0 JBC
↳1 JBC2FIG (⇐)
↳2 FIGraph
↳3 FIGtoITRSProof (⇐)
↳4 ITRS
↳5 ITRStoIDPProof (⇔)
↳6 IDP
↳7 UsableRulesProof (⇔)
↳8 IDP
↳9 IDPNonInfProof (⇐)
↳10 AND
↳11 IDP
↳12 IDependencyGraphProof (⇔)
↳13 IDP
↳14 IDPNonInfProof (⇐)
↳15 AND
↳16 IDP
↳17 IDependencyGraphProof (⇔)
↳18 IDP
↳19 IDPNonInfProof (⇐)
↳20 AND
↳21 IDP
↳22 IDependencyGraphProof (⇔)
↳23 TRUE
↳24 IDP
↳25 IDependencyGraphProof (⇔)
↳26 TRUE
↳27 IDP
↳28 IDependencyGraphProof (⇔)
↳29 IDP
↳30 IDPNonInfProof (⇐)
↳31 AND
↳32 IDP
↳33 IDependencyGraphProof (⇔)
↳34 TRUE
↳35 IDP
↳36 IDependencyGraphProof (⇔)
↳37 TRUE
↳38 IDP
↳39 IDependencyGraphProof (⇔)
↳40 IDP
↳41 IDPNonInfProof (⇐)
↳42 IDP
↳43 IDependencyGraphProof (⇔)
↳44 IDP
↳45 IDPNonInfProof (⇐)
↳46 AND
↳47 IDP
↳48 IDependencyGraphProof (⇔)
↳49 TRUE
↳50 IDP
↳51 IDependencyGraphProof (⇔)
↳52 TRUE
No human-readable program information known.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i101[0] →* i101[1])∧(i102[0] →* i102[1])∧(i102[0] > i103[0] && i102[0] <= i103[0] && i101[0] <= i102[0] && i101[0] + i102[0] + 3 * i103[0] >= 0 →* TRUE)∧(i103[0] →* i103[1]))
(1) -> (0), if ((i101[1] →* i101[0])∧(i103[1] →* i103[0])∧(i102[1] →* i102[0]))
(1) -> (2), if ((i101[1] →* i101[2])∧(i102[1] →* i102[2])∧(i103[1] →* i103[2]))
(1) -> (4), if ((i103[1] →* i103[4])∧(i102[1] →* i102[4])∧(i101[1] →* i101[4]))
(1) -> (6), if ((i103[1] →* i103[6])∧(i101[1] →* i101[6])∧(i102[1] →* i102[6]))
(2) -> (3), if ((i102[2] →* i102[3])∧(i103[2] →* i103[3])∧(i101[2] →* i101[3])∧(i102[2] <= i103[2] && i101[2] <= i102[2] && i101[2] + i102[2] + 3 * i103[2] >= 0 →* TRUE))
(3) -> (0), if ((i103[3] - 1 →* i103[0])∧(i101[3] + 1 →* i101[0])∧(i102[3] + 1 →* i102[0]))
(3) -> (2), if ((i101[3] + 1 →* i101[2])∧(i103[3] - 1 →* i103[2])∧(i102[3] + 1 →* i102[2]))
(3) -> (4), if ((i103[3] - 1 →* i103[4])∧(i101[3] + 1 →* i101[4])∧(i102[3] + 1 →* i102[4]))
(3) -> (6), if ((i101[3] + 1 →* i101[6])∧(i103[3] - 1 →* i103[6])∧(i102[3] + 1 →* i102[6]))
(4) -> (5), if ((i101[4] →* i101[5])∧(i103[4] →* i103[5])∧(i102[4] →* i102[5])∧(i102[4] > i103[4] && i101[4] <= i102[4] && i101[4] + i102[4] + 3 * i103[4] >= 0 →* TRUE))
(5) -> (0), if ((i103[5] →* i103[0])∧(i101[5] + 1 →* i101[0])∧(i102[5] + -2 →* i102[0]))
(5) -> (2), if ((i101[5] + 1 →* i101[2])∧(i103[5] →* i103[2])∧(i102[5] + -2 →* i102[2]))
(5) -> (4), if ((i102[5] + -2 →* i102[4])∧(i101[5] + 1 →* i101[4])∧(i103[5] →* i103[4]))
(5) -> (6), if ((i103[5] →* i103[6])∧(i102[5] + -2 →* i102[6])∧(i101[5] + 1 →* i101[6]))
(6) -> (7), if ((i101[6] > i102[6] && i101[6] + i102[6] + 3 * i103[6] >= 0 →* TRUE)∧(i101[6] →* i101[7])∧(i102[6] →* i102[7])∧(i103[6] →* i103[7]))
(7) -> (0), if ((i102[7] →* i102[0])∧(i103[7] →* i103[0])∧(i101[7] + -1 →* i101[0]))
(7) -> (2), if ((i101[7] + -1 →* i101[2])∧(i102[7] →* i102[2])∧(i103[7] →* i103[2]))
(7) -> (4), if ((i103[7] →* i103[4])∧(i101[7] + -1 →* i101[4])∧(i102[7] →* i102[4]))
(7) -> (6), if ((i102[7] →* i102[6])∧(i101[7] + -1 →* i101[6])∧(i103[7] →* i103[6]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i101[0] →* i101[1])∧(i102[0] →* i102[1])∧(i102[0] > i103[0] && i102[0] <= i103[0] && i101[0] <= i102[0] && i101[0] + i102[0] + 3 * i103[0] >= 0 →* TRUE)∧(i103[0] →* i103[1]))
(1) -> (0), if ((i101[1] →* i101[0])∧(i103[1] →* i103[0])∧(i102[1] →* i102[0]))
(1) -> (2), if ((i101[1] →* i101[2])∧(i102[1] →* i102[2])∧(i103[1] →* i103[2]))
(1) -> (4), if ((i103[1] →* i103[4])∧(i102[1] →* i102[4])∧(i101[1] →* i101[4]))
(1) -> (6), if ((i103[1] →* i103[6])∧(i101[1] →* i101[6])∧(i102[1] →* i102[6]))
(2) -> (3), if ((i102[2] →* i102[3])∧(i103[2] →* i103[3])∧(i101[2] →* i101[3])∧(i102[2] <= i103[2] && i101[2] <= i102[2] && i101[2] + i102[2] + 3 * i103[2] >= 0 →* TRUE))
(3) -> (0), if ((i103[3] - 1 →* i103[0])∧(i101[3] + 1 →* i101[0])∧(i102[3] + 1 →* i102[0]))
(3) -> (2), if ((i101[3] + 1 →* i101[2])∧(i103[3] - 1 →* i103[2])∧(i102[3] + 1 →* i102[2]))
(3) -> (4), if ((i103[3] - 1 →* i103[4])∧(i101[3] + 1 →* i101[4])∧(i102[3] + 1 →* i102[4]))
(3) -> (6), if ((i101[3] + 1 →* i101[6])∧(i103[3] - 1 →* i103[6])∧(i102[3] + 1 →* i102[6]))
(4) -> (5), if ((i101[4] →* i101[5])∧(i103[4] →* i103[5])∧(i102[4] →* i102[5])∧(i102[4] > i103[4] && i101[4] <= i102[4] && i101[4] + i102[4] + 3 * i103[4] >= 0 →* TRUE))
(5) -> (0), if ((i103[5] →* i103[0])∧(i101[5] + 1 →* i101[0])∧(i102[5] + -2 →* i102[0]))
(5) -> (2), if ((i101[5] + 1 →* i101[2])∧(i103[5] →* i103[2])∧(i102[5] + -2 →* i102[2]))
(5) -> (4), if ((i102[5] + -2 →* i102[4])∧(i101[5] + 1 →* i101[4])∧(i103[5] →* i103[4]))
(5) -> (6), if ((i103[5] →* i103[6])∧(i102[5] + -2 →* i102[6])∧(i101[5] + 1 →* i101[6]))
(6) -> (7), if ((i101[6] > i102[6] && i101[6] + i102[6] + 3 * i103[6] >= 0 →* TRUE)∧(i101[6] →* i101[7])∧(i102[6] →* i102[7])∧(i103[6] →* i103[7]))
(7) -> (0), if ((i102[7] →* i102[0])∧(i103[7] →* i103[0])∧(i101[7] + -1 →* i101[0]))
(7) -> (2), if ((i101[7] + -1 →* i101[2])∧(i102[7] →* i102[2])∧(i103[7] →* i103[2]))
(7) -> (4), if ((i103[7] →* i103[4])∧(i101[7] + -1 →* i101[4])∧(i102[7] →* i102[4]))
(7) -> (6), if ((i102[7] →* i102[6])∧(i101[7] + -1 →* i101[6])∧(i103[7] →* i103[6]))
(1) (i101[0]=i101[1]∧i102[0]=i102[1]∧&&(&&(&&(>(i102[0], i103[0]), <=(i102[0], i103[0])), <=(i101[0], i102[0])), >=(+(+(i101[0], i102[0]), *(3, i103[0])), 0))=TRUE∧i103[0]=i103[1] ⇒ LOAD454(i101[0], i102[0], i103[0])≥NonInfC∧LOAD454(i101[0], i102[0], i103[0])≥COND_LOAD454(&&(&&(&&(>(i102[0], i103[0]), <=(i102[0], i103[0])), <=(i101[0], i102[0])), >=(+(+(i101[0], i102[0]), *(3, i103[0])), 0)), i101[0], i102[0], i103[0])∧(UIncreasing(COND_LOAD454(&&(&&(&&(>(i102[0], i103[0]), <=(i102[0], i103[0])), <=(i101[0], i102[0])), >=(+(+(i101[0], i102[0]), *(3, i103[0])), 0)), i101[0], i102[0], i103[0])), ≥))
(2) (>=(+(+(i101[0], i102[0]), *(3, i103[0])), 0)=TRUE∧<=(i101[0], i102[0])=TRUE∧>(i102[0], i103[0])=TRUE∧<=(i102[0], i103[0])=TRUE ⇒ LOAD454(i101[0], i102[0], i103[0])≥NonInfC∧LOAD454(i101[0], i102[0], i103[0])≥COND_LOAD454(&&(&&(&&(>(i102[0], i103[0]), <=(i102[0], i103[0])), <=(i101[0], i102[0])), >=(+(+(i101[0], i102[0]), *(3, i103[0])), 0)), i101[0], i102[0], i103[0])∧(UIncreasing(COND_LOAD454(&&(&&(&&(>(i102[0], i103[0]), <=(i102[0], i103[0])), <=(i101[0], i102[0])), >=(+(+(i101[0], i102[0]), *(3, i103[0])), 0)), i101[0], i102[0], i103[0])), ≥))
(3) (i101[0] + i102[0] + [3]i103[0] ≥ 0∧i102[0] + [-1]i101[0] ≥ 0∧i102[0] + [-1] + [-1]i103[0] ≥ 0∧i103[0] + [-1]i102[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD454(&&(&&(&&(>(i102[0], i103[0]), <=(i102[0], i103[0])), <=(i101[0], i102[0])), >=(+(+(i101[0], i102[0]), *(3, i103[0])), 0)), i101[0], i102[0], i103[0])), ≥)∧[(-1)Bound*bni_15] + [(2)bni_15]i103[0] + [(2)bni_15]i102[0] ≥ 0∧[-1 + (-1)bso_16] ≥ 0)
(4) (i101[0] + i102[0] + [3]i103[0] ≥ 0∧i102[0] + [-1]i101[0] ≥ 0∧i102[0] + [-1] + [-1]i103[0] ≥ 0∧i103[0] + [-1]i102[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD454(&&(&&(&&(>(i102[0], i103[0]), <=(i102[0], i103[0])), <=(i101[0], i102[0])), >=(+(+(i101[0], i102[0]), *(3, i103[0])), 0)), i101[0], i102[0], i103[0])), ≥)∧[(-1)Bound*bni_15] + [(2)bni_15]i103[0] + [(2)bni_15]i102[0] ≥ 0∧[-1 + (-1)bso_16] ≥ 0)
(5) (i101[0] + i102[0] + [3]i103[0] ≥ 0∧i102[0] + [-1]i101[0] ≥ 0∧i102[0] + [-1] + [-1]i103[0] ≥ 0∧i103[0] + [-1]i102[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD454(&&(&&(&&(>(i102[0], i103[0]), <=(i102[0], i103[0])), <=(i101[0], i102[0])), >=(+(+(i101[0], i102[0]), *(3, i103[0])), 0)), i101[0], i102[0], i103[0])), ≥)∧[(-1)Bound*bni_15] + [(2)bni_15]i103[0] + [(2)bni_15]i102[0] ≥ 0∧[-1 + (-1)bso_16] ≥ 0)
(6) (i101[1]=i101[0]∧i103[1]=i103[0]∧i102[1]=i102[0] ⇒ COND_LOAD454(TRUE, i101[1], i102[1], i103[1])≥NonInfC∧COND_LOAD454(TRUE, i101[1], i102[1], i103[1])≥LOAD454(i101[1], i102[1], i103[1])∧(UIncreasing(LOAD454(i101[1], i102[1], i103[1])), ≥))
(7) (COND_LOAD454(TRUE, i101[1], i102[1], i103[1])≥NonInfC∧COND_LOAD454(TRUE, i101[1], i102[1], i103[1])≥LOAD454(i101[1], i102[1], i103[1])∧(UIncreasing(LOAD454(i101[1], i102[1], i103[1])), ≥))
(8) ((UIncreasing(LOAD454(i101[1], i102[1], i103[1])), ≥)∧[1 + (-1)bso_18] ≥ 0)
(9) ((UIncreasing(LOAD454(i101[1], i102[1], i103[1])), ≥)∧[1 + (-1)bso_18] ≥ 0)
(10) ((UIncreasing(LOAD454(i101[1], i102[1], i103[1])), ≥)∧[1 + (-1)bso_18] ≥ 0)
(11) ((UIncreasing(LOAD454(i101[1], i102[1], i103[1])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_18] ≥ 0)
(12) (i101[1]=i101[2]∧i102[1]=i102[2]∧i103[1]=i103[2] ⇒ COND_LOAD454(TRUE, i101[1], i102[1], i103[1])≥NonInfC∧COND_LOAD454(TRUE, i101[1], i102[1], i103[1])≥LOAD454(i101[1], i102[1], i103[1])∧(UIncreasing(LOAD454(i101[1], i102[1], i103[1])), ≥))
(13) (COND_LOAD454(TRUE, i101[1], i102[1], i103[1])≥NonInfC∧COND_LOAD454(TRUE, i101[1], i102[1], i103[1])≥LOAD454(i101[1], i102[1], i103[1])∧(UIncreasing(LOAD454(i101[1], i102[1], i103[1])), ≥))
(14) ((UIncreasing(LOAD454(i101[1], i102[1], i103[1])), ≥)∧[1 + (-1)bso_18] ≥ 0)
(15) ((UIncreasing(LOAD454(i101[1], i102[1], i103[1])), ≥)∧[1 + (-1)bso_18] ≥ 0)
(16) ((UIncreasing(LOAD454(i101[1], i102[1], i103[1])), ≥)∧[1 + (-1)bso_18] ≥ 0)
(17) ((UIncreasing(LOAD454(i101[1], i102[1], i103[1])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_18] ≥ 0)
(18) (i103[1]=i103[4]∧i102[1]=i102[4]∧i101[1]=i101[4] ⇒ COND_LOAD454(TRUE, i101[1], i102[1], i103[1])≥NonInfC∧COND_LOAD454(TRUE, i101[1], i102[1], i103[1])≥LOAD454(i101[1], i102[1], i103[1])∧(UIncreasing(LOAD454(i101[1], i102[1], i103[1])), ≥))
(19) (COND_LOAD454(TRUE, i101[1], i102[1], i103[1])≥NonInfC∧COND_LOAD454(TRUE, i101[1], i102[1], i103[1])≥LOAD454(i101[1], i102[1], i103[1])∧(UIncreasing(LOAD454(i101[1], i102[1], i103[1])), ≥))
(20) ((UIncreasing(LOAD454(i101[1], i102[1], i103[1])), ≥)∧[1 + (-1)bso_18] ≥ 0)
(21) ((UIncreasing(LOAD454(i101[1], i102[1], i103[1])), ≥)∧[1 + (-1)bso_18] ≥ 0)
(22) ((UIncreasing(LOAD454(i101[1], i102[1], i103[1])), ≥)∧[1 + (-1)bso_18] ≥ 0)
(23) ((UIncreasing(LOAD454(i101[1], i102[1], i103[1])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_18] ≥ 0)
(24) (i103[1]=i103[6]∧i101[1]=i101[6]∧i102[1]=i102[6] ⇒ COND_LOAD454(TRUE, i101[1], i102[1], i103[1])≥NonInfC∧COND_LOAD454(TRUE, i101[1], i102[1], i103[1])≥LOAD454(i101[1], i102[1], i103[1])∧(UIncreasing(LOAD454(i101[1], i102[1], i103[1])), ≥))
(25) (COND_LOAD454(TRUE, i101[1], i102[1], i103[1])≥NonInfC∧COND_LOAD454(TRUE, i101[1], i102[1], i103[1])≥LOAD454(i101[1], i102[1], i103[1])∧(UIncreasing(LOAD454(i101[1], i102[1], i103[1])), ≥))
(26) ((UIncreasing(LOAD454(i101[1], i102[1], i103[1])), ≥)∧[1 + (-1)bso_18] ≥ 0)
(27) ((UIncreasing(LOAD454(i101[1], i102[1], i103[1])), ≥)∧[1 + (-1)bso_18] ≥ 0)
(28) ((UIncreasing(LOAD454(i101[1], i102[1], i103[1])), ≥)∧[1 + (-1)bso_18] ≥ 0)
(29) ((UIncreasing(LOAD454(i101[1], i102[1], i103[1])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_18] ≥ 0)
(30) (i102[2]=i102[3]∧i103[2]=i103[3]∧i101[2]=i101[3]∧&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0))=TRUE ⇒ LOAD454(i101[2], i102[2], i103[2])≥NonInfC∧LOAD454(i101[2], i102[2], i103[2])≥COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])∧(UIncreasing(COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])), ≥))
(31) (>=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)=TRUE∧<=(i102[2], i103[2])=TRUE∧<=(i101[2], i102[2])=TRUE ⇒ LOAD454(i101[2], i102[2], i103[2])≥NonInfC∧LOAD454(i101[2], i102[2], i103[2])≥COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])∧(UIncreasing(COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])), ≥))
(32) (i101[2] + i102[2] + [3]i103[2] ≥ 0∧i103[2] + [-1]i102[2] ≥ 0∧i102[2] + [-1]i101[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])), ≥)∧[(-1)Bound*bni_19] + [(2)bni_19]i103[2] + [(2)bni_19]i102[2] ≥ 0∧[(-1)bso_20] ≥ 0)
(33) (i101[2] + i102[2] + [3]i103[2] ≥ 0∧i103[2] + [-1]i102[2] ≥ 0∧i102[2] + [-1]i101[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])), ≥)∧[(-1)Bound*bni_19] + [(2)bni_19]i103[2] + [(2)bni_19]i102[2] ≥ 0∧[(-1)bso_20] ≥ 0)
(34) (i101[2] + i102[2] + [3]i103[2] ≥ 0∧i103[2] + [-1]i102[2] ≥ 0∧i102[2] + [-1]i101[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])), ≥)∧[(-1)Bound*bni_19] + [(2)bni_19]i103[2] + [(2)bni_19]i102[2] ≥ 0∧[(-1)bso_20] ≥ 0)
(35) (i101[2] ≥ 0∧i103[2] + [-1]i102[2] ≥ 0∧[2]i102[2] + [3]i103[2] + [-1]i101[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])), ≥)∧[(-1)Bound*bni_19] + [(2)bni_19]i103[2] + [(2)bni_19]i102[2] ≥ 0∧[(-1)bso_20] ≥ 0)
(36) (i101[2] ≥ 0∧i102[2] ≥ 0∧[5]i103[2] + [-2]i102[2] + [-1]i101[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])), ≥)∧[(-1)Bound*bni_19] + [(4)bni_19]i103[2] + [(-2)bni_19]i102[2] ≥ 0∧[(-1)bso_20] ≥ 0)
(37) (COND_LOAD4541(TRUE, i101[3], i102[3], i103[3])≥NonInfC∧COND_LOAD4541(TRUE, i101[3], i102[3], i103[3])≥LOAD454(+(i101[3], 1), +(i102[3], 1), -(i103[3], 1))∧(UIncreasing(LOAD454(+(i101[3], 1), +(i102[3], 1), -(i103[3], 1))), ≥))
(38) ((UIncreasing(LOAD454(+(i101[3], 1), +(i102[3], 1), -(i103[3], 1))), ≥)∧[(-1)bso_22] ≥ 0)
(39) ((UIncreasing(LOAD454(+(i101[3], 1), +(i102[3], 1), -(i103[3], 1))), ≥)∧[(-1)bso_22] ≥ 0)
(40) ((UIncreasing(LOAD454(+(i101[3], 1), +(i102[3], 1), -(i103[3], 1))), ≥)∧[(-1)bso_22] ≥ 0)
(41) ((UIncreasing(LOAD454(+(i101[3], 1), +(i102[3], 1), -(i103[3], 1))), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_22] ≥ 0)
(42) (i101[4]=i101[5]∧i103[4]=i103[5]∧i102[4]=i102[5]∧&&(&&(>(i102[4], i103[4]), <=(i101[4], i102[4])), >=(+(+(i101[4], i102[4]), *(3, i103[4])), 0))=TRUE ⇒ LOAD454(i101[4], i102[4], i103[4])≥NonInfC∧LOAD454(i101[4], i102[4], i103[4])≥COND_LOAD4542(&&(&&(>(i102[4], i103[4]), <=(i101[4], i102[4])), >=(+(+(i101[4], i102[4]), *(3, i103[4])), 0)), i101[4], i102[4], i103[4])∧(UIncreasing(COND_LOAD4542(&&(&&(>(i102[4], i103[4]), <=(i101[4], i102[4])), >=(+(+(i101[4], i102[4]), *(3, i103[4])), 0)), i101[4], i102[4], i103[4])), ≥))
(43) (>=(+(+(i101[4], i102[4]), *(3, i103[4])), 0)=TRUE∧>(i102[4], i103[4])=TRUE∧<=(i101[4], i102[4])=TRUE ⇒ LOAD454(i101[4], i102[4], i103[4])≥NonInfC∧LOAD454(i101[4], i102[4], i103[4])≥COND_LOAD4542(&&(&&(>(i102[4], i103[4]), <=(i101[4], i102[4])), >=(+(+(i101[4], i102[4]), *(3, i103[4])), 0)), i101[4], i102[4], i103[4])∧(UIncreasing(COND_LOAD4542(&&(&&(>(i102[4], i103[4]), <=(i101[4], i102[4])), >=(+(+(i101[4], i102[4]), *(3, i103[4])), 0)), i101[4], i102[4], i103[4])), ≥))
(44) (i101[4] + i102[4] + [3]i103[4] ≥ 0∧i102[4] + [-1] + [-1]i103[4] ≥ 0∧i102[4] + [-1]i101[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD4542(&&(&&(>(i102[4], i103[4]), <=(i101[4], i102[4])), >=(+(+(i101[4], i102[4]), *(3, i103[4])), 0)), i101[4], i102[4], i103[4])), ≥)∧[(-1)Bound*bni_23] + [(2)bni_23]i103[4] + [(2)bni_23]i102[4] ≥ 0∧[(-1)bso_24] ≥ 0)
(45) (i101[4] + i102[4] + [3]i103[4] ≥ 0∧i102[4] + [-1] + [-1]i103[4] ≥ 0∧i102[4] + [-1]i101[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD4542(&&(&&(>(i102[4], i103[4]), <=(i101[4], i102[4])), >=(+(+(i101[4], i102[4]), *(3, i103[4])), 0)), i101[4], i102[4], i103[4])), ≥)∧[(-1)Bound*bni_23] + [(2)bni_23]i103[4] + [(2)bni_23]i102[4] ≥ 0∧[(-1)bso_24] ≥ 0)
(46) (i101[4] + i102[4] + [3]i103[4] ≥ 0∧i102[4] + [-1] + [-1]i103[4] ≥ 0∧i102[4] + [-1]i101[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD4542(&&(&&(>(i102[4], i103[4]), <=(i101[4], i102[4])), >=(+(+(i101[4], i102[4]), *(3, i103[4])), 0)), i101[4], i102[4], i103[4])), ≥)∧[(-1)Bound*bni_23] + [(2)bni_23]i103[4] + [(2)bni_23]i102[4] ≥ 0∧[(-1)bso_24] ≥ 0)
(47) (i101[4] ≥ 0∧i102[4] + [-1] + [-1]i103[4] ≥ 0∧[2]i102[4] + [3]i103[4] + [-1]i101[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD4542(&&(&&(>(i102[4], i103[4]), <=(i101[4], i102[4])), >=(+(+(i101[4], i102[4]), *(3, i103[4])), 0)), i101[4], i102[4], i103[4])), ≥)∧[(-1)Bound*bni_23] + [(2)bni_23]i103[4] + [(2)bni_23]i102[4] ≥ 0∧[(-1)bso_24] ≥ 0)
(48) (i101[4] ≥ 0∧i102[4] ≥ 0∧[2] + [5]i103[4] + [2]i102[4] + [-1]i101[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD4542(&&(&&(>(i102[4], i103[4]), <=(i101[4], i102[4])), >=(+(+(i101[4], i102[4]), *(3, i103[4])), 0)), i101[4], i102[4], i103[4])), ≥)∧[(-1)Bound*bni_23 + (2)bni_23] + [(4)bni_23]i103[4] + [(2)bni_23]i102[4] ≥ 0∧[(-1)bso_24] ≥ 0)
(49) (i101[4] ≥ 0∧i102[4] ≥ 0∧[2] + [5]i103[4] + [2]i102[4] + [-1]i101[4] ≥ 0∧i103[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD4542(&&(&&(>(i102[4], i103[4]), <=(i101[4], i102[4])), >=(+(+(i101[4], i102[4]), *(3, i103[4])), 0)), i101[4], i102[4], i103[4])), ≥)∧[(-1)Bound*bni_23 + (2)bni_23] + [(4)bni_23]i103[4] + [(2)bni_23]i102[4] ≥ 0∧[(-1)bso_24] ≥ 0)
(50) (i101[4] ≥ 0∧i102[4] ≥ 0∧[2] + [-5]i103[4] + [2]i102[4] + [-1]i101[4] ≥ 0∧i103[4] ≥ 0 ⇒ (UIncreasing(COND_LOAD4542(&&(&&(>(i102[4], i103[4]), <=(i101[4], i102[4])), >=(+(+(i101[4], i102[4]), *(3, i103[4])), 0)), i101[4], i102[4], i103[4])), ≥)∧[(-1)Bound*bni_23 + (2)bni_23] + [(-4)bni_23]i103[4] + [(2)bni_23]i102[4] ≥ 0∧[(-1)bso_24] ≥ 0)
(51) (COND_LOAD4542(TRUE, i101[5], i102[5], i103[5])≥NonInfC∧COND_LOAD4542(TRUE, i101[5], i102[5], i103[5])≥LOAD454(+(i101[5], 1), +(i102[5], -2), i103[5])∧(UIncreasing(LOAD454(+(i101[5], 1), +(i102[5], -2), i103[5])), ≥))
(52) ((UIncreasing(LOAD454(+(i101[5], 1), +(i102[5], -2), i103[5])), ≥)∧[4 + (-1)bso_26] ≥ 0)
(53) ((UIncreasing(LOAD454(+(i101[5], 1), +(i102[5], -2), i103[5])), ≥)∧[4 + (-1)bso_26] ≥ 0)
(54) ((UIncreasing(LOAD454(+(i101[5], 1), +(i102[5], -2), i103[5])), ≥)∧[4 + (-1)bso_26] ≥ 0)
(55) ((UIncreasing(LOAD454(+(i101[5], 1), +(i102[5], -2), i103[5])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[4 + (-1)bso_26] ≥ 0)
(56) (&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0))=TRUE∧i101[6]=i101[7]∧i102[6]=i102[7]∧i103[6]=i103[7] ⇒ LOAD454(i101[6], i102[6], i103[6])≥NonInfC∧LOAD454(i101[6], i102[6], i103[6])≥COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])∧(UIncreasing(COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])), ≥))
(57) (>(i101[6], i102[6])=TRUE∧>=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)=TRUE ⇒ LOAD454(i101[6], i102[6], i103[6])≥NonInfC∧LOAD454(i101[6], i102[6], i103[6])≥COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])∧(UIncreasing(COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])), ≥))
(58) (i101[6] + [-1] + [-1]i102[6] ≥ 0∧i101[6] + i102[6] + [3]i103[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])), ≥)∧[(-1)Bound*bni_27] + [(2)bni_27]i103[6] + [(2)bni_27]i102[6] ≥ 0∧[(-1)bso_28] ≥ 0)
(59) (i101[6] + [-1] + [-1]i102[6] ≥ 0∧i101[6] + i102[6] + [3]i103[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])), ≥)∧[(-1)Bound*bni_27] + [(2)bni_27]i103[6] + [(2)bni_27]i102[6] ≥ 0∧[(-1)bso_28] ≥ 0)
(60) (i101[6] + [-1] + [-1]i102[6] ≥ 0∧i101[6] + i102[6] + [3]i103[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])), ≥)∧[(-1)Bound*bni_27] + [(2)bni_27]i103[6] + [(2)bni_27]i102[6] ≥ 0∧[(-1)bso_28] ≥ 0)
(61) (i101[6] ≥ 0∧[1] + [2]i102[6] + i101[6] + [3]i103[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])), ≥)∧[(-1)Bound*bni_27] + [(2)bni_27]i103[6] + [(2)bni_27]i102[6] ≥ 0∧[(-1)bso_28] ≥ 0)
(62) (i101[6] ≥ 0∧[1] + [2]i102[6] + i101[6] + [3]i103[6] ≥ 0∧i102[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])), ≥)∧[(-1)Bound*bni_27] + [(2)bni_27]i103[6] + [(2)bni_27]i102[6] ≥ 0∧[(-1)bso_28] ≥ 0)
(63) (i101[6] ≥ 0∧[1] + [-2]i102[6] + i101[6] + [3]i103[6] ≥ 0∧i102[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])), ≥)∧[(-1)Bound*bni_27] + [(2)bni_27]i103[6] + [(-2)bni_27]i102[6] ≥ 0∧[(-1)bso_28] ≥ 0)
(64) (i101[6] ≥ 0∧[1] + [2]i102[6] + i101[6] + [3]i103[6] ≥ 0∧i102[6] ≥ 0∧i103[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])), ≥)∧[(-1)Bound*bni_27] + [(2)bni_27]i103[6] + [(2)bni_27]i102[6] ≥ 0∧[(-1)bso_28] ≥ 0)
(65) (i101[6] ≥ 0∧[1] + [2]i102[6] + i101[6] + [-3]i103[6] ≥ 0∧i102[6] ≥ 0∧i103[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])), ≥)∧[(-1)Bound*bni_27] + [(-2)bni_27]i103[6] + [(2)bni_27]i102[6] ≥ 0∧[(-1)bso_28] ≥ 0)
(66) (i101[6] ≥ 0∧[1] + [-2]i102[6] + i101[6] + [3]i103[6] ≥ 0∧i102[6] ≥ 0∧i103[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])), ≥)∧[(-1)Bound*bni_27] + [(2)bni_27]i103[6] + [(-2)bni_27]i102[6] ≥ 0∧[(-1)bso_28] ≥ 0)
(67) (i101[6] ≥ 0∧[1] + [-2]i102[6] + i101[6] + [-3]i103[6] ≥ 0∧i102[6] ≥ 0∧i103[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])), ≥)∧[(-1)Bound*bni_27] + [(-2)bni_27]i103[6] + [(-2)bni_27]i102[6] ≥ 0∧[(-1)bso_28] ≥ 0)
(68) (i101[6] ≥ 0∧i102[6] ≥ 0∧i103[6] ≥ 0∧i103[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])), ≥)∧[(-1)Bound*bni_27] + [(2)bni_27]i103[6] + [(2)bni_27]i102[6] ≥ 0∧[(-1)bso_28] ≥ 0)
(69) (i101[6] ≥ 0∧i102[6] ≥ 0∧i103[6] ≥ 0∧[-1]i103[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])), ≥)∧[(-1)Bound*bni_27] + [(-2)bni_27]i103[6] + [(2)bni_27]i102[6] ≥ 0∧[(-1)bso_28] ≥ 0)
(70) (i101[6] ≥ 0∧i102[6] ≥ 0∧i103[6] ≥ 0∧i103[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])), ≥)∧[(-1)Bound*bni_27] + [(2)bni_27]i103[6] + [(-2)bni_27]i102[6] ≥ 0∧[(-1)bso_28] ≥ 0)
(71) (i101[6] ≥ 0∧i102[6] ≥ 0∧i103[6] ≥ 0∧[-1]i103[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])), ≥)∧[(-1)Bound*bni_27] + [(-2)bni_27]i103[6] + [(-2)bni_27]i102[6] ≥ 0∧[(-1)bso_28] ≥ 0)
(72) (COND_LOAD4543(TRUE, i101[7], i102[7], i103[7])≥NonInfC∧COND_LOAD4543(TRUE, i101[7], i102[7], i103[7])≥LOAD454(+(i101[7], -1), i102[7], i103[7])∧(UIncreasing(LOAD454(+(i101[7], -1), i102[7], i103[7])), ≥))
(73) ((UIncreasing(LOAD454(+(i101[7], -1), i102[7], i103[7])), ≥)∧[(-1)bso_30] ≥ 0)
(74) ((UIncreasing(LOAD454(+(i101[7], -1), i102[7], i103[7])), ≥)∧[(-1)bso_30] ≥ 0)
(75) ((UIncreasing(LOAD454(+(i101[7], -1), i102[7], i103[7])), ≥)∧[(-1)bso_30] ≥ 0)
(76) ((UIncreasing(LOAD454(+(i101[7], -1), i102[7], i103[7])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_30] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(LOAD454(x1, x2, x3)) = [2]x3 + [2]x2
POL(COND_LOAD454(x1, x2, x3, x4)) = [1] + [2]x4 + [2]x3
POL(&&(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(<=(x1, x2)) = [-1]
POL(>=(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(*(x1, x2)) = x1·x2
POL(3) = [3]
POL(0) = 0
POL(COND_LOAD4541(x1, x2, x3, x4)) = [2]x4 + [2]x3
POL(1) = [1]
POL(-(x1, x2)) = x1 + [-1]x2
POL(COND_LOAD4542(x1, x2, x3, x4)) = [2]x4 + [2]x3
POL(-2) = [-2]
POL(COND_LOAD4543(x1, x2, x3, x4)) = [2]x4 + [2]x3
POL(-1) = [-1]
LOAD454(i101[0], i102[0], i103[0]) → COND_LOAD454(&&(&&(&&(>(i102[0], i103[0]), <=(i102[0], i103[0])), <=(i101[0], i102[0])), >=(+(+(i101[0], i102[0]), *(3, i103[0])), 0)), i101[0], i102[0], i103[0])
COND_LOAD454(TRUE, i101[1], i102[1], i103[1]) → LOAD454(i101[1], i102[1], i103[1])
COND_LOAD4542(TRUE, i101[5], i102[5], i103[5]) → LOAD454(+(i101[5], 1), +(i102[5], -2), i103[5])
LOAD454(i101[0], i102[0], i103[0]) → COND_LOAD454(&&(&&(&&(>(i102[0], i103[0]), <=(i102[0], i103[0])), <=(i101[0], i102[0])), >=(+(+(i101[0], i102[0]), *(3, i103[0])), 0)), i101[0], i102[0], i103[0])
LOAD454(i101[4], i102[4], i103[4]) → COND_LOAD4542(&&(&&(>(i102[4], i103[4]), <=(i101[4], i102[4])), >=(+(+(i101[4], i102[4]), *(3, i103[4])), 0)), i101[4], i102[4], i103[4])
LOAD454(i101[2], i102[2], i103[2]) → COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])
COND_LOAD4541(TRUE, i101[3], i102[3], i103[3]) → LOAD454(+(i101[3], 1), +(i102[3], 1), -(i103[3], 1))
LOAD454(i101[4], i102[4], i103[4]) → COND_LOAD4542(&&(&&(>(i102[4], i103[4]), <=(i101[4], i102[4])), >=(+(+(i101[4], i102[4]), *(3, i103[4])), 0)), i101[4], i102[4], i103[4])
LOAD454(i101[6], i102[6], i103[6]) → COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])
COND_LOAD4543(TRUE, i101[7], i102[7], i103[7]) → LOAD454(+(i101[7], -1), i102[7], i103[7])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(3) -> (2), if ((i101[3] + 1 →* i101[2])∧(i103[3] - 1 →* i103[2])∧(i102[3] + 1 →* i102[2]))
(7) -> (2), if ((i101[7] + -1 →* i101[2])∧(i102[7] →* i102[2])∧(i103[7] →* i103[2]))
(2) -> (3), if ((i102[2] →* i102[3])∧(i103[2] →* i103[3])∧(i101[2] →* i101[3])∧(i102[2] <= i103[2] && i101[2] <= i102[2] && i101[2] + i102[2] + 3 * i103[2] >= 0 →* TRUE))
(3) -> (4), if ((i103[3] - 1 →* i103[4])∧(i101[3] + 1 →* i101[4])∧(i102[3] + 1 →* i102[4]))
(7) -> (4), if ((i103[7] →* i103[4])∧(i101[7] + -1 →* i101[4])∧(i102[7] →* i102[4]))
(3) -> (6), if ((i101[3] + 1 →* i101[6])∧(i103[3] - 1 →* i103[6])∧(i102[3] + 1 →* i102[6]))
(7) -> (6), if ((i102[7] →* i102[6])∧(i101[7] + -1 →* i101[6])∧(i103[7] →* i103[6]))
(6) -> (7), if ((i101[6] > i102[6] && i101[6] + i102[6] + 3 * i103[6] >= 0 →* TRUE)∧(i101[6] →* i101[7])∧(i102[6] →* i102[7])∧(i103[6] →* i103[7]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(3) -> (2), if ((i101[3] + 1 →* i101[2])∧(i103[3] - 1 →* i103[2])∧(i102[3] + 1 →* i102[2]))
(7) -> (2), if ((i101[7] + -1 →* i101[2])∧(i102[7] →* i102[2])∧(i103[7] →* i103[2]))
(2) -> (3), if ((i102[2] →* i102[3])∧(i103[2] →* i103[3])∧(i101[2] →* i101[3])∧(i102[2] <= i103[2] && i101[2] <= i102[2] && i101[2] + i102[2] + 3 * i103[2] >= 0 →* TRUE))
(3) -> (6), if ((i101[3] + 1 →* i101[6])∧(i103[3] - 1 →* i103[6])∧(i102[3] + 1 →* i102[6]))
(7) -> (6), if ((i102[7] →* i102[6])∧(i101[7] + -1 →* i101[6])∧(i103[7] →* i103[6]))
(6) -> (7), if ((i101[6] > i102[6] && i101[6] + i102[6] + 3 * i103[6] >= 0 →* TRUE)∧(i101[6] →* i101[7])∧(i102[6] →* i102[7])∧(i103[6] →* i103[7]))
(1) (COND_LOAD4543(TRUE, i101[7], i102[7], i103[7])≥NonInfC∧COND_LOAD4543(TRUE, i101[7], i102[7], i103[7])≥LOAD454(+(i101[7], -1), i102[7], i103[7])∧(UIncreasing(LOAD454(+(i101[7], -1), i102[7], i103[7])), ≥))
(2) ((UIncreasing(LOAD454(+(i101[7], -1), i102[7], i103[7])), ≥)∧[1 + (-1)bso_14] ≥ 0)
(3) ((UIncreasing(LOAD454(+(i101[7], -1), i102[7], i103[7])), ≥)∧[1 + (-1)bso_14] ≥ 0)
(4) ((UIncreasing(LOAD454(+(i101[7], -1), i102[7], i103[7])), ≥)∧[1 + (-1)bso_14] ≥ 0)
(5) ((UIncreasing(LOAD454(+(i101[7], -1), i102[7], i103[7])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_14] ≥ 0)
(6) (&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0))=TRUE∧i101[6]=i101[7]∧i102[6]=i102[7]∧i103[6]=i103[7] ⇒ LOAD454(i101[6], i102[6], i103[6])≥NonInfC∧LOAD454(i101[6], i102[6], i103[6])≥COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])∧(UIncreasing(COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])), ≥))
(7) (>(i101[6], i102[6])=TRUE∧>=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)=TRUE ⇒ LOAD454(i101[6], i102[6], i103[6])≥NonInfC∧LOAD454(i101[6], i102[6], i103[6])≥COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])∧(UIncreasing(COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])), ≥))
(8) (i101[6] + [-1] + [-1]i102[6] ≥ 0∧i101[6] + i102[6] + [3]i103[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]i101[6] + [(-1)bni_15]i102[6] ≥ 0∧[(-1)bso_16] ≥ 0)
(9) (i101[6] + [-1] + [-1]i102[6] ≥ 0∧i101[6] + i102[6] + [3]i103[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]i101[6] + [(-1)bni_15]i102[6] ≥ 0∧[(-1)bso_16] ≥ 0)
(10) (i101[6] + [-1] + [-1]i102[6] ≥ 0∧i101[6] + i102[6] + [3]i103[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]i101[6] + [(-1)bni_15]i102[6] ≥ 0∧[(-1)bso_16] ≥ 0)
(11) (i101[6] ≥ 0∧[1] + [2]i102[6] + i101[6] + [3]i103[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])), ≥)∧[(-1)Bound*bni_15] + [bni_15]i101[6] ≥ 0∧[(-1)bso_16] ≥ 0)
(12) (i101[6] ≥ 0∧[1] + [2]i102[6] + i101[6] + [3]i103[6] ≥ 0∧i102[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])), ≥)∧[(-1)Bound*bni_15] + [bni_15]i101[6] ≥ 0∧[(-1)bso_16] ≥ 0)
(13) (i101[6] ≥ 0∧[1] + [-2]i102[6] + i101[6] + [3]i103[6] ≥ 0∧i102[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])), ≥)∧[(-1)Bound*bni_15] + [bni_15]i101[6] ≥ 0∧[(-1)bso_16] ≥ 0)
(14) (i101[6] ≥ 0∧[1] + [2]i102[6] + i101[6] + [3]i103[6] ≥ 0∧i102[6] ≥ 0∧i103[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])), ≥)∧[(-1)Bound*bni_15] + [bni_15]i101[6] ≥ 0∧[(-1)bso_16] ≥ 0)
(15) (i101[6] ≥ 0∧[1] + [2]i102[6] + i101[6] + [-3]i103[6] ≥ 0∧i102[6] ≥ 0∧i103[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])), ≥)∧[(-1)Bound*bni_15] + [bni_15]i101[6] ≥ 0∧[(-1)bso_16] ≥ 0)
(16) (i101[6] ≥ 0∧[1] + [-2]i102[6] + i101[6] + [3]i103[6] ≥ 0∧i102[6] ≥ 0∧i103[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])), ≥)∧[(-1)Bound*bni_15] + [bni_15]i101[6] ≥ 0∧[(-1)bso_16] ≥ 0)
(17) (i101[6] ≥ 0∧[1] + [-2]i102[6] + i101[6] + [-3]i103[6] ≥ 0∧i102[6] ≥ 0∧i103[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])), ≥)∧[(-1)Bound*bni_15] + [bni_15]i101[6] ≥ 0∧[(-1)bso_16] ≥ 0)
(18) (i101[6] ≥ 0∧i102[6] ≥ 0∧i103[6] ≥ 0∧i103[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])), ≥)∧[(-1)Bound*bni_15] + [bni_15]i101[6] ≥ 0∧[(-1)bso_16] ≥ 0)
(19) (i101[6] ≥ 0∧i102[6] ≥ 0∧i103[6] ≥ 0∧[-1]i103[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])), ≥)∧[(-1)Bound*bni_15] + [bni_15]i101[6] ≥ 0∧[(-1)bso_16] ≥ 0)
(20) (i101[6] ≥ 0∧i102[6] ≥ 0∧i103[6] ≥ 0∧i103[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])), ≥)∧[(-1)Bound*bni_15] + [bni_15]i101[6] ≥ 0∧[(-1)bso_16] ≥ 0)
(21) (i101[6] ≥ 0∧i102[6] ≥ 0∧i103[6] ≥ 0∧[-1]i103[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])), ≥)∧[(-1)Bound*bni_15] + [bni_15]i101[6] ≥ 0∧[(-1)bso_16] ≥ 0)
(22) (COND_LOAD4541(TRUE, i101[3], i102[3], i103[3])≥NonInfC∧COND_LOAD4541(TRUE, i101[3], i102[3], i103[3])≥LOAD454(+(i101[3], 1), +(i102[3], 1), -(i103[3], 1))∧(UIncreasing(LOAD454(+(i101[3], 1), +(i102[3], 1), -(i103[3], 1))), ≥))
(23) ((UIncreasing(LOAD454(+(i101[3], 1), +(i102[3], 1), -(i103[3], 1))), ≥)∧[(-1)bso_18] ≥ 0)
(24) ((UIncreasing(LOAD454(+(i101[3], 1), +(i102[3], 1), -(i103[3], 1))), ≥)∧[(-1)bso_18] ≥ 0)
(25) ((UIncreasing(LOAD454(+(i101[3], 1), +(i102[3], 1), -(i103[3], 1))), ≥)∧[(-1)bso_18] ≥ 0)
(26) ((UIncreasing(LOAD454(+(i101[3], 1), +(i102[3], 1), -(i103[3], 1))), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_18] ≥ 0)
(27) (i102[2]=i102[3]∧i103[2]=i103[3]∧i101[2]=i101[3]∧&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0))=TRUE ⇒ LOAD454(i101[2], i102[2], i103[2])≥NonInfC∧LOAD454(i101[2], i102[2], i103[2])≥COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])∧(UIncreasing(COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])), ≥))
(28) (>=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)=TRUE∧<=(i102[2], i103[2])=TRUE∧<=(i101[2], i102[2])=TRUE ⇒ LOAD454(i101[2], i102[2], i103[2])≥NonInfC∧LOAD454(i101[2], i102[2], i103[2])≥COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])∧(UIncreasing(COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])), ≥))
(29) (i101[2] + i102[2] + [3]i103[2] ≥ 0∧i103[2] + [-1]i102[2] ≥ 0∧i102[2] + [-1]i101[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])), ≥)∧[(-1)bni_19 + (-1)Bound*bni_19] + [bni_19]i101[2] + [(-1)bni_19]i102[2] ≥ 0∧[(-1)bso_20] ≥ 0)
(30) (i101[2] + i102[2] + [3]i103[2] ≥ 0∧i103[2] + [-1]i102[2] ≥ 0∧i102[2] + [-1]i101[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])), ≥)∧[(-1)bni_19 + (-1)Bound*bni_19] + [bni_19]i101[2] + [(-1)bni_19]i102[2] ≥ 0∧[(-1)bso_20] ≥ 0)
(31) (i101[2] + i102[2] + [3]i103[2] ≥ 0∧i103[2] + [-1]i102[2] ≥ 0∧i102[2] + [-1]i101[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])), ≥)∧[(-1)bni_19 + (-1)Bound*bni_19] + [bni_19]i101[2] + [(-1)bni_19]i102[2] ≥ 0∧[(-1)bso_20] ≥ 0)
(32) (i101[2] ≥ 0∧i103[2] + [-1]i102[2] ≥ 0∧[2]i102[2] + [3]i103[2] + [-1]i101[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])), ≥)∧[(-1)bni_19 + (-1)Bound*bni_19] + [(-2)bni_19]i102[2] + [(-3)bni_19]i103[2] + [bni_19]i101[2] ≥ 0∧[(-1)bso_20] ≥ 0)
(33) (i101[2] ≥ 0∧i102[2] ≥ 0∧[5]i103[2] + [-2]i102[2] + [-1]i101[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])), ≥)∧[(-1)bni_19 + (-1)Bound*bni_19] + [(-5)bni_19]i103[2] + [(2)bni_19]i102[2] + [bni_19]i101[2] ≥ 0∧[(-1)bso_20] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_LOAD4543(x1, x2, x3, x4)) = [-1] + [-1]x3 + x2
POL(LOAD454(x1, x2, x3)) = [-1] + x1 + [-1]x2
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(&&(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(>=(x1, x2)) = [-1]
POL(*(x1, x2)) = x1·x2
POL(3) = [3]
POL(0) = 0
POL(COND_LOAD4541(x1, x2, x3, x4)) = [-1] + [-1]x3 + x2
POL(1) = [1]
POL(-(x1, x2)) = x1 + [-1]x2
POL(<=(x1, x2)) = [-1]
COND_LOAD4543(TRUE, i101[7], i102[7], i103[7]) → LOAD454(+(i101[7], -1), i102[7], i103[7])
LOAD454(i101[6], i102[6], i103[6]) → COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])
LOAD454(i101[6], i102[6], i103[6]) → COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])
COND_LOAD4541(TRUE, i101[3], i102[3], i103[3]) → LOAD454(+(i101[3], 1), +(i102[3], 1), -(i103[3], 1))
LOAD454(i101[2], i102[2], i103[2]) → COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(3) -> (2), if ((i101[3] + 1 →* i101[2])∧(i103[3] - 1 →* i103[2])∧(i102[3] + 1 →* i102[2]))
(2) -> (3), if ((i102[2] →* i102[3])∧(i103[2] →* i103[3])∧(i101[2] →* i101[3])∧(i102[2] <= i103[2] && i101[2] <= i102[2] && i101[2] + i102[2] + 3 * i103[2] >= 0 →* TRUE))
(3) -> (6), if ((i101[3] + 1 →* i101[6])∧(i103[3] - 1 →* i103[6])∧(i102[3] + 1 →* i102[6]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(3) -> (2), if ((i101[3] + 1 →* i101[2])∧(i103[3] - 1 →* i103[2])∧(i102[3] + 1 →* i102[2]))
(2) -> (3), if ((i102[2] →* i102[3])∧(i103[2] →* i103[3])∧(i101[2] →* i101[3])∧(i102[2] <= i103[2] && i101[2] <= i102[2] && i101[2] + i102[2] + 3 * i103[2] >= 0 →* TRUE))
(1) (i102[2]=i102[3]∧i103[2]=i103[3]∧i101[2]=i101[3]∧&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0))=TRUE ⇒ LOAD454(i101[2], i102[2], i103[2])≥NonInfC∧LOAD454(i101[2], i102[2], i103[2])≥COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])∧(UIncreasing(COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])), ≥))
(2) (>=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)=TRUE∧<=(i102[2], i103[2])=TRUE∧<=(i101[2], i102[2])=TRUE ⇒ LOAD454(i101[2], i102[2], i103[2])≥NonInfC∧LOAD454(i101[2], i102[2], i103[2])≥COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])∧(UIncreasing(COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])), ≥))
(3) (i101[2] + i102[2] + [3]i103[2] ≥ 0∧i103[2] + [-1]i102[2] ≥ 0∧i102[2] + [-1]i101[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])), ≥)∧[(2)bni_8 + (-1)Bound*bni_8] + [bni_8]i103[2] + [(-1)bni_8]i101[2] ≥ 0∧[1 + (-1)bso_9] ≥ 0)
(4) (i101[2] + i102[2] + [3]i103[2] ≥ 0∧i103[2] + [-1]i102[2] ≥ 0∧i102[2] + [-1]i101[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])), ≥)∧[(2)bni_8 + (-1)Bound*bni_8] + [bni_8]i103[2] + [(-1)bni_8]i101[2] ≥ 0∧[1 + (-1)bso_9] ≥ 0)
(5) (i101[2] + i102[2] + [3]i103[2] ≥ 0∧i103[2] + [-1]i102[2] ≥ 0∧i102[2] + [-1]i101[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])), ≥)∧[(2)bni_8 + (-1)Bound*bni_8] + [bni_8]i103[2] + [(-1)bni_8]i101[2] ≥ 0∧[1 + (-1)bso_9] ≥ 0)
(6) (i101[2] ≥ 0∧i103[2] + [-1]i102[2] ≥ 0∧[2]i102[2] + [3]i103[2] + [-1]i101[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])), ≥)∧[(2)bni_8 + (-1)Bound*bni_8] + [(4)bni_8]i103[2] + [bni_8]i102[2] + [(-1)bni_8]i101[2] ≥ 0∧[1 + (-1)bso_9] ≥ 0)
(7) (i101[2] ≥ 0∧i102[2] ≥ 0∧[5]i103[2] + [-2]i102[2] + [-1]i101[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])), ≥)∧[(2)bni_8 + (-1)Bound*bni_8] + [(5)bni_8]i103[2] + [(-1)bni_8]i102[2] + [(-1)bni_8]i101[2] ≥ 0∧[1 + (-1)bso_9] ≥ 0)
(8) (COND_LOAD4541(TRUE, i101[3], i102[3], i103[3])≥NonInfC∧COND_LOAD4541(TRUE, i101[3], i102[3], i103[3])≥LOAD454(+(i101[3], 1), +(i102[3], 1), -(i103[3], 1))∧(UIncreasing(LOAD454(+(i101[3], 1), +(i102[3], 1), -(i103[3], 1))), ≥))
(9) ((UIncreasing(LOAD454(+(i101[3], 1), +(i102[3], 1), -(i103[3], 1))), ≥)∧[1 + (-1)bso_11] ≥ 0)
(10) ((UIncreasing(LOAD454(+(i101[3], 1), +(i102[3], 1), -(i103[3], 1))), ≥)∧[1 + (-1)bso_11] ≥ 0)
(11) ((UIncreasing(LOAD454(+(i101[3], 1), +(i102[3], 1), -(i103[3], 1))), ≥)∧[1 + (-1)bso_11] ≥ 0)
(12) ((UIncreasing(LOAD454(+(i101[3], 1), +(i102[3], 1), -(i103[3], 1))), ≥)∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_11] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(LOAD454(x1, x2, x3)) = [2] + x3 + [-1]x1
POL(COND_LOAD4541(x1, x2, x3, x4)) = [1] + x4 + [-1]x2
POL(&&(x1, x2)) = 0
POL(<=(x1, x2)) = [-1]
POL(>=(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(*(x1, x2)) = x1·x2
POL(3) = [3]
POL(0) = 0
POL(1) = [1]
POL(-(x1, x2)) = x1 + [-1]x2
LOAD454(i101[2], i102[2], i103[2]) → COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])
COND_LOAD4541(TRUE, i101[3], i102[3], i103[3]) → LOAD454(+(i101[3], 1), +(i102[3], 1), -(i103[3], 1))
LOAD454(i101[2], i102[2], i103[2]) → COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(3) -> (2), if ((i101[3] + 1 →* i101[2])∧(i103[3] - 1 →* i103[2])∧(i102[3] + 1 →* i102[2]))
(7) -> (2), if ((i101[7] + -1 →* i101[2])∧(i102[7] →* i102[2])∧(i103[7] →* i103[2]))
(2) -> (3), if ((i102[2] →* i102[3])∧(i103[2] →* i103[3])∧(i101[2] →* i101[3])∧(i102[2] <= i103[2] && i101[2] <= i102[2] && i101[2] + i102[2] + 3 * i103[2] >= 0 →* TRUE))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(3) -> (2), if ((i101[3] + 1 →* i101[2])∧(i103[3] - 1 →* i103[2])∧(i102[3] + 1 →* i102[2]))
(2) -> (3), if ((i102[2] →* i102[3])∧(i103[2] →* i103[3])∧(i101[2] →* i101[3])∧(i102[2] <= i103[2] && i101[2] <= i102[2] && i101[2] + i102[2] + 3 * i103[2] >= 0 →* TRUE))
(1) (COND_LOAD4541(TRUE, i101[3], i102[3], i103[3])≥NonInfC∧COND_LOAD4541(TRUE, i101[3], i102[3], i103[3])≥LOAD454(+(i101[3], 1), +(i102[3], 1), -(i103[3], 1))∧(UIncreasing(LOAD454(+(i101[3], 1), +(i102[3], 1), -(i103[3], 1))), ≥))
(2) ((UIncreasing(LOAD454(+(i101[3], 1), +(i102[3], 1), -(i103[3], 1))), ≥)∧[1 + (-1)bso_9] ≥ 0)
(3) ((UIncreasing(LOAD454(+(i101[3], 1), +(i102[3], 1), -(i103[3], 1))), ≥)∧[1 + (-1)bso_9] ≥ 0)
(4) ((UIncreasing(LOAD454(+(i101[3], 1), +(i102[3], 1), -(i103[3], 1))), ≥)∧[1 + (-1)bso_9] ≥ 0)
(5) ((UIncreasing(LOAD454(+(i101[3], 1), +(i102[3], 1), -(i103[3], 1))), ≥)∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_9] ≥ 0)
(6) (i102[2]=i102[3]∧i103[2]=i103[3]∧i101[2]=i101[3]∧&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0))=TRUE ⇒ LOAD454(i101[2], i102[2], i103[2])≥NonInfC∧LOAD454(i101[2], i102[2], i103[2])≥COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])∧(UIncreasing(COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])), ≥))
(7) (>=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)=TRUE∧<=(i102[2], i103[2])=TRUE∧<=(i101[2], i102[2])=TRUE ⇒ LOAD454(i101[2], i102[2], i103[2])≥NonInfC∧LOAD454(i101[2], i102[2], i103[2])≥COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])∧(UIncreasing(COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])), ≥))
(8) (i101[2] + i102[2] + [3]i103[2] ≥ 0∧i103[2] + [-1]i102[2] ≥ 0∧i102[2] + [-1]i101[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])), ≥)∧[(2)bni_10 + (-1)Bound*bni_10] + [(2)bni_10]i103[2] + [(-1)bni_10]i102[2] ≥ 0∧[2 + (-1)bso_11] ≥ 0)
(9) (i101[2] + i102[2] + [3]i103[2] ≥ 0∧i103[2] + [-1]i102[2] ≥ 0∧i102[2] + [-1]i101[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])), ≥)∧[(2)bni_10 + (-1)Bound*bni_10] + [(2)bni_10]i103[2] + [(-1)bni_10]i102[2] ≥ 0∧[2 + (-1)bso_11] ≥ 0)
(10) (i101[2] + i102[2] + [3]i103[2] ≥ 0∧i103[2] + [-1]i102[2] ≥ 0∧i102[2] + [-1]i101[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])), ≥)∧[(2)bni_10 + (-1)Bound*bni_10] + [(2)bni_10]i103[2] + [(-1)bni_10]i102[2] ≥ 0∧[2 + (-1)bso_11] ≥ 0)
(11) (i101[2] ≥ 0∧i103[2] + [-1]i102[2] ≥ 0∧[2]i102[2] + [3]i103[2] + [-1]i101[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])), ≥)∧[(2)bni_10 + (-1)Bound*bni_10] + [(2)bni_10]i103[2] + [(-1)bni_10]i102[2] ≥ 0∧[2 + (-1)bso_11] ≥ 0)
(12) (i101[2] ≥ 0∧i102[2] ≥ 0∧[5]i103[2] + [-2]i102[2] + [-1]i101[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])), ≥)∧[(2)bni_10 + (-1)Bound*bni_10] + [bni_10]i103[2] + [bni_10]i102[2] ≥ 0∧[2 + (-1)bso_11] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_LOAD4541(x1, x2, x3, x4)) = [2]x4 + [-1]x3
POL(LOAD454(x1, x2, x3)) = [2] + [2]x3 + [-1]x2
POL(+(x1, x2)) = x1 + x2
POL(1) = [1]
POL(-(x1, x2)) = x1 + [-1]x2
POL(&&(x1, x2)) = [-1]
POL(<=(x1, x2)) = 0
POL(>=(x1, x2)) = [-1]
POL(*(x1, x2)) = x1·x2
POL(3) = [3]
POL(0) = 0
COND_LOAD4541(TRUE, i101[3], i102[3], i103[3]) → LOAD454(+(i101[3], 1), +(i102[3], 1), -(i103[3], 1))
LOAD454(i101[2], i102[2], i103[2]) → COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])
LOAD454(i101[2], i102[2], i103[2]) → COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(1) -> (2), if ((i101[1] →* i101[2])∧(i102[1] →* i102[2])∧(i103[1] →* i103[2]))
(3) -> (2), if ((i101[3] + 1 →* i101[2])∧(i103[3] - 1 →* i103[2])∧(i102[3] + 1 →* i102[2]))
(5) -> (2), if ((i101[5] + 1 →* i101[2])∧(i103[5] →* i103[2])∧(i102[5] + -2 →* i102[2]))
(7) -> (2), if ((i101[7] + -1 →* i101[2])∧(i102[7] →* i102[2])∧(i103[7] →* i103[2]))
(2) -> (3), if ((i102[2] →* i102[3])∧(i103[2] →* i103[3])∧(i101[2] →* i101[3])∧(i102[2] <= i103[2] && i101[2] <= i102[2] && i101[2] + i102[2] + 3 * i103[2] >= 0 →* TRUE))
(1) -> (6), if ((i103[1] →* i103[6])∧(i101[1] →* i101[6])∧(i102[1] →* i102[6]))
(3) -> (6), if ((i101[3] + 1 →* i101[6])∧(i103[3] - 1 →* i103[6])∧(i102[3] + 1 →* i102[6]))
(5) -> (6), if ((i103[5] →* i103[6])∧(i102[5] + -2 →* i102[6])∧(i101[5] + 1 →* i101[6]))
(7) -> (6), if ((i102[7] →* i102[6])∧(i101[7] + -1 →* i101[6])∧(i103[7] →* i103[6]))
(6) -> (7), if ((i101[6] > i102[6] && i101[6] + i102[6] + 3 * i103[6] >= 0 →* TRUE)∧(i101[6] →* i101[7])∧(i102[6] →* i102[7])∧(i103[6] →* i103[7]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(3) -> (2), if ((i101[3] + 1 →* i101[2])∧(i103[3] - 1 →* i103[2])∧(i102[3] + 1 →* i102[2]))
(7) -> (2), if ((i101[7] + -1 →* i101[2])∧(i102[7] →* i102[2])∧(i103[7] →* i103[2]))
(2) -> (3), if ((i102[2] →* i102[3])∧(i103[2] →* i103[3])∧(i101[2] →* i101[3])∧(i102[2] <= i103[2] && i101[2] <= i102[2] && i101[2] + i102[2] + 3 * i103[2] >= 0 →* TRUE))
(3) -> (6), if ((i101[3] + 1 →* i101[6])∧(i103[3] - 1 →* i103[6])∧(i102[3] + 1 →* i102[6]))
(7) -> (6), if ((i102[7] →* i102[6])∧(i101[7] + -1 →* i101[6])∧(i103[7] →* i103[6]))
(6) -> (7), if ((i101[6] > i102[6] && i101[6] + i102[6] + 3 * i103[6] >= 0 →* TRUE)∧(i101[6] →* i101[7])∧(i102[6] →* i102[7])∧(i103[6] →* i103[7]))
(1) (COND_LOAD4543(TRUE, i101[7], i102[7], i103[7])≥NonInfC∧COND_LOAD4543(TRUE, i101[7], i102[7], i103[7])≥LOAD454(+(i101[7], -1), i102[7], i103[7])∧(UIncreasing(LOAD454(+(i101[7], -1), i102[7], i103[7])), ≥))
(2) ((UIncreasing(LOAD454(+(i101[7], -1), i102[7], i103[7])), ≥)∧[(-1)bso_11] ≥ 0)
(3) ((UIncreasing(LOAD454(+(i101[7], -1), i102[7], i103[7])), ≥)∧[(-1)bso_11] ≥ 0)
(4) ((UIncreasing(LOAD454(+(i101[7], -1), i102[7], i103[7])), ≥)∧[(-1)bso_11] ≥ 0)
(5) ((UIncreasing(LOAD454(+(i101[7], -1), i102[7], i103[7])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_11] ≥ 0)
(6) (&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0))=TRUE∧i101[6]=i101[7]∧i102[6]=i102[7]∧i103[6]=i103[7] ⇒ LOAD454(i101[6], i102[6], i103[6])≥NonInfC∧LOAD454(i101[6], i102[6], i103[6])≥COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])∧(UIncreasing(COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])), ≥))
(7) (>(i101[6], i102[6])=TRUE∧>=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)=TRUE ⇒ LOAD454(i101[6], i102[6], i103[6])≥NonInfC∧LOAD454(i101[6], i102[6], i103[6])≥COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])∧(UIncreasing(COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])), ≥))
(8) (i101[6] + [-1] + [-1]i102[6] ≥ 0∧i101[6] + i102[6] + [3]i103[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])), ≥)∧[(-1)Bound*bni_12] + [bni_12]i101[6] + [(-1)bni_12]i102[6] ≥ 0∧[1 + (-1)bso_13] ≥ 0)
(9) (i101[6] + [-1] + [-1]i102[6] ≥ 0∧i101[6] + i102[6] + [3]i103[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])), ≥)∧[(-1)Bound*bni_12] + [bni_12]i101[6] + [(-1)bni_12]i102[6] ≥ 0∧[1 + (-1)bso_13] ≥ 0)
(10) (i101[6] + [-1] + [-1]i102[6] ≥ 0∧i101[6] + i102[6] + [3]i103[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])), ≥)∧[(-1)Bound*bni_12] + [bni_12]i101[6] + [(-1)bni_12]i102[6] ≥ 0∧[1 + (-1)bso_13] ≥ 0)
(11) (i101[6] ≥ 0∧[1] + [2]i102[6] + i101[6] + [3]i103[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])), ≥)∧[(-1)Bound*bni_12 + bni_12] + [bni_12]i101[6] ≥ 0∧[1 + (-1)bso_13] ≥ 0)
(12) (i101[6] ≥ 0∧[1] + [2]i102[6] + i101[6] + [3]i103[6] ≥ 0∧i102[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])), ≥)∧[(-1)Bound*bni_12 + bni_12] + [bni_12]i101[6] ≥ 0∧[1 + (-1)bso_13] ≥ 0)
(13) (i101[6] ≥ 0∧[1] + [-2]i102[6] + i101[6] + [3]i103[6] ≥ 0∧i102[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])), ≥)∧[(-1)Bound*bni_12 + bni_12] + [bni_12]i101[6] ≥ 0∧[1 + (-1)bso_13] ≥ 0)
(14) (i101[6] ≥ 0∧[1] + [2]i102[6] + i101[6] + [3]i103[6] ≥ 0∧i102[6] ≥ 0∧i103[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])), ≥)∧[(-1)Bound*bni_12 + bni_12] + [bni_12]i101[6] ≥ 0∧[1 + (-1)bso_13] ≥ 0)
(15) (i101[6] ≥ 0∧[1] + [2]i102[6] + i101[6] + [-3]i103[6] ≥ 0∧i102[6] ≥ 0∧i103[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])), ≥)∧[(-1)Bound*bni_12 + bni_12] + [bni_12]i101[6] ≥ 0∧[1 + (-1)bso_13] ≥ 0)
(16) (i101[6] ≥ 0∧[1] + [-2]i102[6] + i101[6] + [3]i103[6] ≥ 0∧i102[6] ≥ 0∧i103[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])), ≥)∧[(-1)Bound*bni_12 + bni_12] + [bni_12]i101[6] ≥ 0∧[1 + (-1)bso_13] ≥ 0)
(17) (i101[6] ≥ 0∧[1] + [-2]i102[6] + i101[6] + [-3]i103[6] ≥ 0∧i102[6] ≥ 0∧i103[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])), ≥)∧[(-1)Bound*bni_12 + bni_12] + [bni_12]i101[6] ≥ 0∧[1 + (-1)bso_13] ≥ 0)
(18) (i101[6] ≥ 0∧i102[6] ≥ 0∧i103[6] ≥ 0∧i103[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])), ≥)∧[(-1)Bound*bni_12 + bni_12] + [bni_12]i101[6] ≥ 0∧[1 + (-1)bso_13] ≥ 0)
(19) (i101[6] ≥ 0∧i102[6] ≥ 0∧i103[6] ≥ 0∧[-1]i103[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])), ≥)∧[(-1)Bound*bni_12 + bni_12] + [bni_12]i101[6] ≥ 0∧[1 + (-1)bso_13] ≥ 0)
(20) (i101[6] ≥ 0∧i102[6] ≥ 0∧i103[6] ≥ 0∧i103[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])), ≥)∧[(-1)Bound*bni_12 + bni_12] + [bni_12]i101[6] ≥ 0∧[1 + (-1)bso_13] ≥ 0)
(21) (i101[6] ≥ 0∧i102[6] ≥ 0∧i103[6] ≥ 0∧[-1]i103[6] ≥ 0 ⇒ (UIncreasing(COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])), ≥)∧[(-1)Bound*bni_12 + bni_12] + [bni_12]i101[6] ≥ 0∧[1 + (-1)bso_13] ≥ 0)
(22) (COND_LOAD4541(TRUE, i101[3], i102[3], i103[3])≥NonInfC∧COND_LOAD4541(TRUE, i101[3], i102[3], i103[3])≥LOAD454(+(i101[3], 1), +(i102[3], 1), -(i103[3], 1))∧(UIncreasing(LOAD454(+(i101[3], 1), +(i102[3], 1), -(i103[3], 1))), ≥))
(23) ((UIncreasing(LOAD454(+(i101[3], 1), +(i102[3], 1), -(i103[3], 1))), ≥)∧[(-1)bso_15] ≥ 0)
(24) ((UIncreasing(LOAD454(+(i101[3], 1), +(i102[3], 1), -(i103[3], 1))), ≥)∧[(-1)bso_15] ≥ 0)
(25) ((UIncreasing(LOAD454(+(i101[3], 1), +(i102[3], 1), -(i103[3], 1))), ≥)∧[(-1)bso_15] ≥ 0)
(26) ((UIncreasing(LOAD454(+(i101[3], 1), +(i102[3], 1), -(i103[3], 1))), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_15] ≥ 0)
(27) (i102[2]=i102[3]∧i103[2]=i103[3]∧i101[2]=i101[3]∧&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0))=TRUE ⇒ LOAD454(i101[2], i102[2], i103[2])≥NonInfC∧LOAD454(i101[2], i102[2], i103[2])≥COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])∧(UIncreasing(COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])), ≥))
(28) (>=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)=TRUE∧<=(i102[2], i103[2])=TRUE∧<=(i101[2], i102[2])=TRUE ⇒ LOAD454(i101[2], i102[2], i103[2])≥NonInfC∧LOAD454(i101[2], i102[2], i103[2])≥COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])∧(UIncreasing(COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])), ≥))
(29) (i101[2] + i102[2] + [3]i103[2] ≥ 0∧i103[2] + [-1]i102[2] ≥ 0∧i102[2] + [-1]i101[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])), ≥)∧[(-1)Bound*bni_16] + [bni_16]i101[2] + [(-1)bni_16]i102[2] ≥ 0∧[(-1)bso_17] ≥ 0)
(30) (i101[2] + i102[2] + [3]i103[2] ≥ 0∧i103[2] + [-1]i102[2] ≥ 0∧i102[2] + [-1]i101[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])), ≥)∧[(-1)Bound*bni_16] + [bni_16]i101[2] + [(-1)bni_16]i102[2] ≥ 0∧[(-1)bso_17] ≥ 0)
(31) (i101[2] + i102[2] + [3]i103[2] ≥ 0∧i103[2] + [-1]i102[2] ≥ 0∧i102[2] + [-1]i101[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])), ≥)∧[(-1)Bound*bni_16] + [bni_16]i101[2] + [(-1)bni_16]i102[2] ≥ 0∧[(-1)bso_17] ≥ 0)
(32) (i101[2] ≥ 0∧i103[2] + [-1]i102[2] ≥ 0∧[2]i102[2] + [3]i103[2] + [-1]i101[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])), ≥)∧[(-1)Bound*bni_16] + [(-2)bni_16]i102[2] + [(-3)bni_16]i103[2] + [bni_16]i101[2] ≥ 0∧[(-1)bso_17] ≥ 0)
(33) (i101[2] ≥ 0∧i102[2] ≥ 0∧[5]i103[2] + [-2]i102[2] + [-1]i101[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])), ≥)∧[(-1)Bound*bni_16] + [(-5)bni_16]i103[2] + [(2)bni_16]i102[2] + [bni_16]i101[2] ≥ 0∧[(-1)bso_17] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_LOAD4543(x1, x2, x3, x4)) = [-1] + [-1]x3 + x2
POL(LOAD454(x1, x2, x3)) = x1 + [-1]x2
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(&&(x1, x2)) = [-1]
POL(>(x1, x2)) = [1]
POL(>=(x1, x2)) = [-1]
POL(*(x1, x2)) = x1·x2
POL(3) = [3]
POL(0) = 0
POL(COND_LOAD4541(x1, x2, x3, x4)) = [-1]x3 + x2
POL(1) = [1]
POL(-(x1, x2)) = x1 + [-1]x2
POL(<=(x1, x2)) = [-1]
LOAD454(i101[6], i102[6], i103[6]) → COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])
LOAD454(i101[6], i102[6], i103[6]) → COND_LOAD4543(&&(>(i101[6], i102[6]), >=(+(+(i101[6], i102[6]), *(3, i103[6])), 0)), i101[6], i102[6], i103[6])
COND_LOAD4543(TRUE, i101[7], i102[7], i103[7]) → LOAD454(+(i101[7], -1), i102[7], i103[7])
COND_LOAD4541(TRUE, i101[3], i102[3], i103[3]) → LOAD454(+(i101[3], 1), +(i102[3], 1), -(i103[3], 1))
LOAD454(i101[2], i102[2], i103[2]) → COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(3) -> (2), if ((i101[3] + 1 →* i101[2])∧(i103[3] - 1 →* i103[2])∧(i102[3] + 1 →* i102[2]))
(7) -> (2), if ((i101[7] + -1 →* i101[2])∧(i102[7] →* i102[2])∧(i103[7] →* i103[2]))
(2) -> (3), if ((i102[2] →* i102[3])∧(i103[2] →* i103[3])∧(i101[2] →* i101[3])∧(i102[2] <= i103[2] && i101[2] <= i102[2] && i101[2] + i102[2] + 3 * i103[2] >= 0 →* TRUE))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(3) -> (2), if ((i101[3] + 1 →* i101[2])∧(i103[3] - 1 →* i103[2])∧(i102[3] + 1 →* i102[2]))
(2) -> (3), if ((i102[2] →* i102[3])∧(i103[2] →* i103[3])∧(i101[2] →* i101[3])∧(i102[2] <= i103[2] && i101[2] <= i102[2] && i101[2] + i102[2] + 3 * i103[2] >= 0 →* TRUE))
(1) (COND_LOAD4541(TRUE, i101[3], i102[3], i103[3])≥NonInfC∧COND_LOAD4541(TRUE, i101[3], i102[3], i103[3])≥LOAD454(+(i101[3], 1), +(i102[3], 1), -(i103[3], 1))∧(UIncreasing(LOAD454(+(i101[3], 1), +(i102[3], 1), -(i103[3], 1))), ≥))
(2) ((UIncreasing(LOAD454(+(i101[3], 1), +(i102[3], 1), -(i103[3], 1))), ≥)∧[1 + (-1)bso_9] ≥ 0)
(3) ((UIncreasing(LOAD454(+(i101[3], 1), +(i102[3], 1), -(i103[3], 1))), ≥)∧[1 + (-1)bso_9] ≥ 0)
(4) ((UIncreasing(LOAD454(+(i101[3], 1), +(i102[3], 1), -(i103[3], 1))), ≥)∧[1 + (-1)bso_9] ≥ 0)
(5) ((UIncreasing(LOAD454(+(i101[3], 1), +(i102[3], 1), -(i103[3], 1))), ≥)∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_9] ≥ 0)
(6) (i102[2]=i102[3]∧i103[2]=i103[3]∧i101[2]=i101[3]∧&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0))=TRUE ⇒ LOAD454(i101[2], i102[2], i103[2])≥NonInfC∧LOAD454(i101[2], i102[2], i103[2])≥COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])∧(UIncreasing(COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])), ≥))
(7) (>=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)=TRUE∧<=(i102[2], i103[2])=TRUE∧<=(i101[2], i102[2])=TRUE ⇒ LOAD454(i101[2], i102[2], i103[2])≥NonInfC∧LOAD454(i101[2], i102[2], i103[2])≥COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])∧(UIncreasing(COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])), ≥))
(8) (i101[2] + i102[2] + [3]i103[2] ≥ 0∧i103[2] + [-1]i102[2] ≥ 0∧i102[2] + [-1]i101[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])), ≥)∧[(2)bni_10 + (-1)Bound*bni_10] + [(2)bni_10]i103[2] + [(-1)bni_10]i102[2] ≥ 0∧[2 + (-1)bso_11] ≥ 0)
(9) (i101[2] + i102[2] + [3]i103[2] ≥ 0∧i103[2] + [-1]i102[2] ≥ 0∧i102[2] + [-1]i101[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])), ≥)∧[(2)bni_10 + (-1)Bound*bni_10] + [(2)bni_10]i103[2] + [(-1)bni_10]i102[2] ≥ 0∧[2 + (-1)bso_11] ≥ 0)
(10) (i101[2] + i102[2] + [3]i103[2] ≥ 0∧i103[2] + [-1]i102[2] ≥ 0∧i102[2] + [-1]i101[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])), ≥)∧[(2)bni_10 + (-1)Bound*bni_10] + [(2)bni_10]i103[2] + [(-1)bni_10]i102[2] ≥ 0∧[2 + (-1)bso_11] ≥ 0)
(11) (i101[2] ≥ 0∧i103[2] + [-1]i102[2] ≥ 0∧[2]i102[2] + [3]i103[2] + [-1]i101[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])), ≥)∧[(2)bni_10 + (-1)Bound*bni_10] + [(2)bni_10]i103[2] + [(-1)bni_10]i102[2] ≥ 0∧[2 + (-1)bso_11] ≥ 0)
(12) (i101[2] ≥ 0∧i102[2] ≥ 0∧[5]i103[2] + [-2]i102[2] + [-1]i101[2] ≥ 0 ⇒ (UIncreasing(COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])), ≥)∧[(2)bni_10 + (-1)Bound*bni_10] + [bni_10]i103[2] + [bni_10]i102[2] ≥ 0∧[2 + (-1)bso_11] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_LOAD4541(x1, x2, x3, x4)) = [2]x4 + [-1]x3
POL(LOAD454(x1, x2, x3)) = [2] + [2]x3 + [-1]x2
POL(+(x1, x2)) = x1 + x2
POL(1) = [1]
POL(-(x1, x2)) = x1 + [-1]x2
POL(&&(x1, x2)) = [-1]
POL(<=(x1, x2)) = 0
POL(>=(x1, x2)) = [-1]
POL(*(x1, x2)) = x1·x2
POL(3) = [3]
POL(0) = 0
COND_LOAD4541(TRUE, i101[3], i102[3], i103[3]) → LOAD454(+(i101[3], 1), +(i102[3], 1), -(i103[3], 1))
LOAD454(i101[2], i102[2], i103[2]) → COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])
LOAD454(i101[2], i102[2], i103[2]) → COND_LOAD4541(&&(&&(<=(i102[2], i103[2]), <=(i101[2], i102[2])), >=(+(+(i101[2], i102[2]), *(3, i103[2])), 0)), i101[2], i102[2], i103[2])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer