0 JBC
↳1 JBC2FIG (⇒)
↳2 JBCTerminationGraph
↳3 FIGtoITRSProof (⇒)
↳4 IDP
↳5 IDPNonInfProof (⇒)
↳6 AND
↳7 IDP
↳8 IDependencyGraphProof (⇔)
↳9 TRUE
↳10 IDP
↳11 IDependencyGraphProof (⇔)
↳12 TRUE
public class HanoiR {
private void solve(int h, int from, int to, int support) {
if (h < 1) return;
else if (h == 1) {
//System.out.println("from " + from + " to " + to + "\n");
}
else {
solve(h - 1, from, support, to);
//System.out.println("from " + from + " to " + to + "\n");
solve(h - 1, support, to, from);
}
}
public static void main(String[] args) {
Random.args = args;
new HanoiR().solve(Random.random(),1,2,3);
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
if (index >= args.length)
return 0;
String string = args[index];
index++;
return string.length();
}
}
Generated 33 rules for P and 12 rules for R.
Combined rules. Obtained 3 rules for P and 2 rules for R.
Filtered ground terms:
690_0_solve_ConstantStackPush(x1, x2, x3) → 690_0_solve_ConstantStackPush(x2, x3)
Cond_746_1_solve_InvokeMethod1(x1, x2, x3, x4) → Cond_746_1_solve_InvokeMethod1(x1, x3, x4)
886_0_solve_Return(x1) → 886_0_solve_Return
Cond_746_1_solve_InvokeMethod(x1, x2, x3, x4) → Cond_746_1_solve_InvokeMethod(x1, x3)
723_0_solve_Return(x1) → 723_0_solve_Return
Cond_690_0_solve_ConstantStackPush(x1, x2, x3, x4) → Cond_690_0_solve_ConstantStackPush(x1, x3, x4)
Filtered duplicate args:
690_0_solve_ConstantStackPush(x1, x2) → 690_0_solve_ConstantStackPush(x2)
Cond_690_0_solve_ConstantStackPush(x1, x2, x3) → Cond_690_0_solve_ConstantStackPush(x1, x3)
Filtered unneeded arguments:
Cond_746_1_solve_InvokeMethod1(x1, x2, x3) → Cond_746_1_solve_InvokeMethod1(x1, x2)
Combined rules. Obtained 3 rules for P and 2 rules for R.
Finished conversion. Obtained 3 rules for P and 2 rules for R. System has predefined symbols.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(0) -> (1), if ((x0[0] > 1 →* TRUE)∧(x0[0] →* x0[1]))
(0) -> (2), if ((x0[0] > 1 →* TRUE)∧(x0[0] →* x0[2]))
(1) -> (3), if ((690_0_solve_ConstantStackPush(x0[1] - 1) →* 723_0_solve_Return)∧(x0[1] →* x0[3])∧(x0[1] - 1 →* 1))
(1) -> (5), if ((690_0_solve_ConstantStackPush(x0[1] - 1) →* 886_0_solve_Return)∧(x0[1] →* x0[5])∧(x0[1] - 1 →* x1[5]))
(2) -> (0), if ((x0[2] - 1 →* x0[0]))
(3) -> (4), if ((x0[3] > 0 →* TRUE)∧(x0[3] →* x0[4]))
(4) -> (0), if ((x0[4] - 1 →* x0[0]))
(5) -> (6), if ((x0[5] > 0 →* TRUE)∧(x0[5] →* x0[6])∧(x1[5] →* x1[6]))
(6) -> (0), if ((x0[6] - 1 →* x0[0]))
(1) (>(x0[0], 1)=TRUE∧x0[0]=x0[1] ⇒ 690_0_SOLVE_CONSTANTSTACKPUSH(x0[0])≥NonInfC∧690_0_SOLVE_CONSTANTSTACKPUSH(x0[0])≥COND_690_0_SOLVE_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])∧(UIncreasing(COND_690_0_SOLVE_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])), ≥))
(2) (>(x0[0], 1)=TRUE ⇒ 690_0_SOLVE_CONSTANTSTACKPUSH(x0[0])≥NonInfC∧690_0_SOLVE_CONSTANTSTACKPUSH(x0[0])≥COND_690_0_SOLVE_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])∧(UIncreasing(COND_690_0_SOLVE_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])), ≥))
(3) (x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_690_0_SOLVE_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])), ≥)∧[bni_17 + (-1)Bound*bni_17] + [bni_17]x0[0] ≥ 0∧[(-1)bso_18] ≥ 0)
(4) (x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_690_0_SOLVE_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])), ≥)∧[bni_17 + (-1)Bound*bni_17] + [bni_17]x0[0] ≥ 0∧[(-1)bso_18] ≥ 0)
(5) (x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_690_0_SOLVE_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])), ≥)∧[bni_17 + (-1)Bound*bni_17] + [bni_17]x0[0] ≥ 0∧[(-1)bso_18] ≥ 0)
(6) (x0[0] ≥ 0 ⇒ (UIncreasing(COND_690_0_SOLVE_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])), ≥)∧[(3)bni_17 + (-1)Bound*bni_17] + [bni_17]x0[0] ≥ 0∧[(-1)bso_18] ≥ 0)
(7) (>(x0[0], 1)=TRUE∧x0[0]=x0[2] ⇒ 690_0_SOLVE_CONSTANTSTACKPUSH(x0[0])≥NonInfC∧690_0_SOLVE_CONSTANTSTACKPUSH(x0[0])≥COND_690_0_SOLVE_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])∧(UIncreasing(COND_690_0_SOLVE_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])), ≥))
(8) (>(x0[0], 1)=TRUE ⇒ 690_0_SOLVE_CONSTANTSTACKPUSH(x0[0])≥NonInfC∧690_0_SOLVE_CONSTANTSTACKPUSH(x0[0])≥COND_690_0_SOLVE_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])∧(UIncreasing(COND_690_0_SOLVE_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])), ≥))
(9) (x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_690_0_SOLVE_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])), ≥)∧[bni_17 + (-1)Bound*bni_17] + [bni_17]x0[0] ≥ 0∧[(-1)bso_18] ≥ 0)
(10) (x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_690_0_SOLVE_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])), ≥)∧[bni_17 + (-1)Bound*bni_17] + [bni_17]x0[0] ≥ 0∧[(-1)bso_18] ≥ 0)
(11) (x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_690_0_SOLVE_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])), ≥)∧[bni_17 + (-1)Bound*bni_17] + [bni_17]x0[0] ≥ 0∧[(-1)bso_18] ≥ 0)
(12) (x0[0] ≥ 0 ⇒ (UIncreasing(COND_690_0_SOLVE_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])), ≥)∧[(3)bni_17 + (-1)Bound*bni_17] + [bni_17]x0[0] ≥ 0∧[(-1)bso_18] ≥ 0)
(13) (COND_690_0_SOLVE_CONSTANTSTACKPUSH(TRUE, x0[1])≥NonInfC∧COND_690_0_SOLVE_CONSTANTSTACKPUSH(TRUE, x0[1])≥746_1_SOLVE_INVOKEMETHOD(690_0_solve_ConstantStackPush(-(x0[1], 1)), x0[1], -(x0[1], 1))∧(UIncreasing(746_1_SOLVE_INVOKEMETHOD(690_0_solve_ConstantStackPush(-(x0[1], 1)), x0[1], -(x0[1], 1))), ≥))
(14) ((UIncreasing(746_1_SOLVE_INVOKEMETHOD(690_0_solve_ConstantStackPush(-(x0[1], 1)), x0[1], -(x0[1], 1))), ≥)∧[(-1)bso_20] ≥ 0)
(15) ((UIncreasing(746_1_SOLVE_INVOKEMETHOD(690_0_solve_ConstantStackPush(-(x0[1], 1)), x0[1], -(x0[1], 1))), ≥)∧[(-1)bso_20] ≥ 0)
(16) ((UIncreasing(746_1_SOLVE_INVOKEMETHOD(690_0_solve_ConstantStackPush(-(x0[1], 1)), x0[1], -(x0[1], 1))), ≥)∧[(-1)bso_20] ≥ 0)
(17) ((UIncreasing(746_1_SOLVE_INVOKEMETHOD(690_0_solve_ConstantStackPush(-(x0[1], 1)), x0[1], -(x0[1], 1))), ≥)∧0 = 0∧[(-1)bso_20] ≥ 0)
(18) (COND_690_0_SOLVE_CONSTANTSTACKPUSH(TRUE, x0[2])≥NonInfC∧COND_690_0_SOLVE_CONSTANTSTACKPUSH(TRUE, x0[2])≥690_0_SOLVE_CONSTANTSTACKPUSH(-(x0[2], 1))∧(UIncreasing(690_0_SOLVE_CONSTANTSTACKPUSH(-(x0[2], 1))), ≥))
(19) ((UIncreasing(690_0_SOLVE_CONSTANTSTACKPUSH(-(x0[2], 1))), ≥)∧[1 + (-1)bso_22] ≥ 0)
(20) ((UIncreasing(690_0_SOLVE_CONSTANTSTACKPUSH(-(x0[2], 1))), ≥)∧[1 + (-1)bso_22] ≥ 0)
(21) ((UIncreasing(690_0_SOLVE_CONSTANTSTACKPUSH(-(x0[2], 1))), ≥)∧[1 + (-1)bso_22] ≥ 0)
(22) ((UIncreasing(690_0_SOLVE_CONSTANTSTACKPUSH(-(x0[2], 1))), ≥)∧0 = 0∧[1 + (-1)bso_22] ≥ 0)
(23) (>(x0[3], 0)=TRUE∧x0[3]=x0[4] ⇒ 746_1_SOLVE_INVOKEMETHOD(723_0_solve_Return, x0[3], 1)≥NonInfC∧746_1_SOLVE_INVOKEMETHOD(723_0_solve_Return, x0[3], 1)≥COND_746_1_SOLVE_INVOKEMETHOD(>(x0[3], 0), 723_0_solve_Return, x0[3], 1)∧(UIncreasing(COND_746_1_SOLVE_INVOKEMETHOD(>(x0[3], 0), 723_0_solve_Return, x0[3], 1)), ≥))
(24) (>(x0[3], 0)=TRUE ⇒ 746_1_SOLVE_INVOKEMETHOD(723_0_solve_Return, x0[3], 1)≥NonInfC∧746_1_SOLVE_INVOKEMETHOD(723_0_solve_Return, x0[3], 1)≥COND_746_1_SOLVE_INVOKEMETHOD(>(x0[3], 0), 723_0_solve_Return, x0[3], 1)∧(UIncreasing(COND_746_1_SOLVE_INVOKEMETHOD(>(x0[3], 0), 723_0_solve_Return, x0[3], 1)), ≥))
(25) (x0[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_746_1_SOLVE_INVOKEMETHOD(>(x0[3], 0), 723_0_solve_Return, x0[3], 1)), ≥)∧[bni_23 + (-1)Bound*bni_23] + [bni_23]x0[3] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(26) (x0[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_746_1_SOLVE_INVOKEMETHOD(>(x0[3], 0), 723_0_solve_Return, x0[3], 1)), ≥)∧[bni_23 + (-1)Bound*bni_23] + [bni_23]x0[3] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(27) (x0[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_746_1_SOLVE_INVOKEMETHOD(>(x0[3], 0), 723_0_solve_Return, x0[3], 1)), ≥)∧[bni_23 + (-1)Bound*bni_23] + [bni_23]x0[3] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(28) (x0[3] ≥ 0 ⇒ (UIncreasing(COND_746_1_SOLVE_INVOKEMETHOD(>(x0[3], 0), 723_0_solve_Return, x0[3], 1)), ≥)∧[(2)bni_23 + (-1)Bound*bni_23] + [bni_23]x0[3] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(29) (COND_746_1_SOLVE_INVOKEMETHOD(TRUE, 723_0_solve_Return, x0[4], 1)≥NonInfC∧COND_746_1_SOLVE_INVOKEMETHOD(TRUE, 723_0_solve_Return, x0[4], 1)≥690_0_SOLVE_CONSTANTSTACKPUSH(-(x0[4], 1))∧(UIncreasing(690_0_SOLVE_CONSTANTSTACKPUSH(-(x0[4], 1))), ≥))
(30) ((UIncreasing(690_0_SOLVE_CONSTANTSTACKPUSH(-(x0[4], 1))), ≥)∧[(-1)bso_26] ≥ 0)
(31) ((UIncreasing(690_0_SOLVE_CONSTANTSTACKPUSH(-(x0[4], 1))), ≥)∧[(-1)bso_26] ≥ 0)
(32) ((UIncreasing(690_0_SOLVE_CONSTANTSTACKPUSH(-(x0[4], 1))), ≥)∧[(-1)bso_26] ≥ 0)
(33) ((UIncreasing(690_0_SOLVE_CONSTANTSTACKPUSH(-(x0[4], 1))), ≥)∧0 = 0∧[(-1)bso_26] ≥ 0)
(34) (>(x0[5], 0)=TRUE∧x0[5]=x0[6]∧x1[5]=x1[6] ⇒ 746_1_SOLVE_INVOKEMETHOD(886_0_solve_Return, x0[5], x1[5])≥NonInfC∧746_1_SOLVE_INVOKEMETHOD(886_0_solve_Return, x0[5], x1[5])≥COND_746_1_SOLVE_INVOKEMETHOD1(>(x0[5], 0), 886_0_solve_Return, x0[5], x1[5])∧(UIncreasing(COND_746_1_SOLVE_INVOKEMETHOD1(>(x0[5], 0), 886_0_solve_Return, x0[5], x1[5])), ≥))
(35) (>(x0[5], 0)=TRUE ⇒ 746_1_SOLVE_INVOKEMETHOD(886_0_solve_Return, x0[5], x1[5])≥NonInfC∧746_1_SOLVE_INVOKEMETHOD(886_0_solve_Return, x0[5], x1[5])≥COND_746_1_SOLVE_INVOKEMETHOD1(>(x0[5], 0), 886_0_solve_Return, x0[5], x1[5])∧(UIncreasing(COND_746_1_SOLVE_INVOKEMETHOD1(>(x0[5], 0), 886_0_solve_Return, x0[5], x1[5])), ≥))
(36) (x0[5] + [-1] ≥ 0 ⇒ (UIncreasing(COND_746_1_SOLVE_INVOKEMETHOD1(>(x0[5], 0), 886_0_solve_Return, x0[5], x1[5])), ≥)∧[bni_27 + (-1)Bound*bni_27] + [bni_27]x0[5] ≥ 0∧[(-1)bso_28] ≥ 0)
(37) (x0[5] + [-1] ≥ 0 ⇒ (UIncreasing(COND_746_1_SOLVE_INVOKEMETHOD1(>(x0[5], 0), 886_0_solve_Return, x0[5], x1[5])), ≥)∧[bni_27 + (-1)Bound*bni_27] + [bni_27]x0[5] ≥ 0∧[(-1)bso_28] ≥ 0)
(38) (x0[5] + [-1] ≥ 0 ⇒ (UIncreasing(COND_746_1_SOLVE_INVOKEMETHOD1(>(x0[5], 0), 886_0_solve_Return, x0[5], x1[5])), ≥)∧[bni_27 + (-1)Bound*bni_27] + [bni_27]x0[5] ≥ 0∧[(-1)bso_28] ≥ 0)
(39) (x0[5] + [-1] ≥ 0 ⇒ (UIncreasing(COND_746_1_SOLVE_INVOKEMETHOD1(>(x0[5], 0), 886_0_solve_Return, x0[5], x1[5])), ≥)∧0 = 0∧[bni_27 + (-1)Bound*bni_27] + [bni_27]x0[5] ≥ 0∧0 = 0∧[(-1)bso_28] ≥ 0)
(40) (x0[5] ≥ 0 ⇒ (UIncreasing(COND_746_1_SOLVE_INVOKEMETHOD1(>(x0[5], 0), 886_0_solve_Return, x0[5], x1[5])), ≥)∧0 = 0∧[(2)bni_27 + (-1)Bound*bni_27] + [bni_27]x0[5] ≥ 0∧0 = 0∧[(-1)bso_28] ≥ 0)
(41) (COND_746_1_SOLVE_INVOKEMETHOD1(TRUE, 886_0_solve_Return, x0[6], x1[6])≥NonInfC∧COND_746_1_SOLVE_INVOKEMETHOD1(TRUE, 886_0_solve_Return, x0[6], x1[6])≥690_0_SOLVE_CONSTANTSTACKPUSH(-(x0[6], 1))∧(UIncreasing(690_0_SOLVE_CONSTANTSTACKPUSH(-(x0[6], 1))), ≥))
(42) ((UIncreasing(690_0_SOLVE_CONSTANTSTACKPUSH(-(x0[6], 1))), ≥)∧[1 + (-1)bso_30] ≥ 0)
(43) ((UIncreasing(690_0_SOLVE_CONSTANTSTACKPUSH(-(x0[6], 1))), ≥)∧[1 + (-1)bso_30] ≥ 0)
(44) ((UIncreasing(690_0_SOLVE_CONSTANTSTACKPUSH(-(x0[6], 1))), ≥)∧[1 + (-1)bso_30] ≥ 0)
(45) ((UIncreasing(690_0_SOLVE_CONSTANTSTACKPUSH(-(x0[6], 1))), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_30] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(836_1_solve_InvokeMethod(x1, x2)) = [-1]
POL(723_0_solve_Return) = [-1]
POL(1) = [1]
POL(886_0_solve_Return) = [1]
POL(690_0_SOLVE_CONSTANTSTACKPUSH(x1)) = [1] + x1
POL(COND_690_0_SOLVE_CONSTANTSTACKPUSH(x1, x2)) = [1] + x2
POL(>(x1, x2)) = [-1]
POL(746_1_SOLVE_INVOKEMETHOD(x1, x2, x3)) = [1] + x2
POL(690_0_solve_ConstantStackPush(x1)) = x1
POL(-(x1, x2)) = x1 + [-1]x2
POL(COND_746_1_SOLVE_INVOKEMETHOD(x1, x2, x3, x4)) = x3
POL(0) = 0
POL(COND_746_1_SOLVE_INVOKEMETHOD1(x1, x2, x3, x4)) = [1] + x3
COND_690_0_SOLVE_CONSTANTSTACKPUSH(TRUE, x0[2]) → 690_0_SOLVE_CONSTANTSTACKPUSH(-(x0[2], 1))
746_1_SOLVE_INVOKEMETHOD(723_0_solve_Return, x0[3], 1) → COND_746_1_SOLVE_INVOKEMETHOD(>(x0[3], 0), 723_0_solve_Return, x0[3], 1)
COND_746_1_SOLVE_INVOKEMETHOD1(TRUE, 886_0_solve_Return, x0[6], x1[6]) → 690_0_SOLVE_CONSTANTSTACKPUSH(-(x0[6], 1))
690_0_SOLVE_CONSTANTSTACKPUSH(x0[0]) → COND_690_0_SOLVE_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])
746_1_SOLVE_INVOKEMETHOD(723_0_solve_Return, x0[3], 1) → COND_746_1_SOLVE_INVOKEMETHOD(>(x0[3], 0), 723_0_solve_Return, x0[3], 1)
746_1_SOLVE_INVOKEMETHOD(886_0_solve_Return, x0[5], x1[5]) → COND_746_1_SOLVE_INVOKEMETHOD1(>(x0[5], 0), 886_0_solve_Return, x0[5], x1[5])
690_0_SOLVE_CONSTANTSTACKPUSH(x0[0]) → COND_690_0_SOLVE_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])
COND_690_0_SOLVE_CONSTANTSTACKPUSH(TRUE, x0[1]) → 746_1_SOLVE_INVOKEMETHOD(690_0_solve_ConstantStackPush(-(x0[1], 1)), x0[1], -(x0[1], 1))
COND_746_1_SOLVE_INVOKEMETHOD(TRUE, 723_0_solve_Return, x0[4], 1) → 690_0_SOLVE_CONSTANTSTACKPUSH(-(x0[4], 1))
746_1_SOLVE_INVOKEMETHOD(886_0_solve_Return, x0[5], x1[5]) → COND_746_1_SOLVE_INVOKEMETHOD1(>(x0[5], 0), 886_0_solve_Return, x0[5], x1[5])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(4) -> (0), if ((x0[4] - 1 →* x0[0]))
(0) -> (1), if ((x0[0] > 1 →* TRUE)∧(x0[0] →* x0[1]))
(1) -> (5), if ((690_0_solve_ConstantStackPush(x0[1] - 1) →* 886_0_solve_Return)∧(x0[1] →* x0[5])∧(x0[1] - 1 →* x1[5]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer