0 JBC
↳1 JBC2FIG (⇒)
↳2 JBCTerminationGraph
↳3 FIGtoITRSProof (⇒)
↳4 IDP
↳5 IDPNonInfProof (⇒)
↳6 AND
↳7 IDP
↳8 IDependencyGraphProof (⇔)
↳9 TRUE
↳10 IDP
↳11 IDependencyGraphProof (⇔)
↳12 IDP
↳13 UsableRulesProof (⇔)
↳14 IDP
↳15 IDPNonInfProof (⇒)
↳16 AND
↳17 IDP
↳18 IDependencyGraphProof (⇔)
↳19 IDP
↳20 IDPNonInfProof (⇒)
↳21 IDP
↳22 IDependencyGraphProof (⇔)
↳23 TRUE
↳24 IDP
↳25 IDependencyGraphProof (⇔)
↳26 IDP
↳27 IDPNonInfProof (⇒)
↳28 IDP
↳29 IDependencyGraphProof (⇔)
↳30 TRUE
public class Test1 {
public static void main(String[] args) {
rec(args.length, args.length % 5, args.length % 4);
}
private static void rec(int x, int y, int z) {
if (x + y + 3 * z < 0)
return;
else if (x > y)
rec(x - 1, y, z);
else if (y > z)
rec (x, y - 2, z);
else
rec (x, y, z - 1);
}
}
Generated 45 rules for P and 21 rules for R.
Combined rules. Obtained 3 rules for P and 6 rules for R.
Filtered ground terms:
1062_0_rec_Load(x1, x2, x3, x4, x5) → 1062_0_rec_Load(x2, x3, x4, x5)
Cond_1062_0_rec_Load2(x1, x2, x3, x4, x5, x6) → Cond_1062_0_rec_Load2(x1, x3, x4, x5, x6)
Cond_1062_0_rec_Load1(x1, x2, x3, x4, x5, x6) → Cond_1062_0_rec_Load1(x1, x3, x4, x5, x6)
Cond_1062_0_rec_Load(x1, x2, x3, x4, x5, x6) → Cond_1062_0_rec_Load(x1, x3, x4, x5, x6)
1150_0_rec_Return(x1) → 1150_0_rec_Return
1081_0_rec_Return(x1, x2, x3, x4) → 1081_0_rec_Return(x2, x3, x4)
Filtered duplicate args:
1062_0_rec_Load(x1, x2, x3, x4) → 1062_0_rec_Load(x2, x3, x4)
Cond_1062_0_rec_Load2(x1, x2, x3, x4, x5) → Cond_1062_0_rec_Load2(x1, x3, x4, x5)
Cond_1062_0_rec_Load1(x1, x2, x3, x4, x5) → Cond_1062_0_rec_Load1(x1, x3, x4, x5)
Cond_1062_0_rec_Load(x1, x2, x3, x4, x5) → Cond_1062_0_rec_Load(x1, x3, x4, x5)
Combined rules. Obtained 3 rules for P and 6 rules for R.
Finished conversion. Obtained 3 rules for P and 6 rules for R. System has predefined symbols.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0] →* TRUE)∧(x1[0] →* x1[1])∧(x2[0] →* x2[1])∧(x0[0] →* x0[1]))
(1) -> (0), if ((x1[1] →* x1[0])∧(x2[1] - 1 →* x2[0])∧(x0[1] →* x0[0]))
(1) -> (2), if ((x1[1] →* x1[2])∧(x2[1] - 1 →* x2[2])∧(x0[1] →* x0[2]))
(1) -> (4), if ((x1[1] →* x1[4])∧(x2[1] - 1 →* x2[4])∧(x0[1] →* x0[4]))
(2) -> (3), if ((x2[2] < x1[2] && x1[2] >= x0[2] && 0 <= x0[2] + x1[2] + 3 * x2[2] →* TRUE)∧(x1[2] →* x1[3])∧(x2[2] →* x2[3])∧(x0[2] →* x0[3]))
(3) -> (0), if ((x1[3] - 2 →* x1[0])∧(x2[3] →* x2[0])∧(x0[3] →* x0[0]))
(3) -> (2), if ((x1[3] - 2 →* x1[2])∧(x2[3] →* x2[2])∧(x0[3] →* x0[2]))
(3) -> (4), if ((x1[3] - 2 →* x1[4])∧(x2[3] →* x2[4])∧(x0[3] →* x0[4]))
(4) -> (5), if ((x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4] →* TRUE)∧(x1[4] →* x1[5])∧(x2[4] →* x2[5])∧(x0[4] →* x0[5]))
(5) -> (0), if ((x1[5] →* x1[0])∧(x2[5] →* x2[0])∧(x0[5] - 1 →* x0[0]))
(5) -> (2), if ((x1[5] →* x1[2])∧(x2[5] →* x2[2])∧(x0[5] - 1 →* x0[2]))
(5) -> (4), if ((x1[5] →* x1[4])∧(x2[5] →* x2[4])∧(x0[5] - 1 →* x0[4]))
(1) (&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0]))))=TRUE∧x1[0]=x1[1]∧x2[0]=x2[1]∧x0[0]=x0[1] ⇒ 1062_0_REC_LOAD(x1[0], x2[0], x0[0])≥NonInfC∧1062_0_REC_LOAD(x1[0], x2[0], x0[0])≥COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])∧(UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥))
(2) (<=(0, +(+(x0[0], x1[0]), *(3, x2[0])))=TRUE∧>=(x2[0], x1[0])=TRUE∧>=(x1[0], x0[0])=TRUE ⇒ 1062_0_REC_LOAD(x1[0], x2[0], x0[0])≥NonInfC∧1062_0_REC_LOAD(x1[0], x2[0], x0[0])≥COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])∧(UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥))
(3) (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[bni_19 + (-1)Bound*bni_19] + [bni_19]x0[0] + [(2)bni_19]x2[0] + [(2)bni_19]x1[0] ≥ 0∧[1 + (-1)bso_20] ≥ 0)
(4) (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[bni_19 + (-1)Bound*bni_19] + [bni_19]x0[0] + [(2)bni_19]x2[0] + [(2)bni_19]x1[0] ≥ 0∧[1 + (-1)bso_20] ≥ 0)
(5) (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[bni_19 + (-1)Bound*bni_19] + [bni_19]x0[0] + [(2)bni_19]x2[0] + [(2)bni_19]x1[0] ≥ 0∧[1 + (-1)bso_20] ≥ 0)
(6) (x0[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧[2]x1[0] + [3]x2[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[bni_19 + (-1)Bound*bni_19] + [bni_19]x1[0] + [(-1)bni_19]x2[0] + [bni_19]x0[0] ≥ 0∧[1 + (-1)bso_20] ≥ 0)
(7) (x0[0] ≥ 0∧x1[0] ≥ 0∧[5]x2[0] + [-2]x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[bni_19 + (-1)Bound*bni_19] + [(-1)bni_19]x1[0] + [bni_19]x0[0] ≥ 0∧[1 + (-1)bso_20] ≥ 0)
(8) (COND_1062_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1])≥NonInfC∧COND_1062_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1])≥1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])∧(UIncreasing(1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥))
(9) ((UIncreasing(1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[1 + (-1)bso_22] ≥ 0)
(10) ((UIncreasing(1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[1 + (-1)bso_22] ≥ 0)
(11) ((UIncreasing(1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[1 + (-1)bso_22] ≥ 0)
(12) ((UIncreasing(1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_22] ≥ 0)
(13) (&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2]))))=TRUE∧x1[2]=x1[3]∧x2[2]=x2[3]∧x0[2]=x0[3] ⇒ 1062_0_REC_LOAD(x1[2], x2[2], x0[2])≥NonInfC∧1062_0_REC_LOAD(x1[2], x2[2], x0[2])≥COND_1062_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])∧(UIncreasing(COND_1062_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥))
(14) (<=(0, +(+(x0[2], x1[2]), *(3, x2[2])))=TRUE∧<(x2[2], x1[2])=TRUE∧>=(x1[2], x0[2])=TRUE ⇒ 1062_0_REC_LOAD(x1[2], x2[2], x0[2])≥NonInfC∧1062_0_REC_LOAD(x1[2], x2[2], x0[2])≥COND_1062_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])∧(UIncreasing(COND_1062_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥))
(15) (x0[2] + x1[2] + [3]x2[2] ≥ 0∧x1[2] + [-1] + [-1]x2[2] ≥ 0∧x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥)∧[bni_23 + (-1)Bound*bni_23] + [bni_23]x0[2] + [(2)bni_23]x2[2] + [(2)bni_23]x1[2] ≥ 0∧[(-1)bso_24] ≥ 0)
(16) (x0[2] + x1[2] + [3]x2[2] ≥ 0∧x1[2] + [-1] + [-1]x2[2] ≥ 0∧x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥)∧[bni_23 + (-1)Bound*bni_23] + [bni_23]x0[2] + [(2)bni_23]x2[2] + [(2)bni_23]x1[2] ≥ 0∧[(-1)bso_24] ≥ 0)
(17) (x0[2] + x1[2] + [3]x2[2] ≥ 0∧x1[2] + [-1] + [-1]x2[2] ≥ 0∧x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥)∧[bni_23 + (-1)Bound*bni_23] + [bni_23]x0[2] + [(2)bni_23]x2[2] + [(2)bni_23]x1[2] ≥ 0∧[(-1)bso_24] ≥ 0)
(18) (x0[2] ≥ 0∧x1[2] + [-1] + [-1]x2[2] ≥ 0∧[2]x1[2] + [3]x2[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥)∧[bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [(-1)bni_23]x2[2] + [bni_23]x0[2] ≥ 0∧[(-1)bso_24] ≥ 0)
(19) (x0[2] ≥ 0∧x1[2] ≥ 0∧[2] + [5]x2[2] + [2]x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥)∧[(-1)Bound*bni_23 + (2)bni_23] + [bni_23]x1[2] + [bni_23]x0[2] ≥ 0∧[(-1)bso_24] ≥ 0)
(20) (x0[2] ≥ 0∧x1[2] ≥ 0∧[2] + [5]x2[2] + [2]x1[2] + [-1]x0[2] ≥ 0∧x2[2] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥)∧[(-1)Bound*bni_23 + (2)bni_23] + [bni_23]x1[2] + [bni_23]x0[2] ≥ 0∧[(-1)bso_24] ≥ 0)
(21) (x0[2] ≥ 0∧x1[2] ≥ 0∧[2] + [-5]x2[2] + [2]x1[2] + [-1]x0[2] ≥ 0∧x2[2] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥)∧[(-1)Bound*bni_23 + (2)bni_23] + [bni_23]x1[2] + [bni_23]x0[2] ≥ 0∧[(-1)bso_24] ≥ 0)
(22) (COND_1062_0_REC_LOAD1(TRUE, x1[3], x2[3], x0[3])≥NonInfC∧COND_1062_0_REC_LOAD1(TRUE, x1[3], x2[3], x0[3])≥1062_0_REC_LOAD(-(x1[3], 2), x2[3], x0[3])∧(UIncreasing(1062_0_REC_LOAD(-(x1[3], 2), x2[3], x0[3])), ≥))
(23) ((UIncreasing(1062_0_REC_LOAD(-(x1[3], 2), x2[3], x0[3])), ≥)∧[4 + (-1)bso_26] ≥ 0)
(24) ((UIncreasing(1062_0_REC_LOAD(-(x1[3], 2), x2[3], x0[3])), ≥)∧[4 + (-1)bso_26] ≥ 0)
(25) ((UIncreasing(1062_0_REC_LOAD(-(x1[3], 2), x2[3], x0[3])), ≥)∧[4 + (-1)bso_26] ≥ 0)
(26) ((UIncreasing(1062_0_REC_LOAD(-(x1[3], 2), x2[3], x0[3])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[4 + (-1)bso_26] ≥ 0)
(27) (&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4]))))=TRUE∧x1[4]=x1[5]∧x2[4]=x2[5]∧x0[4]=x0[5] ⇒ 1062_0_REC_LOAD(x1[4], x2[4], x0[4])≥NonInfC∧1062_0_REC_LOAD(x1[4], x2[4], x0[4])≥COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])∧(UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥))
(28) (<(x1[4], x0[4])=TRUE∧<=(0, +(+(x0[4], x1[4]), *(3, x2[4])))=TRUE ⇒ 1062_0_REC_LOAD(x1[4], x2[4], x0[4])≥NonInfC∧1062_0_REC_LOAD(x1[4], x2[4], x0[4])≥COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])∧(UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥))
(29) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[bni_27 + (-1)Bound*bni_27] + [bni_27]x0[4] + [(2)bni_27]x2[4] + [(2)bni_27]x1[4] ≥ 0∧[(-1)bso_28] ≥ 0)
(30) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[bni_27 + (-1)Bound*bni_27] + [bni_27]x0[4] + [(2)bni_27]x2[4] + [(2)bni_27]x1[4] ≥ 0∧[(-1)bso_28] ≥ 0)
(31) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[bni_27 + (-1)Bound*bni_27] + [bni_27]x0[4] + [(2)bni_27]x2[4] + [(2)bni_27]x1[4] ≥ 0∧[(-1)bso_28] ≥ 0)
(32) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_27 + (-1)Bound*bni_27] + [(3)bni_27]x1[4] + [bni_27]x0[4] + [(2)bni_27]x2[4] ≥ 0∧[(-1)bso_28] ≥ 0)
(33) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_27 + (-1)Bound*bni_27] + [(3)bni_27]x1[4] + [bni_27]x0[4] + [(2)bni_27]x2[4] ≥ 0∧[(-1)bso_28] ≥ 0)
(34) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_27 + (-1)Bound*bni_27] + [(-3)bni_27]x1[4] + [bni_27]x0[4] + [(2)bni_27]x2[4] ≥ 0∧[(-1)bso_28] ≥ 0)
(35) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_27 + (-1)Bound*bni_27] + [(3)bni_27]x1[4] + [bni_27]x0[4] + [(2)bni_27]x2[4] ≥ 0∧[(-1)bso_28] ≥ 0)
(36) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_27 + (-1)Bound*bni_27] + [(3)bni_27]x1[4] + [bni_27]x0[4] + [(-2)bni_27]x2[4] ≥ 0∧[(-1)bso_28] ≥ 0)
(37) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_27 + (-1)Bound*bni_27] + [(-3)bni_27]x1[4] + [bni_27]x0[4] + [(2)bni_27]x2[4] ≥ 0∧[(-1)bso_28] ≥ 0)
(38) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_27 + (-1)Bound*bni_27] + [(-3)bni_27]x1[4] + [bni_27]x0[4] + [(-2)bni_27]x2[4] ≥ 0∧[(-1)bso_28] ≥ 0)
(39) (x0[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_27 + (-1)Bound*bni_27] + [(3)bni_27]x1[4] + [bni_27]x0[4] + [(2)bni_27]x2[4] ≥ 0∧[(-1)bso_28] ≥ 0)
(40) (x0[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0∧[-1]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_27 + (-1)Bound*bni_27] + [(3)bni_27]x1[4] + [bni_27]x0[4] + [(-2)bni_27]x2[4] ≥ 0∧[(-1)bso_28] ≥ 0)
(41) (x0[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_27 + (-1)Bound*bni_27] + [(-3)bni_27]x1[4] + [bni_27]x0[4] + [(2)bni_27]x2[4] ≥ 0∧[(-1)bso_28] ≥ 0)
(42) (x0[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0∧[-1]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_27 + (-1)Bound*bni_27] + [(-3)bni_27]x1[4] + [bni_27]x0[4] + [(-2)bni_27]x2[4] ≥ 0∧[(-1)bso_28] ≥ 0)
(43) (COND_1062_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5])≥NonInfC∧COND_1062_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5])≥1062_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))∧(UIncreasing(1062_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥))
(44) ((UIncreasing(1062_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥)∧[1 + (-1)bso_30] ≥ 0)
(45) ((UIncreasing(1062_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥)∧[1 + (-1)bso_30] ≥ 0)
(46) ((UIncreasing(1062_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥)∧[1 + (-1)bso_30] ≥ 0)
(47) ((UIncreasing(1062_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥)∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_30] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(1162_1_rec_InvokeMethod(x1, x2, x3, x4)) = [-1]
POL(1081_0_rec_Return(x1, x2, x3)) = [-1]
POL(1150_0_rec_Return) = [-1]
POL(1170_1_rec_InvokeMethod(x1, x2, x3, x4)) = [-1]
POL(1133_1_rec_InvokeMethod(x1, x2, x3, x4)) = [-1]
POL(1062_0_REC_LOAD(x1, x2, x3)) = [1] + x3 + [2]x2 + [2]x1
POL(COND_1062_0_REC_LOAD(x1, x2, x3, x4)) = x4 + [2]x3 + [2]x2
POL(&&(x1, x2)) = [-1]
POL(>=(x1, x2)) = [-1]
POL(<=(x1, x2)) = [-1]
POL(0) = 0
POL(+(x1, x2)) = x1 + x2
POL(*(x1, x2)) = x1·x2
POL(3) = [3]
POL(-(x1, x2)) = x1 + [-1]x2
POL(1) = [1]
POL(COND_1062_0_REC_LOAD1(x1, x2, x3, x4)) = [1] + x4 + [2]x3 + [2]x2
POL(<(x1, x2)) = [-1]
POL(2) = [2]
POL(COND_1062_0_REC_LOAD2(x1, x2, x3, x4)) = [1] + x4 + [2]x3 + [2]x2
1062_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])
COND_1062_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])
COND_1062_0_REC_LOAD1(TRUE, x1[3], x2[3], x0[3]) → 1062_0_REC_LOAD(-(x1[3], 2), x2[3], x0[3])
COND_1062_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5]) → 1062_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))
1062_0_REC_LOAD(x1[2], x2[2], x0[2]) → COND_1062_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])
1062_0_REC_LOAD(x1[2], x2[2], x0[2]) → COND_1062_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])
1062_0_REC_LOAD(x1[4], x2[4], x0[4]) → COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(1) -> (0), if ((x1[1] →* x1[0])∧(x2[1] - 1 →* x2[0])∧(x0[1] →* x0[0]))
(3) -> (0), if ((x1[3] - 2 →* x1[0])∧(x2[3] →* x2[0])∧(x0[3] →* x0[0]))
(5) -> (0), if ((x1[5] →* x1[0])∧(x2[5] →* x2[0])∧(x0[5] - 1 →* x0[0]))
(0) -> (1), if ((x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0] →* TRUE)∧(x1[0] →* x1[1])∧(x2[0] →* x2[1])∧(x0[0] →* x0[1]))
(1) -> (4), if ((x1[1] →* x1[4])∧(x2[1] - 1 →* x2[4])∧(x0[1] →* x0[4]))
(3) -> (4), if ((x1[3] - 2 →* x1[4])∧(x2[3] →* x2[4])∧(x0[3] →* x0[4]))
(5) -> (4), if ((x1[5] →* x1[4])∧(x2[5] →* x2[4])∧(x0[5] - 1 →* x0[4]))
(4) -> (5), if ((x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4] →* TRUE)∧(x1[4] →* x1[5])∧(x2[4] →* x2[5])∧(x0[4] →* x0[5]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(1) -> (0), if ((x1[1] →* x1[0])∧(x2[1] - 1 →* x2[0])∧(x0[1] →* x0[0]))
(5) -> (0), if ((x1[5] →* x1[0])∧(x2[5] →* x2[0])∧(x0[5] - 1 →* x0[0]))
(0) -> (1), if ((x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0] →* TRUE)∧(x1[0] →* x1[1])∧(x2[0] →* x2[1])∧(x0[0] →* x0[1]))
(1) -> (4), if ((x1[1] →* x1[4])∧(x2[1] - 1 →* x2[4])∧(x0[1] →* x0[4]))
(5) -> (4), if ((x1[5] →* x1[4])∧(x2[5] →* x2[4])∧(x0[5] - 1 →* x0[4]))
(4) -> (5), if ((x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4] →* TRUE)∧(x1[4] →* x1[5])∧(x2[4] →* x2[5])∧(x0[4] →* x0[5]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(1) -> (0), if ((x1[1] →* x1[0])∧(x2[1] - 1 →* x2[0])∧(x0[1] →* x0[0]))
(5) -> (0), if ((x1[5] →* x1[0])∧(x2[5] →* x2[0])∧(x0[5] - 1 →* x0[0]))
(0) -> (1), if ((x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0] →* TRUE)∧(x1[0] →* x1[1])∧(x2[0] →* x2[1])∧(x0[0] →* x0[1]))
(1) -> (4), if ((x1[1] →* x1[4])∧(x2[1] - 1 →* x2[4])∧(x0[1] →* x0[4]))
(5) -> (4), if ((x1[5] →* x1[4])∧(x2[5] →* x2[4])∧(x0[5] - 1 →* x0[4]))
(4) -> (5), if ((x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4] →* TRUE)∧(x1[4] →* x1[5])∧(x2[4] →* x2[5])∧(x0[4] →* x0[5]))
(1) (COND_1062_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5])≥NonInfC∧COND_1062_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5])≥1062_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))∧(UIncreasing(1062_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥))
(2) ((UIncreasing(1062_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥)∧[1 + (-1)bso_14] ≥ 0)
(3) ((UIncreasing(1062_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥)∧[1 + (-1)bso_14] ≥ 0)
(4) ((UIncreasing(1062_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥)∧[1 + (-1)bso_14] ≥ 0)
(5) ((UIncreasing(1062_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥)∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_14] ≥ 0)
(6) (&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4]))))=TRUE∧x1[4]=x1[5]∧x2[4]=x2[5]∧x0[4]=x0[5] ⇒ 1062_0_REC_LOAD(x1[4], x2[4], x0[4])≥NonInfC∧1062_0_REC_LOAD(x1[4], x2[4], x0[4])≥COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])∧(UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥))
(7) (<(x1[4], x0[4])=TRUE∧<=(0, +(+(x0[4], x1[4]), *(3, x2[4])))=TRUE ⇒ 1062_0_REC_LOAD(x1[4], x2[4], x0[4])≥NonInfC∧1062_0_REC_LOAD(x1[4], x2[4], x0[4])≥COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])∧(UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥))
(8) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]x0[4] + [(-1)bni_15]x1[4] ≥ 0∧[(-1)bso_16] ≥ 0)
(9) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]x0[4] + [(-1)bni_15]x1[4] ≥ 0∧[(-1)bso_16] ≥ 0)
(10) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]x0[4] + [(-1)bni_15]x1[4] ≥ 0∧[(-1)bso_16] ≥ 0)
(11) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_15] + [bni_15]x0[4] ≥ 0∧[(-1)bso_16] ≥ 0)
(12) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_15] + [bni_15]x0[4] ≥ 0∧[(-1)bso_16] ≥ 0)
(13) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_15] + [bni_15]x0[4] ≥ 0∧[(-1)bso_16] ≥ 0)
(14) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_15] + [bni_15]x0[4] ≥ 0∧[(-1)bso_16] ≥ 0)
(15) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_15] + [bni_15]x0[4] ≥ 0∧[(-1)bso_16] ≥ 0)
(16) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_15] + [bni_15]x0[4] ≥ 0∧[(-1)bso_16] ≥ 0)
(17) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_15] + [bni_15]x0[4] ≥ 0∧[(-1)bso_16] ≥ 0)
(18) (x0[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_15] + [bni_15]x0[4] ≥ 0∧[(-1)bso_16] ≥ 0)
(19) (x0[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0∧[-1]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_15] + [bni_15]x0[4] ≥ 0∧[(-1)bso_16] ≥ 0)
(20) (x0[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_15] + [bni_15]x0[4] ≥ 0∧[(-1)bso_16] ≥ 0)
(21) (x0[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0∧[-1]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_15] + [bni_15]x0[4] ≥ 0∧[(-1)bso_16] ≥ 0)
(22) (COND_1062_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1])≥NonInfC∧COND_1062_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1])≥1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])∧(UIncreasing(1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥))
(23) ((UIncreasing(1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[(-1)bso_18] ≥ 0)
(24) ((UIncreasing(1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[(-1)bso_18] ≥ 0)
(25) ((UIncreasing(1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[(-1)bso_18] ≥ 0)
(26) ((UIncreasing(1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_18] ≥ 0)
(27) (&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0]))))=TRUE∧x1[0]=x1[1]∧x2[0]=x2[1]∧x0[0]=x0[1] ⇒ 1062_0_REC_LOAD(x1[0], x2[0], x0[0])≥NonInfC∧1062_0_REC_LOAD(x1[0], x2[0], x0[0])≥COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])∧(UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥))
(28) (<=(0, +(+(x0[0], x1[0]), *(3, x2[0])))=TRUE∧>=(x2[0], x1[0])=TRUE∧>=(x1[0], x0[0])=TRUE ⇒ 1062_0_REC_LOAD(x1[0], x2[0], x0[0])≥NonInfC∧1062_0_REC_LOAD(x1[0], x2[0], x0[0])≥COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])∧(UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥))
(29) (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(-1)bni_19 + (-1)Bound*bni_19] + [bni_19]x0[0] + [(-1)bni_19]x1[0] ≥ 0∧[(-1)bso_20] ≥ 0)
(30) (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(-1)bni_19 + (-1)Bound*bni_19] + [bni_19]x0[0] + [(-1)bni_19]x1[0] ≥ 0∧[(-1)bso_20] ≥ 0)
(31) (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(-1)bni_19 + (-1)Bound*bni_19] + [bni_19]x0[0] + [(-1)bni_19]x1[0] ≥ 0∧[(-1)bso_20] ≥ 0)
(32) (x0[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧[2]x1[0] + [3]x2[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(-1)bni_19 + (-1)Bound*bni_19] + [(-3)bni_19]x2[0] + [(-2)bni_19]x1[0] + [bni_19]x0[0] ≥ 0∧[(-1)bso_20] ≥ 0)
(33) (x0[0] ≥ 0∧x1[0] ≥ 0∧[5]x2[0] + [-2]x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(-1)bni_19 + (-1)Bound*bni_19] + [(-5)bni_19]x2[0] + [(2)bni_19]x1[0] + [bni_19]x0[0] ≥ 0∧[(-1)bso_20] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_1062_0_REC_LOAD2(x1, x2, x3, x4)) = [-1] + x4 + [-1]x2
POL(1062_0_REC_LOAD(x1, x2, x3)) = [-1] + x3 + [-1]x1
POL(-(x1, x2)) = x1 + [-1]x2
POL(1) = [1]
POL(&&(x1, x2)) = [-1]
POL(<(x1, x2)) = [-1]
POL(<=(x1, x2)) = [-1]
POL(0) = 0
POL(+(x1, x2)) = x1 + x2
POL(*(x1, x2)) = x1·x2
POL(3) = [3]
POL(COND_1062_0_REC_LOAD(x1, x2, x3, x4)) = [-1] + x4 + [-1]x2
POL(>=(x1, x2)) = [-1]
COND_1062_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5]) → 1062_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))
1062_0_REC_LOAD(x1[4], x2[4], x0[4]) → COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])
1062_0_REC_LOAD(x1[4], x2[4], x0[4]) → COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])
COND_1062_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])
1062_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(1) -> (0), if ((x1[1] →* x1[0])∧(x2[1] - 1 →* x2[0])∧(x0[1] →* x0[0]))
(0) -> (1), if ((x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0] →* TRUE)∧(x1[0] →* x1[1])∧(x2[0] →* x2[1])∧(x0[0] →* x0[1]))
(1) -> (4), if ((x1[1] →* x1[4])∧(x2[1] - 1 →* x2[4])∧(x0[1] →* x0[4]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(1) -> (0), if ((x1[1] →* x1[0])∧(x2[1] - 1 →* x2[0])∧(x0[1] →* x0[0]))
(0) -> (1), if ((x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0] →* TRUE)∧(x1[0] →* x1[1])∧(x2[0] →* x2[1])∧(x0[0] →* x0[1]))
(1) (&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0]))))=TRUE∧x1[0]=x1[1]∧x2[0]=x2[1]∧x0[0]=x0[1] ⇒ 1062_0_REC_LOAD(x1[0], x2[0], x0[0])≥NonInfC∧1062_0_REC_LOAD(x1[0], x2[0], x0[0])≥COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])∧(UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥))
(2) (<=(0, +(+(x0[0], x1[0]), *(3, x2[0])))=TRUE∧>=(x2[0], x1[0])=TRUE∧>=(x1[0], x0[0])=TRUE ⇒ 1062_0_REC_LOAD(x1[0], x2[0], x0[0])≥NonInfC∧1062_0_REC_LOAD(x1[0], x2[0], x0[0])≥COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])∧(UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥))
(3) (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[bni_8 + (-1)Bound*bni_8] + [(-1)bni_8]x0[0] + [(2)bni_8]x2[0] + [(-1)bni_8]x1[0] ≥ 0∧[1 + (-1)bso_9] ≥ 0)
(4) (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[bni_8 + (-1)Bound*bni_8] + [(-1)bni_8]x0[0] + [(2)bni_8]x2[0] + [(-1)bni_8]x1[0] ≥ 0∧[1 + (-1)bso_9] ≥ 0)
(5) (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[bni_8 + (-1)Bound*bni_8] + [(-1)bni_8]x0[0] + [(2)bni_8]x2[0] + [(-1)bni_8]x1[0] ≥ 0∧[1 + (-1)bso_9] ≥ 0)
(6) (x0[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧[2]x1[0] + [3]x2[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[bni_8 + (-1)Bound*bni_8] + [(5)bni_8]x2[0] + [(-1)bni_8]x0[0] ≥ 0∧[1 + (-1)bso_9] ≥ 0)
(7) (x0[0] ≥ 0∧x1[0] ≥ 0∧[5]x2[0] + [-2]x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[bni_8 + (-1)Bound*bni_8] + [(5)bni_8]x2[0] + [(-1)bni_8]x0[0] ≥ 0∧[1 + (-1)bso_9] ≥ 0)
(8) (COND_1062_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1])≥NonInfC∧COND_1062_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1])≥1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])∧(UIncreasing(1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥))
(9) ((UIncreasing(1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[1 + (-1)bso_11] ≥ 0)
(10) ((UIncreasing(1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[1 + (-1)bso_11] ≥ 0)
(11) ((UIncreasing(1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[1 + (-1)bso_11] ≥ 0)
(12) ((UIncreasing(1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_11] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(1062_0_REC_LOAD(x1, x2, x3)) = [1] + [-1]x3 + [2]x2 + [-1]x1
POL(COND_1062_0_REC_LOAD(x1, x2, x3, x4)) = [-1]x4 + [2]x3 + [-1]x2
POL(&&(x1, x2)) = [-1]
POL(>=(x1, x2)) = [-1]
POL(<=(x1, x2)) = [-1]
POL(0) = 0
POL(+(x1, x2)) = x1 + x2
POL(*(x1, x2)) = x1·x2
POL(3) = [3]
POL(-(x1, x2)) = x1 + [-1]x2
POL(1) = [1]
1062_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])
COND_1062_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])
1062_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(1) -> (0), if ((x1[1] →* x1[0])∧(x2[1] - 1 →* x2[0])∧(x0[1] →* x0[0]))
(5) -> (0), if ((x1[5] →* x1[0])∧(x2[5] →* x2[0])∧(x0[5] - 1 →* x0[0]))
(0) -> (1), if ((x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0] →* TRUE)∧(x1[0] →* x1[1])∧(x2[0] →* x2[1])∧(x0[0] →* x0[1]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(1) -> (0), if ((x1[1] →* x1[0])∧(x2[1] - 1 →* x2[0])∧(x0[1] →* x0[0]))
(0) -> (1), if ((x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0] →* TRUE)∧(x1[0] →* x1[1])∧(x2[0] →* x2[1])∧(x0[0] →* x0[1]))
(1) (COND_1062_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1])≥NonInfC∧COND_1062_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1])≥1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])∧(UIncreasing(1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥))
(2) ((UIncreasing(1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[(-1)bso_9] ≥ 0)
(3) ((UIncreasing(1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[(-1)bso_9] ≥ 0)
(4) ((UIncreasing(1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[(-1)bso_9] ≥ 0)
(5) ((UIncreasing(1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_9] ≥ 0)
(6) (&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0]))))=TRUE∧x1[0]=x1[1]∧x2[0]=x2[1]∧x0[0]=x0[1] ⇒ 1062_0_REC_LOAD(x1[0], x2[0], x0[0])≥NonInfC∧1062_0_REC_LOAD(x1[0], x2[0], x0[0])≥COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])∧(UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥))
(7) (<=(0, +(+(x0[0], x1[0]), *(3, x2[0])))=TRUE∧>=(x2[0], x1[0])=TRUE∧>=(x1[0], x0[0])=TRUE ⇒ 1062_0_REC_LOAD(x1[0], x2[0], x0[0])≥NonInfC∧1062_0_REC_LOAD(x1[0], x2[0], x0[0])≥COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])∧(UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥))
(8) (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(2)bni_10 + (-1)Bound*bni_10] + [(2)bni_10]x2[0] + [(-1)bni_10]x0[0] + [(-1)bni_10]x1[0] ≥ 0∧[2 + (-1)bso_11] ≥ 0)
(9) (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(2)bni_10 + (-1)Bound*bni_10] + [(2)bni_10]x2[0] + [(-1)bni_10]x0[0] + [(-1)bni_10]x1[0] ≥ 0∧[2 + (-1)bso_11] ≥ 0)
(10) (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(2)bni_10 + (-1)Bound*bni_10] + [(2)bni_10]x2[0] + [(-1)bni_10]x0[0] + [(-1)bni_10]x1[0] ≥ 0∧[2 + (-1)bso_11] ≥ 0)
(11) (x0[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧[2]x1[0] + [3]x2[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(2)bni_10 + (-1)Bound*bni_10] + [(5)bni_10]x2[0] + [(-1)bni_10]x0[0] ≥ 0∧[2 + (-1)bso_11] ≥ 0)
(12) (x0[0] ≥ 0∧x1[0] ≥ 0∧[5]x2[0] + [-2]x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(2)bni_10 + (-1)Bound*bni_10] + [(5)bni_10]x2[0] + [(-1)bni_10]x0[0] ≥ 0∧[2 + (-1)bso_11] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_1062_0_REC_LOAD(x1, x2, x3, x4)) = [-1]x4 + [-1]x2 + [2]x3
POL(1062_0_REC_LOAD(x1, x2, x3)) = [2] + [2]x2 + [-1]x3 + [-1]x1
POL(-(x1, x2)) = x1 + [-1]x2
POL(1) = [1]
POL(&&(x1, x2)) = [-1]
POL(>=(x1, x2)) = [-1]
POL(<=(x1, x2)) = [-1]
POL(0) = 0
POL(+(x1, x2)) = x1 + x2
POL(*(x1, x2)) = x1·x2
POL(3) = [3]
1062_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])
1062_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])
COND_1062_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer