (8), if ((i5[7] →* i5[8])∧(i7[7] →* i436[8])∧(i7[7] →* i7[8]))
(9) -> (8), if ((i436[9] - 1 →* i436[8])∧(i7[9] →* i7[8])∧(i5[9] →* i5[8]))
(8) -> (9), if ((i7[8] →* i7[9])∧(i436[8] →* i436[9])∧(i5[8] →* i5[9])∧(i436[8] > 0 →* TRUE))
(13) -> (10), if ((i5[13] →* i5[10])∧(i7[13] →* 0)∧(i7[13] →* i7[10]))
(15) -> (10), if ((i7[15] →* i7[10])∧(i187[15] - 1 →* 0)∧(i5[15] →* i5[10]))
(10) -> (11), if ((i7[10] →* i7[11])∧(i5[10] →* i5[11])∧(i7[10] →* i296[11]))
(12) -> (11), if ((i296[12] - 1 →* i296[11])∧(i5[12] →* i5[11])∧(i7[12] →* i7[11]))
(11) -> (12), if ((i296[11] > 0 →* TRUE)∧(i7[11] →* i7[12])∧(i296[11] →* i296[12])∧(i5[11] →* i5[12]))
(16) -> (13), if ((i7[16] →* i7[13])∧(i7[16] →* 0)∧(i5[16] →* i5[13]))
(18) -> (13), if ((i5[18] →* i5[13])∧(i104[18] - 1 →* 0)∧(i7[18] →* i7[13]))
(13) -> (14), if ((i7[13] →* i187[14])∧(i5[13] →* i5[14])∧(i7[13] →* i7[14]))
(15) -> (14), if ((i187[15] - 1 →* i187[14])∧(i5[15] →* i5[14])∧(i7[15] →* i7[14]))
(14) -> (15), if ((i7[14] →* i7[15])∧(i5[14] →* i5[15])∧(i187[14] →* i187[15])∧(i187[14] > 0 →* TRUE))
(19) -> (16), if ((i7[19] →* 0)∧(i5[19] →* i5[16])∧(i7[19] →* i7[16]))
(21) -> (16), if ((i7[21] →* i7[16])∧(i49[21] - 1 →* 0)∧(i5[21] →* i5[16]))
(16) -> (17), if ((i7[16] →* i104[17])∧(i5[16] →* i5[17])∧(i7[16] →* i7[17]))
(18) -> (17), if ((i104[18] - 1 →* i104[17])∧(i5[18] →* i5[17])∧(i7[18] →* i7[17]))
(17) -> (18), if ((i7[17] →* i7[18])∧(i5[17] →* i5[18])∧(i104[17] →* i104[18])∧(i104[17] > 0 →* TRUE))
(23) -> (19), if ((i5[23] →* i5[19])∧(i7[23] →* i7[19])∧(i7[23] →* 0))
(25) -> (19), if ((i5[25] →* i5[19])∧(i5[25] →* i7[19])∧(i5[25] →* 0))
(27) -> (19), if ((i7[27] →* i7[19])∧(i5[27] →* i5[19])∧(i20[27] - 1 →* 0))
(19) -> (20), if ((i7[19] →* i49[20])∧(i7[19] →* i7[20])∧(i5[19] →* i5[20]))
(21) -> (20), if ((i7[21] →* i7[20])∧(i49[21] - 1 →* i49[20])∧(i5[21] →* i5[20]))
(20) -> (21), if ((i7[20] →* i7[21])∧(i49[20] > 0 →* TRUE)∧(i5[20] →* i5[21])∧(i49[20] →* i49[21]))
(0) -> (22), if ((i5[0] →* i5[22])∧(i7[0] + 1 →* i7[22]))
(22) -> (23), if ((i5[22] →* i5[23])∧(i7[22] > 0 && i7[22] < 100 →* TRUE)∧(i7[22] →* i7[23]))
(24) -> (25), if ((i5[24] > 0 && i5[24] < 100 →* TRUE)∧(i5[24] →* i5[25]))
(23) -> (26), if ((i7[23] →* i7[26])∧(i5[23] →* i5[26])∧(i7[23] →* i20[26]))
(25) -> (26), if ((i5[25] →* i5[26])∧(i5[25] →* i7[26])∧(i5[25] →* i20[26]))
(27) -> (26), if ((i20[27] - 1 →* i20[26])∧(i7[27] →* i7[26])∧(i5[27] →* i5[26]))
(26) -> (27), if ((i20[26] > 0 →* TRUE)∧(i7[26] →* i7[27])∧(i20[26] →* i20[27])∧(i5[26] →* i5[27]))
(0) -> (28), if ((i5[0] →* i5[28])∧(i7[0] + 1 →* i7[28]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(1) -> (0), if ((i7[1] →* 0)∧(i5[1] →* i5[0])∧(i7[1] →* i7[0]))
(3) -> (0), if ((i7[3] →* i7[0])∧(i5[3] →* i5[0])∧(i696[3] - 1 →* 0))
(4) -> (1), if ((i5[4] →* i5[1])∧(i7[4] →* 0)∧(i7[4] →* i7[1]))
(6) -> (1), if ((i605[6] - 1 →* 0)∧(i5[6] →* i5[1])∧(i7[6] →* i7[1]))
(1) -> (2), if ((i5[1] →* i5[2])∧(i7[1] →* i7[2])∧(i7[1] →* i696[2]))
(3) -> (2), if ((i7[3] →* i7[2])∧(i696[3] - 1 →* i696[2])∧(i5[3] →* i5[2]))
(2) -> (3), if ((i5[2] →* i5[3])∧(i7[2] →* i7[3])∧(i696[2] →* i696[3])∧(i696[2] > 0 →* TRUE))
(7) -> (4), if ((i7[7] →* 0)∧(i7[7] →* i7[4])∧(i5[7] →* i5[4]))
(9) -> (4), if ((i7[9] →* i7[4])∧(i436[9] - 1 →* 0)∧(i5[9] →* i5[4]))
(4) -> (5), if ((i7[4] →* i7[5])∧(i7[4] →* i605[5])∧(i5[4] →* i5[5]))
(6) -> (5), if ((i7[6] →* i7[5])∧(i605[6] - 1 →* i605[5])∧(i5[6] →* i5[5]))
(5) -> (6), if ((i5[5] →* i5[6])∧(i7[5] →* i7[6])∧(i605[5] →* i605[6])∧(i605[5] > 0 →* TRUE))
(10) -> (7), if ((i5[10] →* i5[7])∧(i7[10] →* i7[7])∧(i7[10] →* 0))
(12) -> (7), if ((i296[12] - 1 →* 0)∧(i7[12] →* i7[7])∧(i5[12] →* i5[7]))
(7) -> (8), if ((i5[7] →* i5[8])∧(i7[7] →* i436[8])∧(i7[7] →* i7[8]))
(9) -> (8), if ((i436[9] - 1 →* i436[8])∧(i7[9] →* i7[8])∧(i5[9] →* i5[8]))
(8) -> (9), if ((i7[8] →* i7[9])∧(i436[8] →* i436[9])∧(i5[8] →* i5[9])∧(i436[8] > 0 →* TRUE))
(13) -> (10), if ((i5[13] →* i5[10])∧(i7[13] →* 0)∧(i7[13] →* i7[10]))
(15) -> (10), if ((i7[15] →* i7[10])∧(i187[15] - 1 →* 0)∧(i5[15] →* i5[10]))
(10) -> (11), if ((i7[10] →* i7[11])∧(i5[10] →* i5[11])∧(i7[10] →* i296[11]))
(12) -> (11), if ((i296[12] - 1 →* i296[11])∧(i5[12] →* i5[11])∧(i7[12] →* i7[11]))
(11) -> (12), if ((i296[11] > 0 →* TRUE)∧(i7[11] →* i7[12])∧(i296[11] →* i296[12])∧(i5[11] →* i5[12]))
(16) -> (13), if ((i7[16] →* i7[13])∧(i7[16] →* 0)∧(i5[16] →* i5[13]))
(18) -> (13), if ((i5[18] →* i5[13])∧(i104[18] - 1 →* 0)∧(i7[18] →* i7[13]))
(13) -> (14), if ((i7[13] →* i187[14])∧(i5[13] →* i5[14])∧(i7[13] →* i7[14]))
(15) -> (14), if ((i187[15] - 1 →* i187[14])∧(i5[15] →* i5[14])∧(i7[15] →* i7[14]))
(14) -> (15), if ((i7[14] →* i7[15])∧(i5[14] →* i5[15])∧(i187[14] →* i187[15])∧(i187[14] > 0 →* TRUE))
(19) -> (16), if ((i7[19] →* 0)∧(i5[19] →* i5[16])∧(i7[19] →* i7[16]))
(21) -> (16), if ((i7[21] →* i7[16])∧(i49[21] - 1 →* 0)∧(i5[21] →* i5[16]))
(16) -> (17), if ((i7[16] →* i104[17])∧(i5[16] →* i5[17])∧(i7[16] →* i7[17]))
(18) -> (17), if ((i104[18] - 1 →* i104[17])∧(i5[18] →* i5[17])∧(i7[18] →* i7[17]))
(17) -> (18), if ((i7[17] →* i7[18])∧(i5[17] →* i5[18])∧(i104[17] →* i104[18])∧(i104[17] > 0 →* TRUE))
(23) -> (19), if ((i5[23] →* i5[19])∧(i7[23] →* i7[19])∧(i7[23] →* 0))
(27) -> (19), if ((i7[27] →* i7[19])∧(i5[27] →* i5[19])∧(i20[27] - 1 →* 0))
(19) -> (20), if ((i7[19] →* i49[20])∧(i7[19] →* i7[20])∧(i5[19] →* i5[20]))
(21) -> (20), if ((i7[21] →* i7[20])∧(i49[21] - 1 →* i49[20])∧(i5[21] →* i5[20]))
(20) -> (21), if ((i7[20] →* i7[21])∧(i49[20] > 0 →* TRUE)∧(i5[20] →* i5[21])∧(i49[20] →* i49[21]))
(0) -> (22), if ((i5[0] →* i5[22])∧(i7[0] + 1 →* i7[22]))
(22) -> (23), if ((i5[22] →* i5[23])∧(i7[22] > 0 && i7[22] < 100 →* TRUE)∧(i7[22] →* i7[23]))
(23) -> (26), if ((i7[23] →* i7[26])∧(i5[23] →* i5[26])∧(i7[23] →* i20[26]))
(27) -> (26), if ((i20[27] - 1 →* i20[26])∧(i7[27] →* i7[26])∧(i5[27] →* i5[26]))
(26) -> (27), if ((i20[26] > 0 →* TRUE)∧(i7[26] →* i7[27])∧(i20[26] →* i20[27])∧(i5[26] →* i5[27]))
(1) (>(i20[26], 0)=TRUE∧i7[26]=i7[27]∧i20[26]=i20[27]∧i5[26]=i5[27]∧i7[27]=i7[19]∧i5[27]=i5[19]∧-(i20[27], 1)=0 ⇒ COND_LOAD175(TRUE, i5[27], i7[27], i20[27])≥NonInfC∧COND_LOAD175(TRUE, i5[27], i7[27], i20[27])≥LOAD175(i5[27], i7[27], -(i20[27], 1))∧(UIncreasing(LOAD175(i5[27], i7[27], -(i20[27], 1))), ≥))
(2) (>(i20[26], 0)=TRUE∧-(i20[26], 1)=0 ⇒ COND_LOAD175(TRUE, i5[26], i7[26], i20[26])≥NonInfC∧COND_LOAD175(TRUE, i5[26], i7[26], i20[26])≥LOAD175(i5[26], i7[26], -(i20[26], 1))∧(UIncreasing(LOAD175(i5[27], i7[27], -(i20[27], 1))), ≥))
(3) (i20[26] + [-1] ≥ 0∧i20[26] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD175(i5[27], i7[27], -(i20[27], 1))), ≥)∧[(-1)bni_85 + (-1)Bound*bni_85] + [(-1)bni_85]i7[26] ≥ 0∧[(-1)bso_86] ≥ 0)
(4) (i20[26] + [-1] ≥ 0∧i20[26] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD175(i5[27], i7[27], -(i20[27], 1))), ≥)∧[(-1)bni_85 + (-1)Bound*bni_85] + [(-1)bni_85]i7[26] ≥ 0∧[(-1)bso_86] ≥ 0)
(5) (i20[26] + [-1] ≥ 0∧i20[26] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD175(i5[27], i7[27], -(i20[27], 1))), ≥)∧[(-1)bni_85 + (-1)Bound*bni_85] + [(-1)bni_85]i7[26] ≥ 0∧[(-1)bso_86] ≥ 0)
(6) (i20[26] + [-1] ≥ 0∧i20[26] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD175(i5[27], i7[27], -(i20[27], 1))), ≥)∧[(-1)bni_85] = 0∧0 = 0∧[(-1)bni_85 + (-1)Bound*bni_85] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_86] ≥ 0)
(7) (i20[26] ≥ 0∧i20[26] ≥ 0 ⇒ (UIncreasing(LOAD175(i5[27], i7[27], -(i20[27], 1))), ≥)∧[(-1)bni_85] = 0∧0 = 0∧[(-1)bni_85 + (-1)Bound*bni_85] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_86] ≥ 0)
(8) (>(i20[26], 0)=TRUE∧i7[26]=i7[27]∧i20[26]=i20[27]∧i5[26]=i5[27]∧-(i20[27], 1)=i20[26]1∧i7[27]=i7[26]1∧i5[27]=i5[26]1 ⇒ COND_LOAD175(TRUE, i5[27], i7[27], i20[27])≥NonInfC∧COND_LOAD175(TRUE, i5[27], i7[27], i20[27])≥LOAD175(i5[27], i7[27], -(i20[27], 1))∧(UIncreasing(LOAD175(i5[27], i7[27], -(i20[27], 1))), ≥))
(9) (>(i20[26], 0)=TRUE ⇒ COND_LOAD175(TRUE, i5[26], i7[26], i20[26])≥NonInfC∧COND_LOAD175(TRUE, i5[26], i7[26], i20[26])≥LOAD175(i5[26], i7[26], -(i20[26], 1))∧(UIncreasing(LOAD175(i5[27], i7[27], -(i20[27], 1))), ≥))
(10) (i20[26] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD175(i5[27], i7[27], -(i20[27], 1))), ≥)∧[(-1)bni_85 + (-1)Bound*bni_85] + [(-1)bni_85]i7[26] ≥ 0∧[(-1)bso_86] ≥ 0)
(11) (i20[26] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD175(i5[27], i7[27], -(i20[27], 1))), ≥)∧[(-1)bni_85 + (-1)Bound*bni_85] + [(-1)bni_85]i7[26] ≥ 0∧[(-1)bso_86] ≥ 0)
(12) (i20[26] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD175(i5[27], i7[27], -(i20[27], 1))), ≥)∧[(-1)bni_85 + (-1)Bound*bni_85] + [(-1)bni_85]i7[26] ≥ 0∧[(-1)bso_86] ≥ 0)
(13) (i20[26] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD175(i5[27], i7[27], -(i20[27], 1))), ≥)∧[(-1)bni_85] = 0∧0 = 0∧[(-1)bni_85 + (-1)Bound*bni_85] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_86] ≥ 0)
(14) (i20[26] ≥ 0 ⇒ (UIncreasing(LOAD175(i5[27], i7[27], -(i20[27], 1))), ≥)∧[(-1)bni_85] = 0∧0 = 0∧[(-1)bni_85 + (-1)Bound*bni_85] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_86] ≥ 0)
(15) (>(i20[26], 0)=TRUE∧i7[26]=i7[27]∧i20[26]=i20[27]∧i5[26]=i5[27] ⇒ LOAD175(i5[26], i7[26], i20[26])≥NonInfC∧LOAD175(i5[26], i7[26], i20[26])≥COND_LOAD175(>(i20[26], 0), i5[26], i7[26], i20[26])∧(UIncreasing(COND_LOAD175(>(i20[26], 0), i5[26], i7[26], i20[26])), ≥))
(16) (>(i20[26], 0)=TRUE ⇒ LOAD175(i5[26], i7[26], i20[26])≥NonInfC∧LOAD175(i5[26], i7[26], i20[26])≥COND_LOAD175(>(i20[26], 0), i5[26], i7[26], i20[26])∧(UIncreasing(COND_LOAD175(>(i20[26], 0), i5[26], i7[26], i20[26])), ≥))
(17) (i20[26] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD175(>(i20[26], 0), i5[26], i7[26], i20[26])), ≥)∧[(-1)bni_87 + (-1)Bound*bni_87] + [(-1)bni_87]i7[26] ≥ 0∧[(-1)bso_88] ≥ 0)
(18) (i20[26] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD175(>(i20[26], 0), i5[26], i7[26], i20[26])), ≥)∧[(-1)bni_87 + (-1)Bound*bni_87] + [(-1)bni_87]i7[26] ≥ 0∧[(-1)bso_88] ≥ 0)
(19) (i20[26] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD175(>(i20[26], 0), i5[26], i7[26], i20[26])), ≥)∧[(-1)bni_87 + (-1)Bound*bni_87] + [(-1)bni_87]i7[26] ≥ 0∧[(-1)bso_88] ≥ 0)
(20) (i20[26] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD175(>(i20[26], 0), i5[26], i7[26], i20[26])), ≥)∧[(-1)bni_87] = 0∧0 = 0∧[(-1)bni_87 + (-1)Bound*bni_87] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_88] ≥ 0)
(21) (i20[26] ≥ 0 ⇒ (UIncreasing(COND_LOAD175(>(i20[26], 0), i5[26], i7[26], i20[26])), ≥)∧[(-1)bni_87] = 0∧0 = 0∧[(-1)bni_87 + (-1)Bound*bni_87] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_88] ≥ 0)
(22) (i7[20]=i7[21]∧>(i49[20], 0)=TRUE∧i5[20]=i5[21]∧i49[20]=i49[21]∧i7[21]=i7[16]∧-(i49[21], 1)=0∧i5[21]=i5[16] ⇒ COND_LOAD258(TRUE, i5[21], i7[21], i49[21])≥NonInfC∧COND_LOAD258(TRUE, i5[21], i7[21], i49[21])≥LOAD258(i5[21], i7[21], -(i49[21], 1))∧(UIncreasing(LOAD258(i5[21], i7[21], -(i49[21], 1))), ≥))
(23) (>(i49[20], 0)=TRUE∧-(i49[20], 1)=0 ⇒ COND_LOAD258(TRUE, i5[20], i7[20], i49[20])≥NonInfC∧COND_LOAD258(TRUE, i5[20], i7[20], i49[20])≥LOAD258(i5[20], i7[20], -(i49[20], 1))∧(UIncreasing(LOAD258(i5[21], i7[21], -(i49[21], 1))), ≥))
(24) (i49[20] + [-1] ≥ 0∧i49[20] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD258(i5[21], i7[21], -(i49[21], 1))), ≥)∧[(-1)bni_89 + (-1)Bound*bni_89] + [(-1)bni_89]i7[20] ≥ 0∧[(-1)bso_90] ≥ 0)
(25) (i49[20] + [-1] ≥ 0∧i49[20] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD258(i5[21], i7[21], -(i49[21], 1))), ≥)∧[(-1)bni_89 + (-1)Bound*bni_89] + [(-1)bni_89]i7[20] ≥ 0∧[(-1)bso_90] ≥ 0)
(26) (i49[20] + [-1] ≥ 0∧i49[20] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD258(i5[21], i7[21], -(i49[21], 1))), ≥)∧[(-1)bni_89 + (-1)Bound*bni_89] + [(-1)bni_89]i7[20] ≥ 0∧[(-1)bso_90] ≥ 0)
(27) (i49[20] + [-1] ≥ 0∧i49[20] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD258(i5[21], i7[21], -(i49[21], 1))), ≥)∧[(-1)bni_89] = 0∧0 = 0∧[(-1)bni_89 + (-1)Bound*bni_89] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_90] ≥ 0)
(28) (i49[20] ≥ 0∧i49[20] ≥ 0 ⇒ (UIncreasing(LOAD258(i5[21], i7[21], -(i49[21], 1))), ≥)∧[(-1)bni_89] = 0∧0 = 0∧[(-1)bni_89 + (-1)Bound*bni_89] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_90] ≥ 0)
(29) (i7[20]=i7[21]∧>(i49[20], 0)=TRUE∧i5[20]=i5[21]∧i49[20]=i49[21]∧i7[21]=i7[20]1∧-(i49[21], 1)=i49[20]1∧i5[21]=i5[20]1 ⇒ COND_LOAD258(TRUE, i5[21], i7[21], i49[21])≥NonInfC∧COND_LOAD258(TRUE, i5[21], i7[21], i49[21])≥LOAD258(i5[21], i7[21], -(i49[21], 1))∧(UIncreasing(LOAD258(i5[21], i7[21], -(i49[21], 1))), ≥))
(30) (>(i49[20], 0)=TRUE ⇒ COND_LOAD258(TRUE, i5[20], i7[20], i49[20])≥NonInfC∧COND_LOAD258(TRUE, i5[20], i7[20], i49[20])≥LOAD258(i5[20], i7[20], -(i49[20], 1))∧(UIncreasing(LOAD258(i5[21], i7[21], -(i49[21], 1))), ≥))
(31) (i49[20] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD258(i5[21], i7[21], -(i49[21], 1))), ≥)∧[(-1)bni_89 + (-1)Bound*bni_89] + [(-1)bni_89]i7[20] ≥ 0∧[(-1)bso_90] ≥ 0)
(32) (i49[20] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD258(i5[21], i7[21], -(i49[21], 1))), ≥)∧[(-1)bni_89 + (-1)Bound*bni_89] + [(-1)bni_89]i7[20] ≥ 0∧[(-1)bso_90] ≥ 0)
(33) (i49[20] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD258(i5[21], i7[21], -(i49[21], 1))), ≥)∧[(-1)bni_89 + (-1)Bound*bni_89] + [(-1)bni_89]i7[20] ≥ 0∧[(-1)bso_90] ≥ 0)
(34) (i49[20] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD258(i5[21], i7[21], -(i49[21], 1))), ≥)∧[(-1)bni_89] = 0∧0 = 0∧[(-1)bni_89 + (-1)Bound*bni_89] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_90] ≥ 0)
(35) (i49[20] ≥ 0 ⇒ (UIncreasing(LOAD258(i5[21], i7[21], -(i49[21], 1))), ≥)∧[(-1)bni_89] = 0∧0 = 0∧[(-1)bni_89 + (-1)Bound*bni_89] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_90] ≥ 0)
(36) (i7[20]=i7[21]∧>(i49[20], 0)=TRUE∧i5[20]=i5[21]∧i49[20]=i49[21] ⇒ LOAD258(i5[20], i7[20], i49[20])≥NonInfC∧LOAD258(i5[20], i7[20], i49[20])≥COND_LOAD258(>(i49[20], 0), i5[20], i7[20], i49[20])∧(UIncreasing(COND_LOAD258(>(i49[20], 0), i5[20], i7[20], i49[20])), ≥))
(37) (>(i49[20], 0)=TRUE ⇒ LOAD258(i5[20], i7[20], i49[20])≥NonInfC∧LOAD258(i5[20], i7[20], i49[20])≥COND_LOAD258(>(i49[20], 0), i5[20], i7[20], i49[20])∧(UIncreasing(COND_LOAD258(>(i49[20], 0), i5[20], i7[20], i49[20])), ≥))
(38) (i49[20] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD258(>(i49[20], 0), i5[20], i7[20], i49[20])), ≥)∧[(-1)bni_91 + (-1)Bound*bni_91] + [(-1)bni_91]i7[20] ≥ 0∧[(-1)bso_92] ≥ 0)
(39) (i49[20] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD258(>(i49[20], 0), i5[20], i7[20], i49[20])), ≥)∧[(-1)bni_91 + (-1)Bound*bni_91] + [(-1)bni_91]i7[20] ≥ 0∧[(-1)bso_92] ≥ 0)
(40) (i49[20] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD258(>(i49[20], 0), i5[20], i7[20], i49[20])), ≥)∧[(-1)bni_91 + (-1)Bound*bni_91] + [(-1)bni_91]i7[20] ≥ 0∧[(-1)bso_92] ≥ 0)
(41) (i49[20] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD258(>(i49[20], 0), i5[20], i7[20], i49[20])), ≥)∧[(-1)bni_91] = 0∧0 = 0∧[(-1)bni_91 + (-1)Bound*bni_91] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_92] ≥ 0)
(42) (i49[20] ≥ 0 ⇒ (UIncreasing(COND_LOAD258(>(i49[20], 0), i5[20], i7[20], i49[20])), ≥)∧[(-1)bni_91] = 0∧0 = 0∧[(-1)bni_91 + (-1)Bound*bni_91] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_92] ≥ 0)
(43) (i7[17]=i7[18]∧i5[17]=i5[18]∧i104[17]=i104[18]∧>(i104[17], 0)=TRUE∧i5[18]=i5[13]∧-(i104[18], 1)=0∧i7[18]=i7[13] ⇒ COND_LOAD363(TRUE, i5[18], i7[18], i104[18])≥NonInfC∧COND_LOAD363(TRUE, i5[18], i7[18], i104[18])≥LOAD363(i5[18], i7[18], -(i104[18], 1))∧(UIncreasing(LOAD363(i5[18], i7[18], -(i104[18], 1))), ≥))
(44) (>(i104[17], 0)=TRUE∧-(i104[17], 1)=0 ⇒ COND_LOAD363(TRUE, i5[17], i7[17], i104[17])≥NonInfC∧COND_LOAD363(TRUE, i5[17], i7[17], i104[17])≥LOAD363(i5[17], i7[17], -(i104[17], 1))∧(UIncreasing(LOAD363(i5[18], i7[18], -(i104[18], 1))), ≥))
(45) (i104[17] + [-1] ≥ 0∧i104[17] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD363(i5[18], i7[18], -(i104[18], 1))), ≥)∧[(-1)bni_93 + (-1)Bound*bni_93] + [(-1)bni_93]i7[17] ≥ 0∧[(-1)bso_94] ≥ 0)
(46) (i104[17] + [-1] ≥ 0∧i104[17] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD363(i5[18], i7[18], -(i104[18], 1))), ≥)∧[(-1)bni_93 + (-1)Bound*bni_93] + [(-1)bni_93]i7[17] ≥ 0∧[(-1)bso_94] ≥ 0)
(47) (i104[17] + [-1] ≥ 0∧i104[17] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD363(i5[18], i7[18], -(i104[18], 1))), ≥)∧[(-1)bni_93 + (-1)Bound*bni_93] + [(-1)bni_93]i7[17] ≥ 0∧[(-1)bso_94] ≥ 0)
(48) (i104[17] + [-1] ≥ 0∧i104[17] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD363(i5[18], i7[18], -(i104[18], 1))), ≥)∧[(-1)bni_93] = 0∧0 = 0∧[(-1)bni_93 + (-1)Bound*bni_93] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_94] ≥ 0)
(49) (i104[17] ≥ 0∧i104[17] ≥ 0 ⇒ (UIncreasing(LOAD363(i5[18], i7[18], -(i104[18], 1))), ≥)∧[(-1)bni_93] = 0∧0 = 0∧[(-1)bni_93 + (-1)Bound*bni_93] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_94] ≥ 0)
(50) (i7[17]=i7[18]∧i5[17]=i5[18]∧i104[17]=i104[18]∧>(i104[17], 0)=TRUE∧-(i104[18], 1)=i104[17]1∧i5[18]=i5[17]1∧i7[18]=i7[17]1 ⇒ COND_LOAD363(TRUE, i5[18], i7[18], i104[18])≥NonInfC∧COND_LOAD363(TRUE, i5[18], i7[18], i104[18])≥LOAD363(i5[18], i7[18], -(i104[18], 1))∧(UIncreasing(LOAD363(i5[18], i7[18], -(i104[18], 1))), ≥))
(51) (>(i104[17], 0)=TRUE ⇒ COND_LOAD363(TRUE, i5[17], i7[17], i104[17])≥NonInfC∧COND_LOAD363(TRUE, i5[17], i7[17], i104[17])≥LOAD363(i5[17], i7[17], -(i104[17], 1))∧(UIncreasing(LOAD363(i5[18], i7[18], -(i104[18], 1))), ≥))
(52) (i104[17] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD363(i5[18], i7[18], -(i104[18], 1))), ≥)∧[(-1)bni_93 + (-1)Bound*bni_93] + [(-1)bni_93]i7[17] ≥ 0∧[(-1)bso_94] ≥ 0)
(53) (i104[17] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD363(i5[18], i7[18], -(i104[18], 1))), ≥)∧[(-1)bni_93 + (-1)Bound*bni_93] + [(-1)bni_93]i7[17] ≥ 0∧[(-1)bso_94] ≥ 0)
(54) (i104[17] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD363(i5[18], i7[18], -(i104[18], 1))), ≥)∧[(-1)bni_93 + (-1)Bound*bni_93] + [(-1)bni_93]i7[17] ≥ 0∧[(-1)bso_94] ≥ 0)
(55) (i104[17] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD363(i5[18], i7[18], -(i104[18], 1))), ≥)∧[(-1)bni_93] = 0∧0 = 0∧[(-1)bni_93 + (-1)Bound*bni_93] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_94] ≥ 0)
(56) (i104[17] ≥ 0 ⇒ (UIncreasing(LOAD363(i5[18], i7[18], -(i104[18], 1))), ≥)∧[(-1)bni_93] = 0∧0 = 0∧[(-1)bni_93 + (-1)Bound*bni_93] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_94] ≥ 0)
(57) (i7[17]=i7[18]∧i5[17]=i5[18]∧i104[17]=i104[18]∧>(i104[17], 0)=TRUE ⇒ LOAD363(i5[17], i7[17], i104[17])≥NonInfC∧LOAD363(i5[17], i7[17], i104[17])≥COND_LOAD363(>(i104[17], 0), i5[17], i7[17], i104[17])∧(UIncreasing(COND_LOAD363(>(i104[17], 0), i5[17], i7[17], i104[17])), ≥))
(58) (>(i104[17], 0)=TRUE ⇒ LOAD363(i5[17], i7[17], i104[17])≥NonInfC∧LOAD363(i5[17], i7[17], i104[17])≥COND_LOAD363(>(i104[17], 0), i5[17], i7[17], i104[17])∧(UIncreasing(COND_LOAD363(>(i104[17], 0), i5[17], i7[17], i104[17])), ≥))
(59) (i104[17] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD363(>(i104[17], 0), i5[17], i7[17], i104[17])), ≥)∧[(-1)bni_95 + (-1)Bound*bni_95] + [(-1)bni_95]i7[17] ≥ 0∧[(-1)bso_96] ≥ 0)
(60) (i104[17] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD363(>(i104[17], 0), i5[17], i7[17], i104[17])), ≥)∧[(-1)bni_95 + (-1)Bound*bni_95] + [(-1)bni_95]i7[17] ≥ 0∧[(-1)bso_96] ≥ 0)
(61) (i104[17] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD363(>(i104[17], 0), i5[17], i7[17], i104[17])), ≥)∧[(-1)bni_95 + (-1)Bound*bni_95] + [(-1)bni_95]i7[17] ≥ 0∧[(-1)bso_96] ≥ 0)
(62) (i104[17] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD363(>(i104[17], 0), i5[17], i7[17], i104[17])), ≥)∧[(-1)bni_95] = 0∧0 = 0∧[(-1)bni_95 + (-1)Bound*bni_95] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_96] ≥ 0)
(63) (i104[17] ≥ 0 ⇒ (UIncreasing(COND_LOAD363(>(i104[17], 0), i5[17], i7[17], i104[17])), ≥)∧[(-1)bni_95] = 0∧0 = 0∧[(-1)bni_95 + (-1)Bound*bni_95] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_96] ≥ 0)
(64) (i7[14]=i7[15]∧i5[14]=i5[15]∧i187[14]=i187[15]∧>(i187[14], 0)=TRUE∧i7[15]=i7[10]∧-(i187[15], 1)=0∧i5[15]=i5[10] ⇒ COND_LOAD484(TRUE, i5[15], i7[15], i187[15])≥NonInfC∧COND_LOAD484(TRUE, i5[15], i7[15], i187[15])≥LOAD484(i5[15], i7[15], -(i187[15], 1))∧(UIncreasing(LOAD484(i5[15], i7[15], -(i187[15], 1))), ≥))
(65) (>(i187[14], 0)=TRUE∧-(i187[14], 1)=0 ⇒ COND_LOAD484(TRUE, i5[14], i7[14], i187[14])≥NonInfC∧COND_LOAD484(TRUE, i5[14], i7[14], i187[14])≥LOAD484(i5[14], i7[14], -(i187[14], 1))∧(UIncreasing(LOAD484(i5[15], i7[15], -(i187[15], 1))), ≥))
(66) (i187[14] + [-1] ≥ 0∧i187[14] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD484(i5[15], i7[15], -(i187[15], 1))), ≥)∧[(-1)bni_97 + (-1)Bound*bni_97] + [(-1)bni_97]i7[14] ≥ 0∧[(-1)bso_98] ≥ 0)
(67) (i187[14] + [-1] ≥ 0∧i187[14] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD484(i5[15], i7[15], -(i187[15], 1))), ≥)∧[(-1)bni_97 + (-1)Bound*bni_97] + [(-1)bni_97]i7[14] ≥ 0∧[(-1)bso_98] ≥ 0)
(68) (i187[14] + [-1] ≥ 0∧i187[14] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD484(i5[15], i7[15], -(i187[15], 1))), ≥)∧[(-1)bni_97 + (-1)Bound*bni_97] + [(-1)bni_97]i7[14] ≥ 0∧[(-1)bso_98] ≥ 0)
(69) (i187[14] + [-1] ≥ 0∧i187[14] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD484(i5[15], i7[15], -(i187[15], 1))), ≥)∧[(-1)bni_97] = 0∧0 = 0∧[(-1)bni_97 + (-1)Bound*bni_97] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_98] ≥ 0)
(70) (i187[14] ≥ 0∧i187[14] ≥ 0 ⇒ (UIncreasing(LOAD484(i5[15], i7[15], -(i187[15], 1))), ≥)∧[(-1)bni_97] = 0∧0 = 0∧[(-1)bni_97 + (-1)Bound*bni_97] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_98] ≥ 0)
(71) (i7[14]=i7[15]∧i5[14]=i5[15]∧i187[14]=i187[15]∧>(i187[14], 0)=TRUE∧-(i187[15], 1)=i187[14]1∧i5[15]=i5[14]1∧i7[15]=i7[14]1 ⇒ COND_LOAD484(TRUE, i5[15], i7[15], i187[15])≥NonInfC∧COND_LOAD484(TRUE, i5[15], i7[15], i187[15])≥LOAD484(i5[15], i7[15], -(i187[15], 1))∧(UIncreasing(LOAD484(i5[15], i7[15], -(i187[15], 1))), ≥))
(72) (>(i187[14], 0)=TRUE ⇒ COND_LOAD484(TRUE, i5[14], i7[14], i187[14])≥NonInfC∧COND_LOAD484(TRUE, i5[14], i7[14], i187[14])≥LOAD484(i5[14], i7[14], -(i187[14], 1))∧(UIncreasing(LOAD484(i5[15], i7[15], -(i187[15], 1))), ≥))
(73) (i187[14] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD484(i5[15], i7[15], -(i187[15], 1))), ≥)∧[(-1)bni_97 + (-1)Bound*bni_97] + [(-1)bni_97]i7[14] ≥ 0∧[(-1)bso_98] ≥ 0)
(74) (i187[14] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD484(i5[15], i7[15], -(i187[15], 1))), ≥)∧[(-1)bni_97 + (-1)Bound*bni_97] + [(-1)bni_97]i7[14] ≥ 0∧[(-1)bso_98] ≥ 0)
(75) (i187[14] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD484(i5[15], i7[15], -(i187[15], 1))), ≥)∧[(-1)bni_97 + (-1)Bound*bni_97] + [(-1)bni_97]i7[14] ≥ 0∧[(-1)bso_98] ≥ 0)
(76) (i187[14] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD484(i5[15], i7[15], -(i187[15], 1))), ≥)∧[(-1)bni_97] = 0∧0 = 0∧[(-1)bni_97 + (-1)Bound*bni_97] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_98] ≥ 0)
(77) (i187[14] ≥ 0 ⇒ (UIncreasing(LOAD484(i5[15], i7[15], -(i187[15], 1))), ≥)∧[(-1)bni_97] = 0∧0 = 0∧[(-1)bni_97 + (-1)Bound*bni_97] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_98] ≥ 0)
(78) (i7[14]=i7[15]∧i5[14]=i5[15]∧i187[14]=i187[15]∧>(i187[14], 0)=TRUE ⇒ LOAD484(i5[14], i7[14], i187[14])≥NonInfC∧LOAD484(i5[14], i7[14], i187[14])≥COND_LOAD484(>(i187[14], 0), i5[14], i7[14], i187[14])∧(UIncreasing(COND_LOAD484(>(i187[14], 0), i5[14], i7[14], i187[14])), ≥))
(79) (>(i187[14], 0)=TRUE ⇒ LOAD484(i5[14], i7[14], i187[14])≥NonInfC∧LOAD484(i5[14], i7[14], i187[14])≥COND_LOAD484(>(i187[14], 0), i5[14], i7[14], i187[14])∧(UIncreasing(COND_LOAD484(>(i187[14], 0), i5[14], i7[14], i187[14])), ≥))
(80) (i187[14] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD484(>(i187[14], 0), i5[14], i7[14], i187[14])), ≥)∧[(-1)bni_99 + (-1)Bound*bni_99] + [(-1)bni_99]i7[14] ≥ 0∧[(-1)bso_100] ≥ 0)
(81) (i187[14] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD484(>(i187[14], 0), i5[14], i7[14], i187[14])), ≥)∧[(-1)bni_99 + (-1)Bound*bni_99] + [(-1)bni_99]i7[14] ≥ 0∧[(-1)bso_100] ≥ 0)
(82) (i187[14] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD484(>(i187[14], 0), i5[14], i7[14], i187[14])), ≥)∧[(-1)bni_99 + (-1)Bound*bni_99] + [(-1)bni_99]i7[14] ≥ 0∧[(-1)bso_100] ≥ 0)
(83) (i187[14] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD484(>(i187[14], 0), i5[14], i7[14], i187[14])), ≥)∧[(-1)bni_99] = 0∧0 = 0∧[(-1)bni_99 + (-1)Bound*bni_99] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_100] ≥ 0)
(84) (i187[14] ≥ 0 ⇒ (UIncreasing(COND_LOAD484(>(i187[14], 0), i5[14], i7[14], i187[14])), ≥)∧[(-1)bni_99] = 0∧0 = 0∧[(-1)bni_99 + (-1)Bound*bni_99] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_100] ≥ 0)
(85) (>(i296[11], 0)=TRUE∧i7[11]=i7[12]∧i296[11]=i296[12]∧i5[11]=i5[12]∧-(i296[12], 1)=0∧i7[12]=i7[7]∧i5[12]=i5[7] ⇒ COND_LOAD608(TRUE, i5[12], i7[12], i296[12])≥NonInfC∧COND_LOAD608(TRUE, i5[12], i7[12], i296[12])≥LOAD608(i5[12], i7[12], -(i296[12], 1))∧(UIncreasing(LOAD608(i5[12], i7[12], -(i296[12], 1))), ≥))
(86) (>(i296[11], 0)=TRUE∧-(i296[11], 1)=0 ⇒ COND_LOAD608(TRUE, i5[11], i7[11], i296[11])≥NonInfC∧COND_LOAD608(TRUE, i5[11], i7[11], i296[11])≥LOAD608(i5[11], i7[11], -(i296[11], 1))∧(UIncreasing(LOAD608(i5[12], i7[12], -(i296[12], 1))), ≥))
(87) (i296[11] + [-1] ≥ 0∧i296[11] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD608(i5[12], i7[12], -(i296[12], 1))), ≥)∧[(-1)bni_101 + (-1)Bound*bni_101] + [(-1)bni_101]i7[11] ≥ 0∧[(-1)bso_102] ≥ 0)
(88) (i296[11] + [-1] ≥ 0∧i296[11] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD608(i5[12], i7[12], -(i296[12], 1))), ≥)∧[(-1)bni_101 + (-1)Bound*bni_101] + [(-1)bni_101]i7[11] ≥ 0∧[(-1)bso_102] ≥ 0)
(89) (i296[11] + [-1] ≥ 0∧i296[11] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD608(i5[12], i7[12], -(i296[12], 1))), ≥)∧[(-1)bni_101 + (-1)Bound*bni_101] + [(-1)bni_101]i7[11] ≥ 0∧[(-1)bso_102] ≥ 0)
(90) (i296[11] + [-1] ≥ 0∧i296[11] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD608(i5[12], i7[12], -(i296[12], 1))), ≥)∧[(-1)bni_101] = 0∧0 = 0∧[(-1)bni_101 + (-1)Bound*bni_101] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_102] ≥ 0)
(91) (i296[11] ≥ 0∧i296[11] ≥ 0 ⇒ (UIncreasing(LOAD608(i5[12], i7[12], -(i296[12], 1))), ≥)∧[(-1)bni_101] = 0∧0 = 0∧[(-1)bni_101 + (-1)Bound*bni_101] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_102] ≥ 0)
(92) (>(i296[11], 0)=TRUE∧i7[11]=i7[12]∧i296[11]=i296[12]∧i5[11]=i5[12]∧-(i296[12], 1)=i296[11]1∧i5[12]=i5[11]1∧i7[12]=i7[11]1 ⇒ COND_LOAD608(TRUE, i5[12], i7[12], i296[12])≥NonInfC∧COND_LOAD608(TRUE, i5[12], i7[12], i296[12])≥LOAD608(i5[12], i7[12], -(i296[12], 1))∧(UIncreasing(LOAD608(i5[12], i7[12], -(i296[12], 1))), ≥))
(93) (>(i296[11], 0)=TRUE ⇒ COND_LOAD608(TRUE, i5[11], i7[11], i296[11])≥NonInfC∧COND_LOAD608(TRUE, i5[11], i7[11], i296[11])≥LOAD608(i5[11], i7[11], -(i296[11], 1))∧(UIncreasing(LOAD608(i5[12], i7[12], -(i296[12], 1))), ≥))
(94) (i296[11] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD608(i5[12], i7[12], -(i296[12], 1))), ≥)∧[(-1)bni_101 + (-1)Bound*bni_101] + [(-1)bni_101]i7[11] ≥ 0∧[(-1)bso_102] ≥ 0)
(95) (i296[11] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD608(i5[12], i7[12], -(i296[12], 1))), ≥)∧[(-1)bni_101 + (-1)Bound*bni_101] + [(-1)bni_101]i7[11] ≥ 0∧[(-1)bso_102] ≥ 0)
(96) (i296[11] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD608(i5[12], i7[12], -(i296[12], 1))), ≥)∧[(-1)bni_101 + (-1)Bound*bni_101] + [(-1)bni_101]i7[11] ≥ 0∧[(-1)bso_102] ≥ 0)
(97) (i296[11] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD608(i5[12], i7[12], -(i296[12], 1))), ≥)∧[(-1)bni_101] = 0∧0 = 0∧[(-1)bni_101 + (-1)Bound*bni_101] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_102] ≥ 0)
(98) (i296[11] ≥ 0 ⇒ (UIncreasing(LOAD608(i5[12], i7[12], -(i296[12], 1))), ≥)∧[(-1)bni_101] = 0∧0 = 0∧[(-1)bni_101 + (-1)Bound*bni_101] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_102] ≥ 0)
(99) (>(i296[11], 0)=TRUE∧i7[11]=i7[12]∧i296[11]=i296[12]∧i5[11]=i5[12] ⇒ LOAD608(i5[11], i7[11], i296[11])≥NonInfC∧LOAD608(i5[11], i7[11], i296[11])≥COND_LOAD608(>(i296[11], 0), i5[11], i7[11], i296[11])∧(UIncreasing(COND_LOAD608(>(i296[11], 0), i5[11], i7[11], i296[11])), ≥))
(100) (>(i296[11], 0)=TRUE ⇒ LOAD608(i5[11], i7[11], i296[11])≥NonInfC∧LOAD608(i5[11], i7[11], i296[11])≥COND_LOAD608(>(i296[11], 0), i5[11], i7[11], i296[11])∧(UIncreasing(COND_LOAD608(>(i296[11], 0), i5[11], i7[11], i296[11])), ≥))
(101) (i296[11] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD608(>(i296[11], 0), i5[11], i7[11], i296[11])), ≥)∧[(-1)bni_103 + (-1)Bound*bni_103] + [(-1)bni_103]i7[11] ≥ 0∧[(-1)bso_104] ≥ 0)
(102) (i296[11] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD608(>(i296[11], 0), i5[11], i7[11], i296[11])), ≥)∧[(-1)bni_103 + (-1)Bound*bni_103] + [(-1)bni_103]i7[11] ≥ 0∧[(-1)bso_104] ≥ 0)
(103) (i296[11] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD608(>(i296[11], 0), i5[11], i7[11], i296[11])), ≥)∧[(-1)bni_103 + (-1)Bound*bni_103] + [(-1)bni_103]i7[11] ≥ 0∧[(-1)bso_104] ≥ 0)
(104) (i296[11] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD608(>(i296[11], 0), i5[11], i7[11], i296[11])), ≥)∧[(-1)bni_103] = 0∧0 = 0∧[(-1)bni_103 + (-1)Bound*bni_103] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_104] ≥ 0)
(105) (i296[11] ≥ 0 ⇒ (UIncreasing(COND_LOAD608(>(i296[11], 0), i5[11], i7[11], i296[11])), ≥)∧[(-1)bni_103] = 0∧0 = 0∧[(-1)bni_103 + (-1)Bound*bni_103] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_104] ≥ 0)
(106) (i7[8]=i7[9]∧i436[8]=i436[9]∧i5[8]=i5[9]∧>(i436[8], 0)=TRUE∧i7[9]=i7[4]∧-(i436[9], 1)=0∧i5[9]=i5[4] ⇒ COND_LOAD768(TRUE, i5[9], i7[9], i436[9])≥NonInfC∧COND_LOAD768(TRUE, i5[9], i7[9], i436[9])≥LOAD768(i5[9], i7[9], -(i436[9], 1))∧(UIncreasing(LOAD768(i5[9], i7[9], -(i436[9], 1))), ≥))
(107) (>(i436[8], 0)=TRUE∧-(i436[8], 1)=0 ⇒ COND_LOAD768(TRUE, i5[8], i7[8], i436[8])≥NonInfC∧COND_LOAD768(TRUE, i5[8], i7[8], i436[8])≥LOAD768(i5[8], i7[8], -(i436[8], 1))∧(UIncreasing(LOAD768(i5[9], i7[9], -(i436[9], 1))), ≥))
(108) (i436[8] + [-1] ≥ 0∧i436[8] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD768(i5[9], i7[9], -(i436[9], 1))), ≥)∧[(-1)bni_105 + (-1)Bound*bni_105] + [(-1)bni_105]i7[8] ≥ 0∧[(-1)bso_106] ≥ 0)
(109) (i436[8] + [-1] ≥ 0∧i436[8] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD768(i5[9], i7[9], -(i436[9], 1))), ≥)∧[(-1)bni_105 + (-1)Bound*bni_105] + [(-1)bni_105]i7[8] ≥ 0∧[(-1)bso_106] ≥ 0)
(110) (i436[8] + [-1] ≥ 0∧i436[8] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD768(i5[9], i7[9], -(i436[9], 1))), ≥)∧[(-1)bni_105 + (-1)Bound*bni_105] + [(-1)bni_105]i7[8] ≥ 0∧[(-1)bso_106] ≥ 0)
(111) (i436[8] + [-1] ≥ 0∧i436[8] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD768(i5[9], i7[9], -(i436[9], 1))), ≥)∧[(-1)bni_105] = 0∧0 = 0∧[(-1)bni_105 + (-1)Bound*bni_105] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_106] ≥ 0)
(112) (i436[8] ≥ 0∧i436[8] ≥ 0 ⇒ (UIncreasing(LOAD768(i5[9], i7[9], -(i436[9], 1))), ≥)∧[(-1)bni_105] = 0∧0 = 0∧[(-1)bni_105 + (-1)Bound*bni_105] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_106] ≥ 0)
(113) (i7[8]=i7[9]∧i436[8]=i436[9]∧i5[8]=i5[9]∧>(i436[8], 0)=TRUE∧-(i436[9], 1)=i436[8]1∧i7[9]=i7[8]1∧i5[9]=i5[8]1 ⇒ COND_LOAD768(TRUE, i5[9], i7[9], i436[9])≥NonInfC∧COND_LOAD768(TRUE, i5[9], i7[9], i436[9])≥LOAD768(i5[9], i7[9], -(i436[9], 1))∧(UIncreasing(LOAD768(i5[9], i7[9], -(i436[9], 1))), ≥))
(114) (>(i436[8], 0)=TRUE ⇒ COND_LOAD768(TRUE, i5[8], i7[8], i436[8])≥NonInfC∧COND_LOAD768(TRUE, i5[8], i7[8], i436[8])≥LOAD768(i5[8], i7[8], -(i436[8], 1))∧(UIncreasing(LOAD768(i5[9], i7[9], -(i436[9], 1))), ≥))
(115) (i436[8] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD768(i5[9], i7[9], -(i436[9], 1))), ≥)∧[(-1)bni_105 + (-1)Bound*bni_105] + [(-1)bni_105]i7[8] ≥ 0∧[(-1)bso_106] ≥ 0)
(116) (i436[8] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD768(i5[9], i7[9], -(i436[9], 1))), ≥)∧[(-1)bni_105 + (-1)Bound*bni_105] + [(-1)bni_105]i7[8] ≥ 0∧[(-1)bso_106] ≥ 0)
(117) (i436[8] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD768(i5[9], i7[9], -(i436[9], 1))), ≥)∧[(-1)bni_105 + (-1)Bound*bni_105] + [(-1)bni_105]i7[8] ≥ 0∧[(-1)bso_106] ≥ 0)
(118) (i436[8] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD768(i5[9], i7[9], -(i436[9], 1))), ≥)∧[(-1)bni_105] = 0∧0 = 0∧[(-1)bni_105 + (-1)Bound*bni_105] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_106] ≥ 0)
(119) (i436[8] ≥ 0 ⇒ (UIncreasing(LOAD768(i5[9], i7[9], -(i436[9], 1))), ≥)∧[(-1)bni_105] = 0∧0 = 0∧[(-1)bni_105 + (-1)Bound*bni_105] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_106] ≥ 0)
(120) (i7[8]=i7[9]∧i436[8]=i436[9]∧i5[8]=i5[9]∧>(i436[8], 0)=TRUE ⇒ LOAD768(i5[8], i7[8], i436[8])≥NonInfC∧LOAD768(i5[8], i7[8], i436[8])≥COND_LOAD768(>(i436[8], 0), i5[8], i7[8], i436[8])∧(UIncreasing(COND_LOAD768(>(i436[8], 0), i5[8], i7[8], i436[8])), ≥))
(121) (>(i436[8], 0)=TRUE ⇒ LOAD768(i5[8], i7[8], i436[8])≥NonInfC∧LOAD768(i5[8], i7[8], i436[8])≥COND_LOAD768(>(i436[8], 0), i5[8], i7[8], i436[8])∧(UIncreasing(COND_LOAD768(>(i436[8], 0), i5[8], i7[8], i436[8])), ≥))
(122) (i436[8] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD768(>(i436[8], 0), i5[8], i7[8], i436[8])), ≥)∧[(-1)bni_107 + (-1)Bound*bni_107] + [(-1)bni_107]i7[8] ≥ 0∧[(-1)bso_108] ≥ 0)
(123) (i436[8] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD768(>(i436[8], 0), i5[8], i7[8], i436[8])), ≥)∧[(-1)bni_107 + (-1)Bound*bni_107] + [(-1)bni_107]i7[8] ≥ 0∧[(-1)bso_108] ≥ 0)
(124) (i436[8] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD768(>(i436[8], 0), i5[8], i7[8], i436[8])), ≥)∧[(-1)bni_107 + (-1)Bound*bni_107] + [(-1)bni_107]i7[8] ≥ 0∧[(-1)bso_108] ≥ 0)
(125) (i436[8] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD768(>(i436[8], 0), i5[8], i7[8], i436[8])), ≥)∧[(-1)bni_107] = 0∧0 = 0∧[(-1)bni_107 + (-1)Bound*bni_107] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_108] ≥ 0)
(126) (i436[8] ≥ 0 ⇒ (UIncreasing(COND_LOAD768(>(i436[8], 0), i5[8], i7[8], i436[8])), ≥)∧[(-1)bni_107] = 0∧0 = 0∧[(-1)bni_107 + (-1)Bound*bni_107] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_108] ≥ 0)
(127) (i5[5]=i5[6]∧i7[5]=i7[6]∧i605[5]=i605[6]∧>(i605[5], 0)=TRUE∧-(i605[6], 1)=0∧i5[6]=i5[1]∧i7[6]=i7[1] ⇒ COND_LOAD949(TRUE, i5[6], i7[6], i605[6])≥NonInfC∧COND_LOAD949(TRUE, i5[6], i7[6], i605[6])≥LOAD949(i5[6], i7[6], -(i605[6], 1))∧(UIncreasing(LOAD949(i5[6], i7[6], -(i605[6], 1))), ≥))
(128) (>(i605[5], 0)=TRUE∧-(i605[5], 1)=0 ⇒ COND_LOAD949(TRUE, i5[5], i7[5], i605[5])≥NonInfC∧COND_LOAD949(TRUE, i5[5], i7[5], i605[5])≥LOAD949(i5[5], i7[5], -(i605[5], 1))∧(UIncreasing(LOAD949(i5[6], i7[6], -(i605[6], 1))), ≥))
(129) (i605[5] + [-1] ≥ 0∧i605[5] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD949(i5[6], i7[6], -(i605[6], 1))), ≥)∧[(-1)bni_109 + (-1)Bound*bni_109] + [(-1)bni_109]i7[5] ≥ 0∧[(-1)bso_110] ≥ 0)
(130) (i605[5] + [-1] ≥ 0∧i605[5] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD949(i5[6], i7[6], -(i605[6], 1))), ≥)∧[(-1)bni_109 + (-1)Bound*bni_109] + [(-1)bni_109]i7[5] ≥ 0∧[(-1)bso_110] ≥ 0)
(131) (i605[5] + [-1] ≥ 0∧i605[5] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD949(i5[6], i7[6], -(i605[6], 1))), ≥)∧[(-1)bni_109 + (-1)Bound*bni_109] + [(-1)bni_109]i7[5] ≥ 0∧[(-1)bso_110] ≥ 0)
(132) (i605[5] + [-1] ≥ 0∧i605[5] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD949(i5[6], i7[6], -(i605[6], 1))), ≥)∧[(-1)bni_109] = 0∧0 = 0∧[(-1)bni_109 + (-1)Bound*bni_109] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_110] ≥ 0)
(133) (i605[5] ≥ 0∧i605[5] ≥ 0 ⇒ (UIncreasing(LOAD949(i5[6], i7[6], -(i605[6], 1))), ≥)∧[(-1)bni_109] = 0∧0 = 0∧[(-1)bni_109 + (-1)Bound*bni_109] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_110] ≥ 0)
(134) (i5[5]=i5[6]∧i7[5]=i7[6]∧i605[5]=i605[6]∧>(i605[5], 0)=TRUE∧i7[6]=i7[5]1∧-(i605[6], 1)=i605[5]1∧i5[6]=i5[5]1 ⇒ COND_LOAD949(TRUE, i5[6], i7[6], i605[6])≥NonInfC∧COND_LOAD949(TRUE, i5[6], i7[6], i605[6])≥LOAD949(i5[6], i7[6], -(i605[6], 1))∧(UIncreasing(LOAD949(i5[6], i7[6], -(i605[6], 1))), ≥))
(135) (>(i605[5], 0)=TRUE ⇒ COND_LOAD949(TRUE, i5[5], i7[5], i605[5])≥NonInfC∧COND_LOAD949(TRUE, i5[5], i7[5], i605[5])≥LOAD949(i5[5], i7[5], -(i605[5], 1))∧(UIncreasing(LOAD949(i5[6], i7[6], -(i605[6], 1))), ≥))
(136) (i605[5] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD949(i5[6], i7[6], -(i605[6], 1))), ≥)∧[(-1)bni_109 + (-1)Bound*bni_109] + [(-1)bni_109]i7[5] ≥ 0∧[(-1)bso_110] ≥ 0)
(137) (i605[5] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD949(i5[6], i7[6], -(i605[6], 1))), ≥)∧[(-1)bni_109 + (-1)Bound*bni_109] + [(-1)bni_109]i7[5] ≥ 0∧[(-1)bso_110] ≥ 0)
(138) (i605[5] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD949(i5[6], i7[6], -(i605[6], 1))), ≥)∧[(-1)bni_109 + (-1)Bound*bni_109] + [(-1)bni_109]i7[5] ≥ 0∧[(-1)bso_110] ≥ 0)
(139) (i605[5] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD949(i5[6], i7[6], -(i605[6], 1))), ≥)∧[(-1)bni_109] = 0∧0 = 0∧[(-1)bni_109 + (-1)Bound*bni_109] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_110] ≥ 0)
(140) (i605[5] ≥ 0 ⇒ (UIncreasing(LOAD949(i5[6], i7[6], -(i605[6], 1))), ≥)∧[(-1)bni_109] = 0∧0 = 0∧[(-1)bni_109 + (-1)Bound*bni_109] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_110] ≥ 0)
(141) (i5[5]=i5[6]∧i7[5]=i7[6]∧i605[5]=i605[6]∧>(i605[5], 0)=TRUE ⇒ LOAD949(i5[5], i7[5], i605[5])≥NonInfC∧LOAD949(i5[5], i7[5], i605[5])≥COND_LOAD949(>(i605[5], 0), i5[5], i7[5], i605[5])∧(UIncreasing(COND_LOAD949(>(i605[5], 0), i5[5], i7[5], i605[5])), ≥))
(142) (>(i605[5], 0)=TRUE ⇒ LOAD949(i5[5], i7[5], i605[5])≥NonInfC∧LOAD949(i5[5], i7[5], i605[5])≥COND_LOAD949(>(i605[5], 0), i5[5], i7[5], i605[5])∧(UIncreasing(COND_LOAD949(>(i605[5], 0), i5[5], i7[5], i605[5])), ≥))
(143) (i605[5] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD949(>(i605[5], 0), i5[5], i7[5], i605[5])), ≥)∧[(-1)bni_111 + (-1)Bound*bni_111] + [(-1)bni_111]i7[5] ≥ 0∧[(-1)bso_112] ≥ 0)
(144) (i605[5] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD949(>(i605[5], 0), i5[5], i7[5], i605[5])), ≥)∧[(-1)bni_111 + (-1)Bound*bni_111] + [(-1)bni_111]i7[5] ≥ 0∧[(-1)bso_112] ≥ 0)
(145) (i605[5] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD949(>(i605[5], 0), i5[5], i7[5], i605[5])), ≥)∧[(-1)bni_111 + (-1)Bound*bni_111] + [(-1)bni_111]i7[5] ≥ 0∧[(-1)bso_112] ≥ 0)
(146) (i605[5] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD949(>(i605[5], 0), i5[5], i7[5], i605[5])), ≥)∧[(-1)bni_111] = 0∧0 = 0∧[(-1)bni_111 + (-1)Bound*bni_111] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_112] ≥ 0)
(147) (i605[5] ≥ 0 ⇒ (UIncreasing(COND_LOAD949(>(i605[5], 0), i5[5], i7[5], i605[5])), ≥)∧[(-1)bni_111] = 0∧0 = 0∧[(-1)bni_111 + (-1)Bound*bni_111] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_112] ≥ 0)
(148) (i5[2]=i5[3]∧i7[2]=i7[3]∧i696[2]=i696[3]∧>(i696[2], 0)=TRUE∧i7[3]=i7[0]∧i5[3]=i5[0]∧-(i696[3], 1)=0 ⇒ COND_LOAD1100(TRUE, i5[3], i7[3], i696[3])≥NonInfC∧COND_LOAD1100(TRUE, i5[3], i7[3], i696[3])≥LOAD1100(i5[3], i7[3], -(i696[3], 1))∧(UIncreasing(LOAD1100(i5[3], i7[3], -(i696[3], 1))), ≥))
(149) (>(i696[2], 0)=TRUE∧-(i696[2], 1)=0 ⇒ COND_LOAD1100(TRUE, i5[2], i7[2], i696[2])≥NonInfC∧COND_LOAD1100(TRUE, i5[2], i7[2], i696[2])≥LOAD1100(i5[2], i7[2], -(i696[2], 1))∧(UIncreasing(LOAD1100(i5[3], i7[3], -(i696[3], 1))), ≥))
(150) (i696[2] + [-1] ≥ 0∧i696[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD1100(i5[3], i7[3], -(i696[3], 1))), ≥)∧[(-1)bni_113 + (-1)Bound*bni_113] + [(-1)bni_113]i7[2] ≥ 0∧[(-1)bso_114] ≥ 0)
(151) (i696[2] + [-1] ≥ 0∧i696[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD1100(i5[3], i7[3], -(i696[3], 1))), ≥)∧[(-1)bni_113 + (-1)Bound*bni_113] + [(-1)bni_113]i7[2] ≥ 0∧[(-1)bso_114] ≥ 0)
(152) (i696[2] + [-1] ≥ 0∧i696[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD1100(i5[3], i7[3], -(i696[3], 1))), ≥)∧[(-1)bni_113 + (-1)Bound*bni_113] + [(-1)bni_113]i7[2] ≥ 0∧[(-1)bso_114] ≥ 0)
(153) (i696[2] + [-1] ≥ 0∧i696[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD1100(i5[3], i7[3], -(i696[3], 1))), ≥)∧[(-1)bni_113] = 0∧0 = 0∧[(-1)bni_113 + (-1)Bound*bni_113] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_114] ≥ 0)
(154) (i696[2] ≥ 0∧i696[2] ≥ 0 ⇒ (UIncreasing(LOAD1100(i5[3], i7[3], -(i696[3], 1))), ≥)∧[(-1)bni_113] = 0∧0 = 0∧[(-1)bni_113 + (-1)Bound*bni_113] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_114] ≥ 0)
(155) (i5[2]=i5[3]∧i7[2]=i7[3]∧i696[2]=i696[3]∧>(i696[2], 0)=TRUE∧i7[3]=i7[2]1∧-(i696[3], 1)=i696[2]1∧i5[3]=i5[2]1 ⇒ COND_LOAD1100(TRUE, i5[3], i7[3], i696[3])≥NonInfC∧COND_LOAD1100(TRUE, i5[3], i7[3], i696[3])≥LOAD1100(i5[3], i7[3], -(i696[3], 1))∧(UIncreasing(LOAD1100(i5[3], i7[3], -(i696[3], 1))), ≥))
(156) (>(i696[2], 0)=TRUE ⇒ COND_LOAD1100(TRUE, i5[2], i7[2], i696[2])≥NonInfC∧COND_LOAD1100(TRUE, i5[2], i7[2], i696[2])≥LOAD1100(i5[2], i7[2], -(i696[2], 1))∧(UIncreasing(LOAD1100(i5[3], i7[3], -(i696[3], 1))), ≥))
(157) (i696[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD1100(i5[3], i7[3], -(i696[3], 1))), ≥)∧[(-1)bni_113 + (-1)Bound*bni_113] + [(-1)bni_113]i7[2] ≥ 0∧[(-1)bso_114] ≥ 0)
(158) (i696[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD1100(i5[3], i7[3], -(i696[3], 1))), ≥)∧[(-1)bni_113 + (-1)Bound*bni_113] + [(-1)bni_113]i7[2] ≥ 0∧[(-1)bso_114] ≥ 0)
(159) (i696[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD1100(i5[3], i7[3], -(i696[3], 1))), ≥)∧[(-1)bni_113 + (-1)Bound*bni_113] + [(-1)bni_113]i7[2] ≥ 0∧[(-1)bso_114] ≥ 0)
(160) (i696[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD1100(i5[3], i7[3], -(i696[3], 1))), ≥)∧[(-1)bni_113] = 0∧0 = 0∧[(-1)bni_113 + (-1)Bound*bni_113] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_114] ≥ 0)
(161) (i696[2] ≥ 0 ⇒ (UIncreasing(LOAD1100(i5[3], i7[3], -(i696[3], 1))), ≥)∧[(-1)bni_113] = 0∧0 = 0∧[(-1)bni_113 + (-1)Bound*bni_113] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_114] ≥ 0)
(162) (i5[2]=i5[3]∧i7[2]=i7[3]∧i696[2]=i696[3]∧>(i696[2], 0)=TRUE ⇒ LOAD1100(i5[2], i7[2], i696[2])≥NonInfC∧LOAD1100(i5[2], i7[2], i696[2])≥COND_LOAD1100(>(i696[2], 0), i5[2], i7[2], i696[2])∧(UIncreasing(COND_LOAD1100(>(i696[2], 0), i5[2], i7[2], i696[2])), ≥))
(163) (>(i696[2], 0)=TRUE ⇒ LOAD1100(i5[2], i7[2], i696[2])≥NonInfC∧LOAD1100(i5[2], i7[2], i696[2])≥COND_LOAD1100(>(i696[2], 0), i5[2], i7[2], i696[2])∧(UIncreasing(COND_LOAD1100(>(i696[2], 0), i5[2], i7[2], i696[2])), ≥))
(164) (i696[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1100(>(i696[2], 0), i5[2], i7[2], i696[2])), ≥)∧[(-1)bni_115 + (-1)Bound*bni_115] + [(-1)bni_115]i7[2] ≥ 0∧[(-1)bso_116] ≥ 0)
(165) (i696[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1100(>(i696[2], 0), i5[2], i7[2], i696[2])), ≥)∧[(-1)bni_115 + (-1)Bound*bni_115] + [(-1)bni_115]i7[2] ≥ 0∧[(-1)bso_116] ≥ 0)
(166) (i696[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1100(>(i696[2], 0), i5[2], i7[2], i696[2])), ≥)∧[(-1)bni_115 + (-1)Bound*bni_115] + [(-1)bni_115]i7[2] ≥ 0∧[(-1)bso_116] ≥ 0)
(167) (i696[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1100(>(i696[2], 0), i5[2], i7[2], i696[2])), ≥)∧[(-1)bni_115] = 0∧0 = 0∧[(-1)bni_115 + (-1)Bound*bni_115] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_116] ≥ 0)
(168) (i696[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD1100(>(i696[2], 0), i5[2], i7[2], i696[2])), ≥)∧[(-1)bni_115] = 0∧0 = 0∧[(-1)bni_115 + (-1)Bound*bni_115] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_116] ≥ 0)
(169) (i7[1]=0∧i5[1]=i5[0]∧i7[1]=i7[0] ⇒ LOAD949(i5[1], i7[1], 0)≥NonInfC∧LOAD949(i5[1], i7[1], 0)≥LOAD1100(i5[1], i7[1], i7[1])∧(UIncreasing(LOAD1100(i5[1], i7[1], i7[1])), ≥))
(170) (LOAD949(i5[1], 0, 0)≥NonInfC∧LOAD949(i5[1], 0, 0)≥LOAD1100(i5[1], 0, 0)∧(UIncreasing(LOAD1100(i5[1], i7[1], i7[1])), ≥))
(171) ((UIncreasing(LOAD1100(i5[1], i7[1], i7[1])), ≥)∧[(-1)bso_118] ≥ 0)
(172) ((UIncreasing(LOAD1100(i5[1], i7[1], i7[1])), ≥)∧[(-1)bso_118] ≥ 0)
(173) ((UIncreasing(LOAD1100(i5[1], i7[1], i7[1])), ≥)∧[(-1)bso_118] ≥ 0)
(174) ((UIncreasing(LOAD1100(i5[1], i7[1], i7[1])), ≥)∧0 = 0∧[(-1)bso_118] ≥ 0)
(175) (i5[1]=i5[2]∧i7[1]=i7[2]∧i7[1]=i696[2] ⇒ LOAD949(i5[1], i7[1], 0)≥NonInfC∧LOAD949(i5[1], i7[1], 0)≥LOAD1100(i5[1], i7[1], i7[1])∧(UIncreasing(LOAD1100(i5[1], i7[1], i7[1])), ≥))
(176) (LOAD949(i5[1], i7[1], 0)≥NonInfC∧LOAD949(i5[1], i7[1], 0)≥LOAD1100(i5[1], i7[1], i7[1])∧(UIncreasing(LOAD1100(i5[1], i7[1], i7[1])), ≥))
(177) ((UIncreasing(LOAD1100(i5[1], i7[1], i7[1])), ≥)∧[(-1)bso_118] ≥ 0)
(178) ((UIncreasing(LOAD1100(i5[1], i7[1], i7[1])), ≥)∧[(-1)bso_118] ≥ 0)
(179) ((UIncreasing(LOAD1100(i5[1], i7[1], i7[1])), ≥)∧[(-1)bso_118] ≥ 0)
(180) ((UIncreasing(LOAD1100(i5[1], i7[1], i7[1])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_118] ≥ 0)
(181) (i5[4]=i5[1]∧i7[4]=0∧i7[4]=i7[1] ⇒ LOAD768(i5[4], i7[4], 0)≥NonInfC∧LOAD768(i5[4], i7[4], 0)≥LOAD949(i5[4], i7[4], i7[4])∧(UIncreasing(LOAD949(i5[4], i7[4], i7[4])), ≥))
(182) (LOAD768(i5[4], 0, 0)≥NonInfC∧LOAD768(i5[4], 0, 0)≥LOAD949(i5[4], 0, 0)∧(UIncreasing(LOAD949(i5[4], i7[4], i7[4])), ≥))
(183) ((UIncreasing(LOAD949(i5[4], i7[4], i7[4])), ≥)∧[(-1)bso_120] ≥ 0)
(184) ((UIncreasing(LOAD949(i5[4], i7[4], i7[4])), ≥)∧[(-1)bso_120] ≥ 0)
(185) ((UIncreasing(LOAD949(i5[4], i7[4], i7[4])), ≥)∧[(-1)bso_120] ≥ 0)
(186) ((UIncreasing(LOAD949(i5[4], i7[4], i7[4])), ≥)∧0 = 0∧[(-1)bso_120] ≥ 0)
(187) (i7[4]=i7[5]∧i7[4]=i605[5]∧i5[4]=i5[5] ⇒ LOAD768(i5[4], i7[4], 0)≥NonInfC∧LOAD768(i5[4], i7[4], 0)≥LOAD949(i5[4], i7[4], i7[4])∧(UIncreasing(LOAD949(i5[4], i7[4], i7[4])), ≥))
(188) (LOAD768(i5[4], i7[4], 0)≥NonInfC∧LOAD768(i5[4], i7[4], 0)≥LOAD949(i5[4], i7[4], i7[4])∧(UIncreasing(LOAD949(i5[4], i7[4], i7[4])), ≥))
(189) ((UIncreasing(LOAD949(i5[4], i7[4], i7[4])), ≥)∧[(-1)bso_120] ≥ 0)
(190) ((UIncreasing(LOAD949(i5[4], i7[4], i7[4])), ≥)∧[(-1)bso_120] ≥ 0)
(191) ((UIncreasing(LOAD949(i5[4], i7[4], i7[4])), ≥)∧[(-1)bso_120] ≥ 0)
(192) ((UIncreasing(LOAD949(i5[4], i7[4], i7[4])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_120] ≥ 0)
(193) (i7[7]=0∧i7[7]=i7[4]∧i5[7]=i5[4] ⇒ LOAD608(i5[7], i7[7], 0)≥NonInfC∧LOAD608(i5[7], i7[7], 0)≥LOAD768(i5[7], i7[7], i7[7])∧(UIncreasing(LOAD768(i5[7], i7[7], i7[7])), ≥))
(194) (LOAD608(i5[7], 0, 0)≥NonInfC∧LOAD608(i5[7], 0, 0)≥LOAD768(i5[7], 0, 0)∧(UIncreasing(LOAD768(i5[7], i7[7], i7[7])), ≥))
(195) ((UIncreasing(LOAD768(i5[7], i7[7], i7[7])), ≥)∧[(-1)bso_122] ≥ 0)
(196) ((UIncreasing(LOAD768(i5[7], i7[7], i7[7])), ≥)∧[(-1)bso_122] ≥ 0)
(197) ((UIncreasing(LOAD768(i5[7], i7[7], i7[7])), ≥)∧[(-1)bso_122] ≥ 0)
(198) ((UIncreasing(LOAD768(i5[7], i7[7], i7[7])), ≥)∧0 = 0∧[(-1)bso_122] ≥ 0)
(199) (i5[7]=i5[8]∧i7[7]=i436[8]∧i7[7]=i7[8] ⇒ LOAD608(i5[7], i7[7], 0)≥NonInfC∧LOAD608(i5[7], i7[7], 0)≥LOAD768(i5[7], i7[7], i7[7])∧(UIncreasing(LOAD768(i5[7], i7[7], i7[7])), ≥))
(200) (LOAD608(i5[7], i7[7], 0)≥NonInfC∧LOAD608(i5[7], i7[7], 0)≥LOAD768(i5[7], i7[7], i7[7])∧(UIncreasing(LOAD768(i5[7], i7[7], i7[7])), ≥))
(201) ((UIncreasing(LOAD768(i5[7], i7[7], i7[7])), ≥)∧[(-1)bso_122] ≥ 0)
(202) ((UIncreasing(LOAD768(i5[7], i7[7], i7[7])), ≥)∧[(-1)bso_122] ≥ 0)
(203) ((UIncreasing(LOAD768(i5[7], i7[7], i7[7])), ≥)∧[(-1)bso_122] ≥ 0)
(204) ((UIncreasing(LOAD768(i5[7], i7[7], i7[7])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_122] ≥ 0)
(205) (i5[10]=i5[7]∧i7[10]=i7[7]∧i7[10]=0 ⇒ LOAD484(i5[10], i7[10], 0)≥NonInfC∧LOAD484(i5[10], i7[10], 0)≥LOAD608(i5[10], i7[10], i7[10])∧(UIncreasing(LOAD608(i5[10], i7[10], i7[10])), ≥))
(206) (LOAD484(i5[10], 0, 0)≥NonInfC∧LOAD484(i5[10], 0, 0)≥LOAD608(i5[10], 0, 0)∧(UIncreasing(LOAD608(i5[10], i7[10], i7[10])), ≥))
(207) ((UIncreasing(LOAD608(i5[10], i7[10], i7[10])), ≥)∧[(-1)bso_124] ≥ 0)
(208) ((UIncreasing(LOAD608(i5[10], i7[10], i7[10])), ≥)∧[(-1)bso_124] ≥ 0)
(209) ((UIncreasing(LOAD608(i5[10], i7[10], i7[10])), ≥)∧[(-1)bso_124] ≥ 0)
(210) ((UIncreasing(LOAD608(i5[10], i7[10], i7[10])), ≥)∧0 = 0∧[(-1)bso_124] ≥ 0)
(211) (i7[10]=i7[11]∧i5[10]=i5[11]∧i7[10]=i296[11] ⇒ LOAD484(i5[10], i7[10], 0)≥NonInfC∧LOAD484(i5[10], i7[10], 0)≥LOAD608(i5[10], i7[10], i7[10])∧(UIncreasing(LOAD608(i5[10], i7[10], i7[10])), ≥))
(212) (LOAD484(i5[10], i7[10], 0)≥NonInfC∧LOAD484(i5[10], i7[10], 0)≥LOAD608(i5[10], i7[10], i7[10])∧(UIncreasing(LOAD608(i5[10], i7[10], i7[10])), ≥))
(213) ((UIncreasing(LOAD608(i5[10], i7[10], i7[10])), ≥)∧[(-1)bso_124] ≥ 0)
(214) ((UIncreasing(LOAD608(i5[10], i7[10], i7[10])), ≥)∧[(-1)bso_124] ≥ 0)
(215) ((UIncreasing(LOAD608(i5[10], i7[10], i7[10])), ≥)∧[(-1)bso_124] ≥ 0)
(216) ((UIncreasing(LOAD608(i5[10], i7[10], i7[10])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_124] ≥ 0)
(217) (i5[13]=i5[10]∧i7[13]=0∧i7[13]=i7[10] ⇒ LOAD363(i5[13], i7[13], 0)≥NonInfC∧LOAD363(i5[13], i7[13], 0)≥LOAD484(i5[13], i7[13], i7[13])∧(UIncreasing(LOAD484(i5[13], i7[13], i7[13])), ≥))
(218) (LOAD363(i5[13], 0, 0)≥NonInfC∧LOAD363(i5[13], 0, 0)≥LOAD484(i5[13], 0, 0)∧(UIncreasing(LOAD484(i5[13], i7[13], i7[13])), ≥))
(219) ((UIncreasing(LOAD484(i5[13], i7[13], i7[13])), ≥)∧[(-1)bso_126] ≥ 0)
(220) ((UIncreasing(LOAD484(i5[13], i7[13], i7[13])), ≥)∧[(-1)bso_126] ≥ 0)
(221) ((UIncreasing(LOAD484(i5[13], i7[13], i7[13])), ≥)∧[(-1)bso_126] ≥ 0)
(222) ((UIncreasing(LOAD484(i5[13], i7[13], i7[13])), ≥)∧0 = 0∧[(-1)bso_126] ≥ 0)
(223) (i7[13]=i187[14]∧i5[13]=i5[14]∧i7[13]=i7[14] ⇒ LOAD363(i5[13], i7[13], 0)≥NonInfC∧LOAD363(i5[13], i7[13], 0)≥LOAD484(i5[13], i7[13], i7[13])∧(UIncreasing(LOAD484(i5[13], i7[13], i7[13])), ≥))
(224) (LOAD363(i5[13], i7[13], 0)≥NonInfC∧LOAD363(i5[13], i7[13], 0)≥LOAD484(i5[13], i7[13], i7[13])∧(UIncreasing(LOAD484(i5[13], i7[13], i7[13])), ≥))
(225) ((UIncreasing(LOAD484(i5[13], i7[13], i7[13])), ≥)∧[(-1)bso_126] ≥ 0)
(226) ((UIncreasing(LOAD484(i5[13], i7[13], i7[13])), ≥)∧[(-1)bso_126] ≥ 0)
(227) ((UIncreasing(LOAD484(i5[13], i7[13], i7[13])), ≥)∧[(-1)bso_126] ≥ 0)
(228) ((UIncreasing(LOAD484(i5[13], i7[13], i7[13])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_126] ≥ 0)
(229) (i7[16]=i7[13]∧i7[16]=0∧i5[16]=i5[13] ⇒ LOAD258(i5[16], i7[16], 0)≥NonInfC∧LOAD258(i5[16], i7[16], 0)≥LOAD363(i5[16], i7[16], i7[16])∧(UIncreasing(LOAD363(i5[16], i7[16], i7[16])), ≥))
(230) (LOAD258(i5[16], 0, 0)≥NonInfC∧LOAD258(i5[16], 0, 0)≥LOAD363(i5[16], 0, 0)∧(UIncreasing(LOAD363(i5[16], i7[16], i7[16])), ≥))
(231) ((UIncreasing(LOAD363(i5[16], i7[16], i7[16])), ≥)∧[(-1)bso_128] ≥ 0)
(232) ((UIncreasing(LOAD363(i5[16], i7[16], i7[16])), ≥)∧[(-1)bso_128] ≥ 0)
(233) ((UIncreasing(LOAD363(i5[16], i7[16], i7[16])), ≥)∧[(-1)bso_128] ≥ 0)
(234) ((UIncreasing(LOAD363(i5[16], i7[16], i7[16])), ≥)∧0 = 0∧[(-1)bso_128] ≥ 0)
(235) (i7[16]=i104[17]∧i5[16]=i5[17]∧i7[16]=i7[17] ⇒ LOAD258(i5[16], i7[16], 0)≥NonInfC∧LOAD258(i5[16], i7[16], 0)≥LOAD363(i5[16], i7[16], i7[16])∧(UIncreasing(LOAD363(i5[16], i7[16], i7[16])), ≥))
(236) (LOAD258(i5[16], i7[16], 0)≥NonInfC∧LOAD258(i5[16], i7[16], 0)≥LOAD363(i5[16], i7[16], i7[16])∧(UIncreasing(LOAD363(i5[16], i7[16], i7[16])), ≥))
(237) ((UIncreasing(LOAD363(i5[16], i7[16], i7[16])), ≥)∧[(-1)bso_128] ≥ 0)
(238) ((UIncreasing(LOAD363(i5[16], i7[16], i7[16])), ≥)∧[(-1)bso_128] ≥ 0)
(239) ((UIncreasing(LOAD363(i5[16], i7[16], i7[16])), ≥)∧[(-1)bso_128] ≥ 0)
(240) ((UIncreasing(LOAD363(i5[16], i7[16], i7[16])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_128] ≥ 0)
(241) (i7[19]=0∧i5[19]=i5[16]∧i7[19]=i7[16] ⇒ LOAD175(i5[19], i7[19], 0)≥NonInfC∧LOAD175(i5[19], i7[19], 0)≥LOAD258(i5[19], i7[19], i7[19])∧(UIncreasing(LOAD258(i5[19], i7[19], i7[19])), ≥))
(242) (LOAD175(i5[19], 0, 0)≥NonInfC∧LOAD175(i5[19], 0, 0)≥LOAD258(i5[19], 0, 0)∧(UIncreasing(LOAD258(i5[19], i7[19], i7[19])), ≥))
(243) ((UIncreasing(LOAD258(i5[19], i7[19], i7[19])), ≥)∧[(-1)bso_130] ≥ 0)
(244) ((UIncreasing(LOAD258(i5[19], i7[19], i7[19])), ≥)∧[(-1)bso_130] ≥ 0)
(245) ((UIncreasing(LOAD258(i5[19], i7[19], i7[19])), ≥)∧[(-1)bso_130] ≥ 0)
(246) ((UIncreasing(LOAD258(i5[19], i7[19], i7[19])), ≥)∧0 = 0∧[(-1)bso_130] ≥ 0)
(247) (i7[19]=i49[20]∧i7[19]=i7[20]∧i5[19]=i5[20] ⇒ LOAD175(i5[19], i7[19], 0)≥NonInfC∧LOAD175(i5[19], i7[19], 0)≥LOAD258(i5[19], i7[19], i7[19])∧(UIncreasing(LOAD258(i5[19], i7[19], i7[19])), ≥))
(248) (LOAD175(i5[19], i7[19], 0)≥NonInfC∧LOAD175(i5[19], i7[19], 0)≥LOAD258(i5[19], i7[19], i7[19])∧(UIncreasing(LOAD258(i5[19], i7[19], i7[19])), ≥))
(249) ((UIncreasing(LOAD258(i5[19], i7[19], i7[19])), ≥)∧[(-1)bso_130] ≥ 0)
(250) ((UIncreasing(LOAD258(i5[19], i7[19], i7[19])), ≥)∧[(-1)bso_130] ≥ 0)
(251) ((UIncreasing(LOAD258(i5[19], i7[19], i7[19])), ≥)∧[(-1)bso_130] ≥ 0)
(252) ((UIncreasing(LOAD258(i5[19], i7[19], i7[19])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_130] ≥ 0)
(253) (i5[23]=i5[19]∧i7[23]=i7[19]∧i7[23]=0 ⇒ COND_LOAD83(TRUE, i5[23], i7[23])≥NonInfC∧COND_LOAD83(TRUE, i5[23], i7[23])≥LOAD175(i5[23], i7[23], i7[23])∧(UIncreasing(LOAD175(i5[23], i7[23], i7[23])), ≥))
(254) (COND_LOAD83(TRUE, i5[23], 0)≥NonInfC∧COND_LOAD83(TRUE, i5[23], 0)≥LOAD175(i5[23], 0, 0)∧(UIncreasing(LOAD175(i5[23], i7[23], i7[23])), ≥))
(255) ((UIncreasing(LOAD175(i5[23], i7[23], i7[23])), ≥)∧[(-1)bso_132] ≥ 0)
(256) ((UIncreasing(LOAD175(i5[23], i7[23], i7[23])), ≥)∧[(-1)bso_132] ≥ 0)
(257) ((UIncreasing(LOAD175(i5[23], i7[23], i7[23])), ≥)∧[(-1)bso_132] ≥ 0)
(258) ((UIncreasing(LOAD175(i5[23], i7[23], i7[23])), ≥)∧0 = 0∧[(-1)bso_132] ≥ 0)
(259) (i7[23]=i7[26]∧i5[23]=i5[26]∧i7[23]=i20[26] ⇒ COND_LOAD83(TRUE, i5[23], i7[23])≥NonInfC∧COND_LOAD83(TRUE, i5[23], i7[23])≥LOAD175(i5[23], i7[23], i7[23])∧(UIncreasing(LOAD175(i5[23], i7[23], i7[23])), ≥))
(260) (COND_LOAD83(TRUE, i5[23], i7[23])≥NonInfC∧COND_LOAD83(TRUE, i5[23], i7[23])≥LOAD175(i5[23], i7[23], i7[23])∧(UIncreasing(LOAD175(i5[23], i7[23], i7[23])), ≥))
(261) ((UIncreasing(LOAD175(i5[23], i7[23], i7[23])), ≥)∧[(-1)bso_132] ≥ 0)
(262) ((UIncreasing(LOAD175(i5[23], i7[23], i7[23])), ≥)∧[(-1)bso_132] ≥ 0)
(263) ((UIncreasing(LOAD175(i5[23], i7[23], i7[23])), ≥)∧[(-1)bso_132] ≥ 0)
(264) ((UIncreasing(LOAD175(i5[23], i7[23], i7[23])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_132] ≥ 0)
(265) (i5[22]=i5[23]∧&&(>(i7[22], 0), <(i7[22], 100))=TRUE∧i7[22]=i7[23] ⇒ LOAD83(i5[22], i7[22])≥NonInfC∧LOAD83(i5[22], i7[22])≥COND_LOAD83(&&(>(i7[22], 0), <(i7[22], 100)), i5[22], i7[22])∧(UIncreasing(COND_LOAD83(&&(>(i7[22], 0), <(i7[22], 100)), i5[22], i7[22])), ≥))
(266) (>(i7[22], 0)=TRUE∧<(i7[22], 100)=TRUE ⇒ LOAD83(i5[22], i7[22])≥NonInfC∧LOAD83(i5[22], i7[22])≥COND_LOAD83(&&(>(i7[22], 0), <(i7[22], 100)), i5[22], i7[22])∧(UIncreasing(COND_LOAD83(&&(>(i7[22], 0), <(i7[22], 100)), i5[22], i7[22])), ≥))
(267) (i7[22] + [-1] ≥ 0∧[99] + [-1]i7[22] ≥ 0 ⇒ (UIncreasing(COND_LOAD83(&&(>(i7[22], 0), <(i7[22], 100)), i5[22], i7[22])), ≥)∧[(-1)bni_133 + (-1)Bound*bni_133] + [(-1)bni_133]i7[22] ≥ 0∧[(-1)bso_134] ≥ 0)
(268) (i7[22] + [-1] ≥ 0∧[99] + [-1]i7[22] ≥ 0 ⇒ (UIncreasing(COND_LOAD83(&&(>(i7[22], 0), <(i7[22], 100)), i5[22], i7[22])), ≥)∧[(-1)bni_133 + (-1)Bound*bni_133] + [(-1)bni_133]i7[22] ≥ 0∧[(-1)bso_134] ≥ 0)
(269) (i7[22] + [-1] ≥ 0∧[99] + [-1]i7[22] ≥ 0 ⇒ (UIncreasing(COND_LOAD83(&&(>(i7[22], 0), <(i7[22], 100)), i5[22], i7[22])), ≥)∧[(-1)bni_133 + (-1)Bound*bni_133] + [(-1)bni_133]i7[22] ≥ 0∧[(-1)bso_134] ≥ 0)
(270) (i7[22] + [-1] ≥ 0∧[99] + [-1]i7[22] ≥ 0 ⇒ (UIncreasing(COND_LOAD83(&&(>(i7[22], 0), <(i7[22], 100)), i5[22], i7[22])), ≥)∧0 = 0∧[(-1)bni_133 + (-1)Bound*bni_133] + [(-1)bni_133]i7[22] ≥ 0∧0 = 0∧[(-1)bso_134] ≥ 0)
(271) (i7[22] ≥ 0∧[98] + [-1]i7[22] ≥ 0 ⇒ (UIncreasing(COND_LOAD83(&&(>(i7[22], 0), <(i7[22], 100)), i5[22], i7[22])), ≥)∧0 = 0∧[(-2)bni_133 + (-1)Bound*bni_133] + [(-1)bni_133]i7[22] ≥ 0∧0 = 0∧[(-1)bso_134] ≥ 0)
(272) (i7[1]=0∧i5[1]=i5[0]∧i7[1]=i7[0]∧i5[0]=i5[22]∧+(i7[0], 1)=i7[22] ⇒ LOAD1100(i5[0], i7[0], 0)≥NonInfC∧LOAD1100(i5[0], i7[0], 0)≥LOAD83(i5[0], +(i7[0], 1))∧(UIncreasing(LOAD83(i5[0], +(i7[0], 1))), ≥))
(273) (LOAD1100(i5[1], 0, 0)≥NonInfC∧LOAD1100(i5[1], 0, 0)≥LOAD83(i5[1], +(0, 1))∧(UIncreasing(LOAD83(i5[0], +(i7[0], 1))), ≥))
(274) ((UIncreasing(LOAD83(i5[0], +(i7[0], 1))), ≥)∧[1 + (-1)bso_136] ≥ 0)
(275) ((UIncreasing(LOAD83(i5[0], +(i7[0], 1))), ≥)∧[1 + (-1)bso_136] ≥ 0)
(276) ((UIncreasing(LOAD83(i5[0], +(i7[0], 1))), ≥)∧[1 + (-1)bso_136] ≥ 0)
(277) ((UIncreasing(LOAD83(i5[0], +(i7[0], 1))), ≥)∧0 = 0∧[1 + (-1)bso_136] ≥ 0)
(278) (i7[3]=i7[0]∧i5[3]=i5[0]∧-(i696[3], 1)=0∧i5[0]=i5[22]∧+(i7[0], 1)=i7[22] ⇒ LOAD1100(i5[0], i7[0], 0)≥NonInfC∧LOAD1100(i5[0], i7[0], 0)≥LOAD83(i5[0], +(i7[0], 1))∧(UIncreasing(LOAD83(i5[0], +(i7[0], 1))), ≥))
(279) (-(i696[3], 1)=0 ⇒ LOAD1100(i5[3], i7[3], 0)≥NonInfC∧LOAD1100(i5[3], i7[3], 0)≥LOAD83(i5[3], +(i7[3], 1))∧(UIncreasing(LOAD83(i5[0], +(i7[0], 1))), ≥))
(280) (i696[3] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD83(i5[0], +(i7[0], 1))), ≥)∧0 ≥ 0∧[1 + (-1)bso_136] ≥ 0)
(281) (i696[3] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD83(i5[0], +(i7[0], 1))), ≥)∧0 ≥ 0∧[1 + (-1)bso_136] ≥ 0)
(282) (i696[3] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD83(i5[0], +(i7[0], 1))), ≥)∧0 ≥ 0∧[1 + (-1)bso_136] ≥ 0)
(283) (i696[3] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD83(i5[0], +(i7[0], 1))), ≥)∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧[1 + (-1)bso_136] ≥ 0)
POL(TRUE) = [3]
POL(FALSE) = 0
POL(COND_LOAD175(x1, x2, x3, x4)) = [-1] + [-1]x3
POL(LOAD175(x1, x2, x3)) = [-1] + [-1]x2
POL(-(x1, x2)) = x1 + [-1]x2
POL(1) = [1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(COND_LOAD258(x1, x2, x3, x4)) = [-1] + [-1]x3
POL(LOAD258(x1, x2, x3)) = [-1] + [-1]x2
POL(COND_LOAD363(x1, x2, x3, x4)) = [-1] + [-1]x3
POL(LOAD363(x1, x2, x3)) = [-1] + [-1]x2
POL(COND_LOAD484(x1, x2, x3, x4)) = [-1] + [-1]x3
POL(LOAD484(x1, x2, x3)) = [-1] + [-1]x2
POL(COND_LOAD608(x1, x2, x3, x4)) = [-1] + [-1]x3
POL(LOAD608(x1, x2, x3)) = [-1] + [-1]x2
POL(COND_LOAD768(x1, x2, x3, x4)) = [-1] + [-1]x3
POL(LOAD768(x1, x2, x3)) = [-1] + [-1]x2
POL(COND_LOAD949(x1, x2, x3, x4)) = [-1] + [-1]x3
POL(LOAD949(x1, x2, x3)) = [-1] + [-1]x2
POL(COND_LOAD1100(x1, x2, x3, x4)) = [-1] + [-1]x3
POL(LOAD1100(x1, x2, x3)) = [-1] + [-1]x2
POL(COND_LOAD83(x1, x2, x3)) = [-1] + [-1]x3
POL(LOAD83(x1, x2)) = [-1] + [-1]x2
POL(&&(x1, x2)) = [-1]
POL(<(x1, x2)) = [-1]
POL(100) = [100]
POL(+(x1, x2)) = x1 + x2
LOAD1100(i5[0], i7[0], 0) → LOAD83(i5[0], +(i7[0], 1))
LOAD83(i5[22], i7[22]) → COND_LOAD83(&&(>(i7[22], 0), <(i7[22], 100)), i5[22], i7[22])
COND_LOAD175(TRUE, i5[27], i7[27], i20[27]) → LOAD175(i5[27], i7[27], -(i20[27], 1))
LOAD175(i5[26], i7[26], i20[26]) → COND_LOAD175(>(i20[26], 0), i5[26], i7[26], i20[26])
COND_LOAD258(TRUE, i5[21], i7[21], i49[21]) → LOAD258(i5[21], i7[21], -(i49[21], 1))
LOAD258(i5[20], i7[20], i49[20]) → COND_LOAD258(>(i49[20], 0), i5[20], i7[20], i49[20])
COND_LOAD363(TRUE, i5[18], i7[18], i104[18]) → LOAD363(i5[18], i7[18], -(i104[18], 1))
LOAD363(i5[17], i7[17], i104[17]) → COND_LOAD363(>(i104[17], 0), i5[17], i7[17], i104[17])
COND_LOAD484(TRUE, i5[15], i7[15], i187[15]) → LOAD484(i5[15], i7[15], -(i187[15], 1))
LOAD484(i5[14], i7[14], i187[14]) → COND_LOAD484(>(i187[14], 0), i5[14], i7[14], i187[14])
COND_LOAD608(TRUE, i5[12], i7[12], i296[12]) → LOAD608(i5[12], i7[12], -(i296[12], 1))
LOAD608(i5[11], i7[11], i296[11]) → COND_LOAD608(>(i296[11], 0), i5[11], i7[11], i296[11])
COND_LOAD768(TRUE, i5[9], i7[9], i436[9]) → LOAD768(i5[9], i7[9], -(i436[9], 1))
LOAD768(i5[8], i7[8], i436[8]) → COND_LOAD768(>(i436[8], 0), i5[8], i7[8], i436[8])
COND_LOAD949(TRUE, i5[6], i7[6], i605[6]) → LOAD949(i5[6], i7[6], -(i605[6], 1))
LOAD949(i5[5], i7[5], i605[5]) → COND_LOAD949(>(i605[5], 0), i5[5], i7[5], i605[5])
COND_LOAD1100(TRUE, i5[3], i7[3], i696[3]) → LOAD1100(i5[3], i7[3], -(i696[3], 1))
LOAD1100(i5[2], i7[2], i696[2]) → COND_LOAD1100(>(i696[2], 0), i5[2], i7[2], i696[2])
LOAD949(i5[1], i7[1], 0) → LOAD1100(i5[1], i7[1], i7[1])
LOAD768(i5[4], i7[4], 0) → LOAD949(i5[4], i7[4], i7[4])
LOAD608(i5[7], i7[7], 0) → LOAD768(i5[7], i7[7], i7[7])
LOAD484(i5[10], i7[10], 0) → LOAD608(i5[10], i7[10], i7[10])
LOAD363(i5[13], i7[13], 0) → LOAD484(i5[13], i7[13], i7[13])
LOAD258(i5[16], i7[16], 0) → LOAD363(i5[16], i7[16], i7[16])
LOAD175(i5[19], i7[19], 0) → LOAD258(i5[19], i7[19], i7[19])
COND_LOAD83(TRUE, i5[23], i7[23]) → LOAD175(i5[23], i7[23], i7[23])
LOAD83(i5[22], i7[22]) → COND_LOAD83(&&(>(i7[22], 0), <(i7[22], 100)), i5[22], i7[22])
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(4) -> (1), if ((i5[4] →* i5[1])∧(i7[4] →* 0)∧(i7[4] →* i7[1]))
(6) -> (1), if ((i605[6] - 1 →* 0)∧(i5[6] →* i5[1])∧(i7[6] →* i7[1]))
(1) -> (2), if ((i5[1] →* i5[2])∧(i7[1] →* i7[2])∧(i7[1] →* i696[2]))
(3) -> (2), if ((i7[3] →* i7[2])∧(i696[3] - 1 →* i696[2])∧(i5[3] →* i5[2]))
(2) -> (3), if ((i5[2] →* i5[3])∧(i7[2] →* i7[3])∧(i696[2] →* i696[3])∧(i696[2] > 0 →* TRUE))
(7) -> (4), if ((i7[7] →* 0)∧(i7[7] →* i7[4])∧(i5[7] →* i5[4]))
(9) -> (4), if ((i7[9] →* i7[4])∧(i436[9] - 1 →* 0)∧(i5[9] →* i5[4]))
(4) -> (5), if ((i7[4] →* i7[5])∧(i7[4] →* i605[5])∧(i5[4] →* i5[5]))
(6) -> (5), if ((i7[6] →* i7[5])∧(i605[6] - 1 →* i605[5])∧(i5[6] →* i5[5]))
(5) -> (6), if ((i5[5] →* i5[6])∧(i7[5] →* i7[6])∧(i605[5] →* i605[6])∧(i605[5] > 0 →* TRUE))
(10) -> (7), if ((i5[10] →* i5[7])∧(i7[10] →* i7[7])∧(i7[10] →* 0))
(12) -> (7), if ((i296[12] - 1 →* 0)∧(i7[12] →* i7[7])∧(i5[12] →* i5[7]))
(7) -> (8), if ((i5[7] →* i5[8])∧(i7[7] →* i436[8])∧(i7[7] →* i7[8]))
(9) -> (8), if ((i436[9] - 1 →* i436[8])∧(i7[9] →* i7[8])∧(i5[9] →* i5[8]))
(8) -> (9), if ((i7[8] →* i7[9])∧(i436[8] →* i436[9])∧(i5[8] →* i5[9])∧(i436[8] > 0 →* TRUE))
(13) -> (10), if ((i5[13] →* i5[10])∧(i7[13] →* 0)∧(i7[13] →* i7[10]))
(15) -> (10), if ((i7[15] →* i7[10])∧(i187[15] - 1 →* 0)∧(i5[15] →* i5[10]))
(10) -> (11), if ((i7[10] →* i7[11])∧(i5[10] →* i5[11])∧(i7[10] →* i296[11]))
(12) -> (11), if ((i296[12] - 1 →* i296[11])∧(i5[12] →* i5[11])∧(i7[12] →* i7[11]))
(11) -> (12), if ((i296[11] > 0 →* TRUE)∧(i7[11] →* i7[12])∧(i296[11] →* i296[12])∧(i5[11] →* i5[12]))
(16) -> (13), if ((i7[16] →* i7[13])∧(i7[16] →* 0)∧(i5[16] →* i5[13]))
(18) -> (13), if ((i5[18] →* i5[13])∧(i104[18] - 1 →* 0)∧(i7[18] →* i7[13]))
(13) -> (14), if ((i7[13] →* i187[14])∧(i5[13] →* i5[14])∧(i7[13] →* i7[14]))
(15) -> (14), if ((i187[15] - 1 →* i187[14])∧(i5[15] →* i5[14])∧(i7[15] →* i7[14]))
(14) -> (15), if ((i7[14] →* i7[15])∧(i5[14] →* i5[15])∧(i187[14] →* i187[15])∧(i187[14] > 0 →* TRUE))
(19) -> (16), if ((i7[19] →* 0)∧(i5[19] →* i5[16])∧(i7[19] →* i7[16]))
(21) -> (16), if ((i7[21] →* i7[16])∧(i49[21] - 1 →* 0)∧(i5[21] →* i5[16]))
(16) -> (17), if ((i7[16] →* i104[17])∧(i5[16] →* i5[17])∧(i7[16] →* i7[17]))
(18) -> (17), if ((i104[18] - 1 →* i104[17])∧(i5[18] →* i5[17])∧(i7[18] →* i7[17]))
(17) -> (18), if ((i7[17] →* i7[18])∧(i5[17] →* i5[18])∧(i104[17] →* i104[18])∧(i104[17] > 0 →* TRUE))
(23) -> (19), if ((i5[23] →* i5[19])∧(i7[23] →* i7[19])∧(i7[23] →* 0))
(27) -> (19), if ((i7[27] →* i7[19])∧(i5[27] →* i5[19])∧(i20[27] - 1 →* 0))
(19) -> (20), if ((i7[19] →* i49[20])∧(i7[19] →* i7[20])∧(i5[19] →* i5[20]))
(21) -> (20), if ((i7[21] →* i7[20])∧(i49[21] - 1 →* i49[20])∧(i5[21] →* i5[20]))
(20) -> (21), if ((i7[20] →* i7[21])∧(i49[20] > 0 →* TRUE)∧(i5[20] →* i5[21])∧(i49[20] →* i49[21]))
(22) -> (23), if ((i5[22] →* i5[23])∧(i7[22] > 0 && i7[22] < 100 →* TRUE)∧(i7[22] →* i7[23]))
(23) -> (26), if ((i7[23] →* i7[26])∧(i5[23] →* i5[26])∧(i7[23] →* i20[26]))
(27) -> (26), if ((i20[27] - 1 →* i20[26])∧(i7[27] →* i7[26])∧(i5[27] →* i5[26]))
(26) -> (27), if ((i20[26] > 0 →* TRUE)∧(i7[26] →* i7[27])∧(i20[26] →* i20[27])∧(i5[26] →* i5[27]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(3) -> (2), if ((i7[3] →* i7[2])∧(i696[3] - 1 →* i696[2])∧(i5[3] →* i5[2]))
(2) -> (3), if ((i5[2] →* i5[3])∧(i7[2] →* i7[3])∧(i696[2] →* i696[3])∧(i696[2] > 0 →* TRUE))
(1) (i5[2]=i5[3]∧i7[2]=i7[3]∧i696[2]=i696[3]∧>(i696[2], 0)=TRUE∧i7[3]=i7[2]1∧-(i696[3], 1)=i696[2]1∧i5[3]=i5[2]1 ⇒ COND_LOAD1100(TRUE, i5[3], i7[3], i696[3])≥NonInfC∧COND_LOAD1100(TRUE, i5[3], i7[3], i696[3])≥LOAD1100(i5[3], i7[3], -(i696[3], 1))∧(UIncreasing(LOAD1100(i5[3], i7[3], -(i696[3], 1))), ≥))
(2) (>(i696[2], 0)=TRUE ⇒ COND_LOAD1100(TRUE, i5[2], i7[2], i696[2])≥NonInfC∧COND_LOAD1100(TRUE, i5[2], i7[2], i696[2])≥LOAD1100(i5[2], i7[2], -(i696[2], 1))∧(UIncreasing(LOAD1100(i5[3], i7[3], -(i696[3], 1))), ≥))
(3) (i696[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD1100(i5[3], i7[3], -(i696[3], 1))), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]i696[2] ≥ 0∧[1 + (-1)bso_14] ≥ 0)
(4) (i696[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD1100(i5[3], i7[3], -(i696[3], 1))), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]i696[2] ≥ 0∧[1 + (-1)bso_14] ≥ 0)
(5) (i696[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD1100(i5[3], i7[3], -(i696[3], 1))), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]i696[2] ≥ 0∧[1 + (-1)bso_14] ≥ 0)
(6) (i696[2] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD1100(i5[3], i7[3], -(i696[3], 1))), ≥)∧0 = 0∧0 = 0∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]i696[2] ≥ 0∧0 = 0∧0 = 0∧[1 + (-1)bso_14] ≥ 0)
(7) (i696[2] ≥ 0 ⇒ (UIncreasing(LOAD1100(i5[3], i7[3], -(i696[3], 1))), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_13] + [bni_13]i696[2] ≥ 0∧0 = 0∧0 = 0∧[1 + (-1)bso_14] ≥ 0)
(8) (i5[2]=i5[3]∧i7[2]=i7[3]∧i696[2]=i696[3]∧>(i696[2], 0)=TRUE ⇒ LOAD1100(i5[2], i7[2], i696[2])≥NonInfC∧LOAD1100(i5[2], i7[2], i696[2])≥COND_LOAD1100(>(i696[2], 0), i5[2], i7[2], i696[2])∧(UIncreasing(COND_LOAD1100(>(i696[2], 0), i5[2], i7[2], i696[2])), ≥))
(9) (>(i696[2], 0)=TRUE ⇒ LOAD1100(i5[2], i7[2], i696[2])≥NonInfC∧LOAD1100(i5[2], i7[2], i696[2])≥COND_LOAD1100(>(i696[2], 0), i5[2], i7[2], i696[2])∧(UIncreasing(COND_LOAD1100(>(i696[2], 0), i5[2], i7[2], i696[2])), ≥))
(10) (i696[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1100(>(i696[2], 0), i5[2], i7[2], i696[2])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]i696[2] ≥ 0∧[(-1)bso_16] ≥ 0)
(11) (i696[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1100(>(i696[2], 0), i5[2], i7[2], i696[2])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]i696[2] ≥ 0∧[(-1)bso_16] ≥ 0)
(12) (i696[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1100(>(i696[2], 0), i5[2], i7[2], i696[2])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]i696[2] ≥ 0∧[(-1)bso_16] ≥ 0)
(13) (i696[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD1100(>(i696[2], 0), i5[2], i7[2], i696[2])), ≥)∧0 = 0∧0 = 0∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]i696[2] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_16] ≥ 0)
(14) (i696[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD1100(>(i696[2], 0), i5[2], i7[2], i696[2])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_15] + [bni_15]i696[2] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_16] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_LOAD1100(x1, x2, x3, x4)) = [-1] + x4
POL(LOAD1100(x1, x2, x3)) = [-1] + x3
POL(-(x1, x2)) = x1 + [-1]x2
POL(1) = [1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
COND_LOAD1100(TRUE, i5[3], i7[3], i696[3]) → LOAD1100(i5[3], i7[3], -(i696[3], 1))
COND_LOAD1100(TRUE, i5[3], i7[3], i696[3]) → LOAD1100(i5[3], i7[3], -(i696[3], 1))
LOAD1100(i5[2], i7[2], i696[2]) → COND_LOAD1100(>(i696[2], 0), i5[2], i7[2], i696[2])
LOAD1100(i5[2], i7[2], i696[2]) → COND_LOAD1100(>(i696[2], 0), i5[2], i7[2], i696[2])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(6) -> (5), if ((i7[6] →* i7[5])∧(i605[6] - 1 →* i605[5])∧(i5[6] →* i5[5]))
(5) -> (6), if ((i5[5] →* i5[6])∧(i7[5] →* i7[6])∧(i605[5] →* i605[6])∧(i605[5] > 0 →* TRUE))
(1) (i5[5]=i5[6]∧i7[5]=i7[6]∧i605[5]=i605[6]∧>(i605[5], 0)=TRUE∧i7[6]=i7[5]1∧-(i605[6], 1)=i605[5]1∧i5[6]=i5[5]1 ⇒ COND_LOAD949(TRUE, i5[6], i7[6], i605[6])≥NonInfC∧COND_LOAD949(TRUE, i5[6], i7[6], i605[6])≥LOAD949(i5[6], i7[6], -(i605[6], 1))∧(UIncreasing(LOAD949(i5[6], i7[6], -(i605[6], 1))), ≥))
(2) (>(i605[5], 0)=TRUE ⇒ COND_LOAD949(TRUE, i5[5], i7[5], i605[5])≥NonInfC∧COND_LOAD949(TRUE, i5[5], i7[5], i605[5])≥LOAD949(i5[5], i7[5], -(i605[5], 1))∧(UIncreasing(LOAD949(i5[6], i7[6], -(i605[6], 1))), ≥))
(3) (i605[5] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD949(i5[6], i7[6], -(i605[6], 1))), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]i605[5] ≥ 0∧[1 + (-1)bso_14] ≥ 0)
(4) (i605[5] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD949(i5[6], i7[6], -(i605[6], 1))), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]i605[5] ≥ 0∧[1 + (-1)bso_14] ≥ 0)
(5) (i605[5] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD949(i5[6], i7[6], -(i605[6], 1))), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]i605[5] ≥ 0∧[1 + (-1)bso_14] ≥ 0)
(6) (i605[5] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD949(i5[6], i7[6], -(i605[6], 1))), ≥)∧0 = 0∧0 = 0∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]i605[5] ≥ 0∧0 = 0∧0 = 0∧[1 + (-1)bso_14] ≥ 0)
(7) (i605[5] ≥ 0 ⇒ (UIncreasing(LOAD949(i5[6], i7[6], -(i605[6], 1))), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_13] + [bni_13]i605[5] ≥ 0∧0 = 0∧0 = 0∧[1 + (-1)bso_14] ≥ 0)
(8) (i5[5]=i5[6]∧i7[5]=i7[6]∧i605[5]=i605[6]∧>(i605[5], 0)=TRUE ⇒ LOAD949(i5[5], i7[5], i605[5])≥NonInfC∧LOAD949(i5[5], i7[5], i605[5])≥COND_LOAD949(>(i605[5], 0), i5[5], i7[5], i605[5])∧(UIncreasing(COND_LOAD949(>(i605[5], 0), i5[5], i7[5], i605[5])), ≥))
(9) (>(i605[5], 0)=TRUE ⇒ LOAD949(i5[5], i7[5], i605[5])≥NonInfC∧LOAD949(i5[5], i7[5], i605[5])≥COND_LOAD949(>(i605[5], 0), i5[5], i7[5], i605[5])∧(UIncreasing(COND_LOAD949(>(i605[5], 0), i5[5], i7[5], i605[5])), ≥))
(10) (i605[5] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD949(>(i605[5], 0), i5[5], i7[5], i605[5])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]i605[5] ≥ 0∧[(-1)bso_16] ≥ 0)
(11) (i605[5] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD949(>(i605[5], 0), i5[5], i7[5], i605[5])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]i605[5] ≥ 0∧[(-1)bso_16] ≥ 0)
(12) (i605[5] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD949(>(i605[5], 0), i5[5], i7[5], i605[5])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]i605[5] ≥ 0∧[(-1)bso_16] ≥ 0)
(13) (i605[5] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD949(>(i605[5], 0), i5[5], i7[5], i605[5])), ≥)∧0 = 0∧0 = 0∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]i605[5] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_16] ≥ 0)
(14) (i605[5] ≥ 0 ⇒ (UIncreasing(COND_LOAD949(>(i605[5], 0), i5[5], i7[5], i605[5])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_15] + [bni_15]i605[5] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_16] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_LOAD949(x1, x2, x3, x4)) = [-1] + x4
POL(LOAD949(x1, x2, x3)) = [-1] + x3
POL(-(x1, x2)) = x1 + [-1]x2
POL(1) = [1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
COND_LOAD949(TRUE, i5[6], i7[6], i605[6]) → LOAD949(i5[6], i7[6], -(i605[6], 1))
COND_LOAD949(TRUE, i5[6], i7[6], i605[6]) → LOAD949(i5[6], i7[6], -(i605[6], 1))
LOAD949(i5[5], i7[5], i605[5]) → COND_LOAD949(>(i605[5], 0), i5[5], i7[5], i605[5])
LOAD949(i5[5], i7[5], i605[5]) → COND_LOAD949(>(i605[5], 0), i5[5], i7[5], i605[5])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(9) -> (8), if ((i436[9] - 1 →* i436[8])∧(i7[9] →* i7[8])∧(i5[9] →* i5[8]))
(8) -> (9), if ((i7[8] →* i7[9])∧(i436[8] →* i436[9])∧(i5[8] →* i5[9])∧(i436[8] > 0 →* TRUE))
(1) (i7[8]=i7[9]∧i436[8]=i436[9]∧i5[8]=i5[9]∧>(i436[8], 0)=TRUE∧-(i436[9], 1)=i436[8]1∧i7[9]=i7[8]1∧i5[9]=i5[8]1 ⇒ COND_LOAD768(TRUE, i5[9], i7[9], i436[9])≥NonInfC∧COND_LOAD768(TRUE, i5[9], i7[9], i436[9])≥LOAD768(i5[9], i7[9], -(i436[9], 1))∧(UIncreasing(LOAD768(i5[9], i7[9], -(i436[9], 1))), ≥))
(2) (>(i436[8], 0)=TRUE ⇒ COND_LOAD768(TRUE, i5[8], i7[8], i436[8])≥NonInfC∧COND_LOAD768(TRUE, i5[8], i7[8], i436[8])≥LOAD768(i5[8], i7[8], -(i436[8], 1))∧(UIncreasing(LOAD768(i5[9], i7[9], -(i436[9], 1))), ≥))
(3) (i436[8] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD768(i5[9], i7[9], -(i436[9], 1))), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]i436[8] ≥ 0∧[1 + (-1)bso_14] ≥ 0)
(4) (i436[8] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD768(i5[9], i7[9], -(i436[9], 1))), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]i436[8] ≥ 0∧[1 + (-1)bso_14] ≥ 0)
(5) (i436[8] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD768(i5[9], i7[9], -(i436[9], 1))), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]i436[8] ≥ 0∧[1 + (-1)bso_14] ≥ 0)
(6) (i436[8] + [-1] ≥ 0 ⇒ (UIncreasing(LOAD768(i5[9], i7[9], -(i436[9], 1))), ≥)∧0 = 0∧0 = 0∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]i436[8] ≥ 0∧0 = 0∧0 = 0∧[1 + (-1)bso_14] ≥ 0)
(7) (i436[8] ≥ 0 ⇒ (UIncreasing(LOAD768(i5[9], i7[9], -(i436[9], 1))), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_13] + [bni_13]i436[8] ≥ 0∧0 = 0∧0 = 0∧[1 + (-1)bso_14] ≥ 0)
(8) (i7[8]=i7[9]∧i436[8]=i436[9]∧i5[8]=i5[9]∧>(i436[8], 0)=TRUE ⇒ LOAD768(i5[8], i7[8], i436[8])≥NonInfC∧LOAD768(i5[8], i7[8], i436[8])≥COND_LOAD768(>(i436[8], 0), i5[8], i7[8], i436[8])∧(UIncreasing(COND_LOAD768(>(i436[8], 0), i5[8], i7[8], i436[8])), ≥))
(9) (>(i436[8], 0)=TRUE ⇒ LOAD768(i5[8], i7[8], i436[8])≥NonInfC∧LOAD768(i5[8], i7[8], i436[8])≥COND_LOAD768(>(i436[8], 0), i5[8], i7[8], i436[8])∧(UIncreasing(COND_LOAD768(>(i436[8], 0), i5[8], i7[8], i436[8])), ≥))
(10) (i436[8] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD768(>(i436[8], 0), i5[8], i7[8], i436[8])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]i436[8] ≥ 0∧[(-1)bso_16] ≥ 0)
(11) (i436[8] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD768(>(i436[8], 0), i5[8], i7[8], i436[8])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]i436[8] ≥ 0∧[(-1)bso_16] ≥ 0)
(12) (i436[8] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD768(>(i436[8], 0), i5[8], i7[8], i436[8])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]i436[8] ≥ 0∧[(-1)bso_16] ≥ 0)
(13) (i436[8] + [-1] ≥ 0 ⇒ (UIncreasing(COND_LOAD768(>(i436[8], 0), i5[8], i7[8], i436[8])), ≥)∧0 = 0∧0 = 0∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]i436[8] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_16] ≥ 0)
(14) (i436[8] ≥ 0 ⇒ (UIncreasing(COND_LOAD768(>(i436[8], 0), i5[8], i7[8], i436[8])), ≥)∧0 = 0∧0 = 0∧[(-1)Bound*bni_15] + [bni_15]i436[8] ≥ 0∧0 = 0∧0 = 0∧[(-1)bso_16] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_LOAD768(x1, x2, x3, x4)) = [-1] + x4
POL(LOAD768(x1, x2, x3)) = [-1] + x3
POL(-(x1, x2)) = x1 + [-1]x2
POL(1) = [1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
COND_LOAD768(TRUE, i5[9], i7[9], i436[9]) → LOAD768(i5[9], i7[9], -(i436[9], 1))
COND_LOAD768(TRUE, i5[9], i7[9], i436[9]) → LOAD768(i5[9], i7[9], -(i436[9], 1))
LOAD768(i5[8], i7[8], i436[8]) → COND_LOAD768(>(i436[8], 0), i5[8], i7[8], i436[8])
LOAD768(i5[8], i7[8], i436[8]) → COND_LOAD768(>(i436[8], 0), i5[8], i7[8], i436[8])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |