0 JBC
↳1 JBC2FIG (⇒)
↳2 JBCTerminationGraph
↳3 FIGtoITRSProof (⇒)
↳4 IDP
↳5 IDPNonInfProof (⇒)
↳6 AND
↳7 IDP
↳8 IDependencyGraphProof (⇔)
↳9 TRUE
↳10 IDP
↳11 IDependencyGraphProof (⇔)
↳12 TRUE
public class Test11 {
public static void main(String[] args) {
Random.args = args;
int x = args.length * 100, y = args.length * 200 / 13;
while (x + y > 0) {
if (Random.random() * Random.random() > 9)
x--;
else
y--;
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
if (index >= args.length)
return 0;
String string = args[index];
index++;
return string.length();
}
}
Generated 108 rules for P and 190 rules for R.
Combined rules. Obtained 17 rules for P and 0 rules for R.
Filtered ground terms:
5887_0_main_Load(x1, x2, x3, x4) → 5887_0_main_Load(x2, x3, x4)
5954_0_random_LT(x1, x2, x3) → 5954_0_random_LT(x2, x3)
6091_0_random_IntArithmetic(x1, x2, x3, x4) → 6091_0_random_IntArithmetic(x2, x3)
6012_0_random_ArrayAccess(x1, x2, x3) → 6012_0_random_ArrayAccess(x2, x3)
5952_0_random_LT(x1, x2, x3) → 5952_0_random_LT(x2, x3)
5905_0_random_LT(x1, x2, x3) → 5905_0_random_LT(x2, x3)
6286_0_random_LT(x1, x2, x3) → 6286_0_random_LT(x2, x3)
6591_0_random_IntArithmetic(x1, x2, x3, x4) → 6591_0_random_IntArithmetic(x2, x3)
6442_0_random_ArrayAccess(x1, x2, x3) → 6442_0_random_ArrayAccess(x2, x3)
6283_0_random_LT(x1, x2, x3) → 6283_0_random_LT(x2, x3)
5957_0_random_IntArithmetic(x1, x2, x3, x4) → 5957_0_random_IntArithmetic(x2, x3)
5924_0_random_ArrayAccess(x1, x2, x3) → 5924_0_random_ArrayAccess(x2, x3)
5904_0_random_LT(x1, x2, x3) → 5904_0_random_LT(x2, x3)
Cond_5887_0_main_Load1(x1, x2, x3, x4, x5) → Cond_5887_0_main_Load1(x1, x3, x4, x5)
Cond_5887_0_main_Load(x1, x2, x3, x4, x5) → Cond_5887_0_main_Load(x1, x3, x4, x5)
Filtered duplicate args:
5887_0_main_Load(x1, x2, x3) → 5887_0_main_Load(x2, x3)
Cond_5887_0_main_Load1(x1, x2, x3, x4) → Cond_5887_0_main_Load1(x1, x3, x4)
Cond_5887_0_main_Load(x1, x2, x3, x4) → Cond_5887_0_main_Load(x1, x3, x4)
Filtered unneeded arguments:
Cond_6591_1_main_InvokeMethod(x1, x2, x3, x4, x5) → Cond_6591_1_main_InvokeMethod(x1, x2, x3, x4)
Cond_6591_1_main_InvokeMethod1(x1, x2, x3, x4, x5) → Cond_6591_1_main_InvokeMethod1(x1, x2, x3, x4)
6286_1_main_InvokeMethod(x1, x2, x3, x4) → 6286_1_main_InvokeMethod(x1, x2, x3)
Cond_6286_1_main_InvokeMethod(x1, x2, x3, x4, x5) → Cond_6286_1_main_InvokeMethod(x1, x2, x3, x4)
Filtered all free variables:
5904_1_main_InvokeMethod(x1, x2, x3) → 5904_1_main_InvokeMethod(x2, x3)
5905_1_main_InvokeMethod(x1, x2, x3) → 5905_1_main_InvokeMethod(x2, x3)
Cond_5904_1_main_InvokeMethod(x1, x2, x3, x4) → Cond_5904_1_main_InvokeMethod(x1, x3, x4)
5924_1_main_InvokeMethod(x1, x2, x3) → 5924_1_main_InvokeMethod(x2, x3)
Cond_5924_1_main_InvokeMethod(x1, x2, x3, x4) → Cond_5924_1_main_InvokeMethod(x1, x3, x4)
5957_1_main_InvokeMethod(x1, x2, x3) → 5957_1_main_InvokeMethod(x2, x3)
Cond_5957_1_main_InvokeMethod(x1, x2, x3, x4) → Cond_5957_1_main_InvokeMethod(x1, x3, x4)
6283_1_main_InvokeMethod(x1, x2, x3, x4) → 6283_1_main_InvokeMethod(x2, x3, x4)
Cond_5957_1_main_InvokeMethod1(x1, x2, x3, x4) → Cond_5957_1_main_InvokeMethod1(x1, x3, x4)
6286_1_main_InvokeMethod(x1, x2, x3) → 6286_1_main_InvokeMethod(x2, x3)
Cond_6283_1_main_InvokeMethod(x1, x2, x3, x4, x5) → Cond_6283_1_main_InvokeMethod(x1, x3, x4, x5)
6442_1_main_InvokeMethod(x1, x2, x3, x4) → 6442_1_main_InvokeMethod(x2, x3, x4)
Cond_6442_1_main_InvokeMethod(x1, x2, x3, x4, x5) → Cond_6442_1_main_InvokeMethod(x1, x3, x4, x5)
6591_1_main_InvokeMethod(x1, x2, x3, x4) → 6591_1_main_InvokeMethod(x2, x3, x4)
Cond_6591_1_main_InvokeMethod(x1, x2, x3, x4) → Cond_6591_1_main_InvokeMethod(x1, x3, x4)
Cond_6591_1_main_InvokeMethod1(x1, x2, x3, x4) → Cond_6591_1_main_InvokeMethod1(x1, x3, x4)
Cond_6286_1_main_InvokeMethod(x1, x2, x3, x4) → Cond_6286_1_main_InvokeMethod(x1, x3, x4)
Cond_5905_1_main_InvokeMethod(x1, x2, x3, x4) → Cond_5905_1_main_InvokeMethod(x1, x3, x4)
5952_1_main_InvokeMethod(x1, x2, x3) → 5952_1_main_InvokeMethod(x2, x3)
Cond_5905_1_main_InvokeMethod1(x1, x2, x3, x4) → Cond_5905_1_main_InvokeMethod1(x1, x3, x4)
5954_1_main_InvokeMethod(x1, x2, x3) → 5954_1_main_InvokeMethod(x2, x3)
Cond_5952_1_main_InvokeMethod(x1, x2, x3, x4) → Cond_5952_1_main_InvokeMethod(x1, x3, x4)
6012_1_main_InvokeMethod(x1, x2, x3) → 6012_1_main_InvokeMethod(x2, x3)
Cond_6012_1_main_InvokeMethod(x1, x2, x3, x4) → Cond_6012_1_main_InvokeMethod(x1, x3, x4)
6091_1_main_InvokeMethod(x1, x2, x3) → 6091_1_main_InvokeMethod(x2, x3)
Cond_6091_1_main_InvokeMethod(x1, x2, x3, x4) → Cond_6091_1_main_InvokeMethod(x1, x3, x4)
Cond_5954_1_main_InvokeMethod(x1, x2, x3, x4) → Cond_5954_1_main_InvokeMethod(x1, x3, x4)
Combined rules. Obtained 6 rules for P and 0 rules for R.
Finished conversion. Obtained 6 rules for P and 0 rules for R. System has predefined symbols.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(0) -> (1), if ((x5[0] + -1 →* x0[1])∧(x4[0] →* x1[1]))
(0) -> (3), if ((x5[0] + -1 →* x0[3])∧(x4[0] →* x1[3]))
(0) -> (5), if ((x5[0] + -1 →* x0[5])∧(x4[0] →* x1[5]))
(1) -> (2), if ((0 < x1[1] + x0[1] →* TRUE)∧(x0[1] →* x0[2])∧(x1[1] →* x1[2]))
(2) -> (0), if ((x1[2] →* x4[0])∧(x0[2] →* x5[0]))
(3) -> (4), if ((0 < x1[3] + x0[3] →* TRUE)∧(x0[3] →* x0[4])∧(x1[3] →* x1[4]))
(4) -> (1), if ((x0[4] + -1 →* x0[1])∧(x1[4] →* x1[1]))
(4) -> (3), if ((x0[4] + -1 →* x0[3])∧(x1[4] →* x1[3]))
(4) -> (5), if ((x0[4] + -1 →* x0[5])∧(x1[4] →* x1[5]))
(5) -> (6), if ((0 < x1[5] + x0[5] →* TRUE)∧(x0[5] →* x0[6])∧(x1[5] →* x1[6]))
(6) -> (1), if ((x0[6] →* x0[1])∧(x1[6] + -1 →* x1[1]))
(6) -> (3), if ((x0[6] →* x0[3])∧(x1[6] + -1 →* x1[3]))
(6) -> (5), if ((x0[6] →* x0[5])∧(x1[6] + -1 →* x1[5]))
(1) (6091_1_MAIN_INVOKEMETHOD(x4[0], x5[0])≥NonInfC∧6091_1_MAIN_INVOKEMETHOD(x4[0], x5[0])≥5887_0_MAIN_LOAD(+(x5[0], -1), x4[0])∧(UIncreasing(5887_0_MAIN_LOAD(+(x5[0], -1), x4[0])), ≥))
(2) ((UIncreasing(5887_0_MAIN_LOAD(+(x5[0], -1), x4[0])), ≥)∧[(-1)bso_12] ≥ 0)
(3) ((UIncreasing(5887_0_MAIN_LOAD(+(x5[0], -1), x4[0])), ≥)∧[(-1)bso_12] ≥ 0)
(4) ((UIncreasing(5887_0_MAIN_LOAD(+(x5[0], -1), x4[0])), ≥)∧[(-1)bso_12] ≥ 0)
(5) ((UIncreasing(5887_0_MAIN_LOAD(+(x5[0], -1), x4[0])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_12] ≥ 0)
(6) (<(0, +(x1[1], x0[1]))=TRUE∧x0[1]=x0[2]∧x1[1]=x1[2] ⇒ 5887_0_MAIN_LOAD(x0[1], x1[1])≥NonInfC∧5887_0_MAIN_LOAD(x0[1], x1[1])≥COND_5887_0_MAIN_LOAD(<(0, +(x1[1], x0[1])), x0[1], x1[1])∧(UIncreasing(COND_5887_0_MAIN_LOAD(<(0, +(x1[1], x0[1])), x0[1], x1[1])), ≥))
(7) (<(0, +(x1[1], x0[1]))=TRUE ⇒ 5887_0_MAIN_LOAD(x0[1], x1[1])≥NonInfC∧5887_0_MAIN_LOAD(x0[1], x1[1])≥COND_5887_0_MAIN_LOAD(<(0, +(x1[1], x0[1])), x0[1], x1[1])∧(UIncreasing(COND_5887_0_MAIN_LOAD(<(0, +(x1[1], x0[1])), x0[1], x1[1])), ≥))
(8) (x1[1] + [-1] + x0[1] ≥ 0 ⇒ (UIncreasing(COND_5887_0_MAIN_LOAD(<(0, +(x1[1], x0[1])), x0[1], x1[1])), ≥)∧[bni_13 + (-1)Bound*bni_13] + [bni_13]x0[1] + [bni_13]x1[1] ≥ 0∧[(-1)bso_14] ≥ 0)
(9) (x1[1] + [-1] + x0[1] ≥ 0 ⇒ (UIncreasing(COND_5887_0_MAIN_LOAD(<(0, +(x1[1], x0[1])), x0[1], x1[1])), ≥)∧[bni_13 + (-1)Bound*bni_13] + [bni_13]x0[1] + [bni_13]x1[1] ≥ 0∧[(-1)bso_14] ≥ 0)
(10) (x1[1] + [-1] + x0[1] ≥ 0 ⇒ (UIncreasing(COND_5887_0_MAIN_LOAD(<(0, +(x1[1], x0[1])), x0[1], x1[1])), ≥)∧[bni_13 + (-1)Bound*bni_13] + [bni_13]x0[1] + [bni_13]x1[1] ≥ 0∧[(-1)bso_14] ≥ 0)
(11) (x1[1] ≥ 0 ⇒ (UIncreasing(COND_5887_0_MAIN_LOAD(<(0, +(x1[1], x0[1])), x0[1], x1[1])), ≥)∧[(2)bni_13 + (-1)Bound*bni_13] + [bni_13]x1[1] ≥ 0∧[(-1)bso_14] ≥ 0)
(12) (x1[1] ≥ 0∧x0[1] ≥ 0 ⇒ (UIncreasing(COND_5887_0_MAIN_LOAD(<(0, +(x1[1], x0[1])), x0[1], x1[1])), ≥)∧[(2)bni_13 + (-1)Bound*bni_13] + [bni_13]x1[1] ≥ 0∧[(-1)bso_14] ≥ 0)
(13) (x1[1] ≥ 0∧x0[1] ≥ 0 ⇒ (UIncreasing(COND_5887_0_MAIN_LOAD(<(0, +(x1[1], x0[1])), x0[1], x1[1])), ≥)∧[(2)bni_13 + (-1)Bound*bni_13] + [bni_13]x1[1] ≥ 0∧[(-1)bso_14] ≥ 0)
(14) (x1[2]=x4[0]∧x0[2]=x5[0] ⇒ COND_5887_0_MAIN_LOAD(TRUE, x0[2], x1[2])≥NonInfC∧COND_5887_0_MAIN_LOAD(TRUE, x0[2], x1[2])≥6091_1_MAIN_INVOKEMETHOD(x1[2], x0[2])∧(UIncreasing(6091_1_MAIN_INVOKEMETHOD(x1[2], x0[2])), ≥))
(15) (COND_5887_0_MAIN_LOAD(TRUE, x0[2], x1[2])≥NonInfC∧COND_5887_0_MAIN_LOAD(TRUE, x0[2], x1[2])≥6091_1_MAIN_INVOKEMETHOD(x1[2], x0[2])∧(UIncreasing(6091_1_MAIN_INVOKEMETHOD(x1[2], x0[2])), ≥))
(16) ((UIncreasing(6091_1_MAIN_INVOKEMETHOD(x1[2], x0[2])), ≥)∧[1 + (-1)bso_16] ≥ 0)
(17) ((UIncreasing(6091_1_MAIN_INVOKEMETHOD(x1[2], x0[2])), ≥)∧[1 + (-1)bso_16] ≥ 0)
(18) ((UIncreasing(6091_1_MAIN_INVOKEMETHOD(x1[2], x0[2])), ≥)∧[1 + (-1)bso_16] ≥ 0)
(19) ((UIncreasing(6091_1_MAIN_INVOKEMETHOD(x1[2], x0[2])), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_16] ≥ 0)
(20) (<(0, +(x1[3], x0[3]))=TRUE∧x0[3]=x0[4]∧x1[3]=x1[4] ⇒ 5887_0_MAIN_LOAD(x0[3], x1[3])≥NonInfC∧5887_0_MAIN_LOAD(x0[3], x1[3])≥COND_5887_0_MAIN_LOAD1(<(0, +(x1[3], x0[3])), x0[3], x1[3])∧(UIncreasing(COND_5887_0_MAIN_LOAD1(<(0, +(x1[3], x0[3])), x0[3], x1[3])), ≥))
(21) (<(0, +(x1[3], x0[3]))=TRUE ⇒ 5887_0_MAIN_LOAD(x0[3], x1[3])≥NonInfC∧5887_0_MAIN_LOAD(x0[3], x1[3])≥COND_5887_0_MAIN_LOAD1(<(0, +(x1[3], x0[3])), x0[3], x1[3])∧(UIncreasing(COND_5887_0_MAIN_LOAD1(<(0, +(x1[3], x0[3])), x0[3], x1[3])), ≥))
(22) (x1[3] + [-1] + x0[3] ≥ 0 ⇒ (UIncreasing(COND_5887_0_MAIN_LOAD1(<(0, +(x1[3], x0[3])), x0[3], x1[3])), ≥)∧[bni_17 + (-1)Bound*bni_17] + [bni_17]x0[3] + [bni_17]x1[3] ≥ 0∧[(-1)bso_18] ≥ 0)
(23) (x1[3] + [-1] + x0[3] ≥ 0 ⇒ (UIncreasing(COND_5887_0_MAIN_LOAD1(<(0, +(x1[3], x0[3])), x0[3], x1[3])), ≥)∧[bni_17 + (-1)Bound*bni_17] + [bni_17]x0[3] + [bni_17]x1[3] ≥ 0∧[(-1)bso_18] ≥ 0)
(24) (x1[3] + [-1] + x0[3] ≥ 0 ⇒ (UIncreasing(COND_5887_0_MAIN_LOAD1(<(0, +(x1[3], x0[3])), x0[3], x1[3])), ≥)∧[bni_17 + (-1)Bound*bni_17] + [bni_17]x0[3] + [bni_17]x1[3] ≥ 0∧[(-1)bso_18] ≥ 0)
(25) (x1[3] ≥ 0 ⇒ (UIncreasing(COND_5887_0_MAIN_LOAD1(<(0, +(x1[3], x0[3])), x0[3], x1[3])), ≥)∧[(2)bni_17 + (-1)Bound*bni_17] + [bni_17]x1[3] ≥ 0∧[(-1)bso_18] ≥ 0)
(26) (x1[3] ≥ 0∧x0[3] ≥ 0 ⇒ (UIncreasing(COND_5887_0_MAIN_LOAD1(<(0, +(x1[3], x0[3])), x0[3], x1[3])), ≥)∧[(2)bni_17 + (-1)Bound*bni_17] + [bni_17]x1[3] ≥ 0∧[(-1)bso_18] ≥ 0)
(27) (x1[3] ≥ 0∧x0[3] ≥ 0 ⇒ (UIncreasing(COND_5887_0_MAIN_LOAD1(<(0, +(x1[3], x0[3])), x0[3], x1[3])), ≥)∧[(2)bni_17 + (-1)Bound*bni_17] + [bni_17]x1[3] ≥ 0∧[(-1)bso_18] ≥ 0)
(28) (COND_5887_0_MAIN_LOAD1(TRUE, x0[4], x1[4])≥NonInfC∧COND_5887_0_MAIN_LOAD1(TRUE, x0[4], x1[4])≥5887_0_MAIN_LOAD(+(x0[4], -1), x1[4])∧(UIncreasing(5887_0_MAIN_LOAD(+(x0[4], -1), x1[4])), ≥))
(29) ((UIncreasing(5887_0_MAIN_LOAD(+(x0[4], -1), x1[4])), ≥)∧[1 + (-1)bso_20] ≥ 0)
(30) ((UIncreasing(5887_0_MAIN_LOAD(+(x0[4], -1), x1[4])), ≥)∧[1 + (-1)bso_20] ≥ 0)
(31) ((UIncreasing(5887_0_MAIN_LOAD(+(x0[4], -1), x1[4])), ≥)∧[1 + (-1)bso_20] ≥ 0)
(32) ((UIncreasing(5887_0_MAIN_LOAD(+(x0[4], -1), x1[4])), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_20] ≥ 0)
(33) (<(0, +(x1[5], x0[5]))=TRUE∧x0[5]=x0[6]∧x1[5]=x1[6] ⇒ 5887_0_MAIN_LOAD(x0[5], x1[5])≥NonInfC∧5887_0_MAIN_LOAD(x0[5], x1[5])≥COND_5887_0_MAIN_LOAD2(<(0, +(x1[5], x0[5])), x0[5], x1[5])∧(UIncreasing(COND_5887_0_MAIN_LOAD2(<(0, +(x1[5], x0[5])), x0[5], x1[5])), ≥))
(34) (<(0, +(x1[5], x0[5]))=TRUE ⇒ 5887_0_MAIN_LOAD(x0[5], x1[5])≥NonInfC∧5887_0_MAIN_LOAD(x0[5], x1[5])≥COND_5887_0_MAIN_LOAD2(<(0, +(x1[5], x0[5])), x0[5], x1[5])∧(UIncreasing(COND_5887_0_MAIN_LOAD2(<(0, +(x1[5], x0[5])), x0[5], x1[5])), ≥))
(35) (x1[5] + [-1] + x0[5] ≥ 0 ⇒ (UIncreasing(COND_5887_0_MAIN_LOAD2(<(0, +(x1[5], x0[5])), x0[5], x1[5])), ≥)∧[bni_21 + (-1)Bound*bni_21] + [bni_21]x0[5] + [bni_21]x1[5] ≥ 0∧[(-1)bso_22] ≥ 0)
(36) (x1[5] + [-1] + x0[5] ≥ 0 ⇒ (UIncreasing(COND_5887_0_MAIN_LOAD2(<(0, +(x1[5], x0[5])), x0[5], x1[5])), ≥)∧[bni_21 + (-1)Bound*bni_21] + [bni_21]x0[5] + [bni_21]x1[5] ≥ 0∧[(-1)bso_22] ≥ 0)
(37) (x1[5] + [-1] + x0[5] ≥ 0 ⇒ (UIncreasing(COND_5887_0_MAIN_LOAD2(<(0, +(x1[5], x0[5])), x0[5], x1[5])), ≥)∧[bni_21 + (-1)Bound*bni_21] + [bni_21]x0[5] + [bni_21]x1[5] ≥ 0∧[(-1)bso_22] ≥ 0)
(38) (x1[5] ≥ 0 ⇒ (UIncreasing(COND_5887_0_MAIN_LOAD2(<(0, +(x1[5], x0[5])), x0[5], x1[5])), ≥)∧[(2)bni_21 + (-1)Bound*bni_21] + [bni_21]x1[5] ≥ 0∧[(-1)bso_22] ≥ 0)
(39) (x1[5] ≥ 0∧x0[5] ≥ 0 ⇒ (UIncreasing(COND_5887_0_MAIN_LOAD2(<(0, +(x1[5], x0[5])), x0[5], x1[5])), ≥)∧[(2)bni_21 + (-1)Bound*bni_21] + [bni_21]x1[5] ≥ 0∧[(-1)bso_22] ≥ 0)
(40) (x1[5] ≥ 0∧x0[5] ≥ 0 ⇒ (UIncreasing(COND_5887_0_MAIN_LOAD2(<(0, +(x1[5], x0[5])), x0[5], x1[5])), ≥)∧[(2)bni_21 + (-1)Bound*bni_21] + [bni_21]x1[5] ≥ 0∧[(-1)bso_22] ≥ 0)
(41) (COND_5887_0_MAIN_LOAD2(TRUE, x0[6], x1[6])≥NonInfC∧COND_5887_0_MAIN_LOAD2(TRUE, x0[6], x1[6])≥5887_0_MAIN_LOAD(x0[6], +(x1[6], -1))∧(UIncreasing(5887_0_MAIN_LOAD(x0[6], +(x1[6], -1))), ≥))
(42) ((UIncreasing(5887_0_MAIN_LOAD(x0[6], +(x1[6], -1))), ≥)∧[1 + (-1)bso_24] ≥ 0)
(43) ((UIncreasing(5887_0_MAIN_LOAD(x0[6], +(x1[6], -1))), ≥)∧[1 + (-1)bso_24] ≥ 0)
(44) ((UIncreasing(5887_0_MAIN_LOAD(x0[6], +(x1[6], -1))), ≥)∧[1 + (-1)bso_24] ≥ 0)
(45) ((UIncreasing(5887_0_MAIN_LOAD(x0[6], +(x1[6], -1))), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_24] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(6091_1_MAIN_INVOKEMETHOD(x1, x2)) = x1 + x2
POL(5887_0_MAIN_LOAD(x1, x2)) = [1] + x1 + x2
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(COND_5887_0_MAIN_LOAD(x1, x2, x3)) = [1] + x3 + x2
POL(<(x1, x2)) = [-1]
POL(0) = 0
POL(COND_5887_0_MAIN_LOAD1(x1, x2, x3)) = [1] + x3 + x2
POL(COND_5887_0_MAIN_LOAD2(x1, x2, x3)) = [1] + x3 + x2
COND_5887_0_MAIN_LOAD(TRUE, x0[2], x1[2]) → 6091_1_MAIN_INVOKEMETHOD(x1[2], x0[2])
COND_5887_0_MAIN_LOAD1(TRUE, x0[4], x1[4]) → 5887_0_MAIN_LOAD(+(x0[4], -1), x1[4])
COND_5887_0_MAIN_LOAD2(TRUE, x0[6], x1[6]) → 5887_0_MAIN_LOAD(x0[6], +(x1[6], -1))
5887_0_MAIN_LOAD(x0[1], x1[1]) → COND_5887_0_MAIN_LOAD(<(0, +(x1[1], x0[1])), x0[1], x1[1])
5887_0_MAIN_LOAD(x0[3], x1[3]) → COND_5887_0_MAIN_LOAD1(<(0, +(x1[3], x0[3])), x0[3], x1[3])
5887_0_MAIN_LOAD(x0[5], x1[5]) → COND_5887_0_MAIN_LOAD2(<(0, +(x1[5], x0[5])), x0[5], x1[5])
6091_1_MAIN_INVOKEMETHOD(x4[0], x5[0]) → 5887_0_MAIN_LOAD(+(x5[0], -1), x4[0])
5887_0_MAIN_LOAD(x0[1], x1[1]) → COND_5887_0_MAIN_LOAD(<(0, +(x1[1], x0[1])), x0[1], x1[1])
5887_0_MAIN_LOAD(x0[3], x1[3]) → COND_5887_0_MAIN_LOAD1(<(0, +(x1[3], x0[3])), x0[3], x1[3])
5887_0_MAIN_LOAD(x0[5], x1[5]) → COND_5887_0_MAIN_LOAD2(<(0, +(x1[5], x0[5])), x0[5], x1[5])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(0) -> (1), if ((x5[0] + -1 →* x0[1])∧(x4[0] →* x1[1]))
(0) -> (3), if ((x5[0] + -1 →* x0[3])∧(x4[0] →* x1[3]))
(0) -> (5), if ((x5[0] + -1 →* x0[5])∧(x4[0] →* x1[5]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(2) -> (0), if ((x1[2] →* x4[0])∧(x0[2] →* x5[0]))